GRT: An Automated Test Generator using
Orchestrated Program Analysis

Lei Ma*, Cyrille Arthof, Cheng Zhang$, Hiroyuki Sato*, Johannes Gmeiner* and Rudolf Ramler!

* University of Tokyo, Japan

Abstract—While being highly automated and easy to use,
existing techniques of random testing suffer from low code
coverage and defect detection ability for practical software
applications. Most tools use a pure black-box approach, which
does not use knowledge specific to the software under test. Mining
and leveraging the information of the software under test can be
promising to guide random testing to overcome such limitations.

Guided Random Testing (GRT) implements this idea. GRT
performs static analysis on software under test to extract relevant
knowledge and further combines the information extracted at
run-time to guide the whole test generation procedure. GRT is
highly configurable, with each of its six program analysis compo-
nents implemented as a pluggable module whose parameters can
be adjusted. Besides generating test cases, GRT also automatically
creates a test coverage report. We show our experience in GRT
tool development and demonstrate its practical usage using two
concrete application scenarios.

Keywords—Automatic test generation, random testing, bug de-
tection, static analysis, dynamic analysis

I. INTRODUCTION

Unit testing is an important quality assurance technique in
software development, but manually crafting unit test cases
is labor-intensive. In general, unit testing consists of three
steps: creating test inputs, executing tests, and checking test
outputs. An easy-to-use test generation tool can be valuable,
if it automates one or more of these steps and has reasonable
test effectiveness (e. g., high code coverage, defect detection
ability) to assist the development of practical software systems.

In unit testing of object-oriented programs, the methods in
the software under test (SUT) are the basic entities. To exercise
the target behavior of a method under test (MUT) m, test inputs
type-compatible with the parameter types are needed to execute
m. Starting with primitive values, which are the fundamental
elements of object states, object-oriented testing techniques
construct test input objects incrementally. The primitive values
are used as parameters to invoke constructors and methods to
create more complex object states. The sequence of method
calls is further expanded to produce more diverse object states
so that desirable inputs can be generated for the MUT. In the
end, the generated test cases usually consist of three parts:
initial primitive (or constant) values, method sequences, and
assertions. As generating assertions amounts to the classic test
oracle problem [36], [3], [29], which requires extra information
of expected behavior, most automatic testing techniques focus
on finding better initial values and creating useful method
sequences.

{malei, schuko} @satolab.itc.u-tokyo.ac.jp
TAIST / ITRI, Japan

§ University of Waterloo, Canada

¥Software Competence Center Hagenberg, Austria

c.artho@aist.go.jp
cl6zhang @uwaterloo.ca
{johannes.gmeiner, rudolf.ramler} @scch.at

However, a large number of software systems cannot be
tested exhaustively due to the enormous state space of possible
initial values and combinations of method calls. Random
testing [14] automatically generates test sequences to execute
different paths in an MUT. However, random testing techniques
are known to suffer from low code coverage on real-world
applications. To improve random testing, feedback-directed
random testing (FRT) [25], [27], [26] incrementally builds
more and longer test sequences by randomly selecting an
MUT and reusing previously generated method sequences (that
return objects) as input to execute the MUT until a time limit
is hit. Unfortunately, FRT still suffers low code coverage in
some cases [33], [18], [38].

In this paper, we present a fully automatic test generator,
called GRT, which generates test cases with high code cover-
age [21]. GRT shares the common idea of FRT by leveraging
the feedback of method execution, but it addresses several
issues of random testing and FRT through an orchestration
of static and dynamic program analyses. GRT only requires
the SUT and the necessary dependency libraries to work: No
extra information, such as program specifications, previous test
cases, or code bases, is needed. As a tool for unit testing, GRT
provides the following advantages:

1) GRT combines information from static and dynamic
analysis to guide test generation. This enables GRT to
generate useful unit test cases with high code coverage
for real-world programs.

2) GRT is fully automatic and requires no extra information
other than the SUT and its dependency libraries to gen-
erate test cases. A user just needs to start GRT and waits
for the test generation process to complete.

3) GRT is well modularized in that all of its components
are pluggable under the basic FRT framework. Each
component can be easily improved or replaced. The
modularity of GRT’s architecture makes it highly flexible
and adaptable. GRT can serve as platform to facilitate
further research in software testing.

II. GRT: GUIDED RANDOM TESTING

During our design of GRT [21], we identified several
common concerns that potentially influence the testing effec-
tiveness of FRT:

Selection of initial values. Although random testing pro-
duces test inputs randomly in general, to compose useful

Run-time phase

. Result
Static phase Method Input i
selection Sequence Method evaluatlon'
: selection [« - generation Gy Elephant brain
Constant Impurity Method Bloodhound Elephant brain execution Detective
mining analysis dependency Ogee?;iﬁ\"l'gg Orienteering

Detective

Method
pool

Bloodhound

Secondary obj. pool
Detective

Main object pool

Elephant brain

Impurity fuzzing Successful sequence

Fig. 1.

complex objects, suitable initial values, especially primitive
values, are required as the basis for input object construction.

Selection of MUT. To achieve higher code coverage,
MUTs with uncovered code are natural targets for generating
new test cases. Run-time coverage information can be used to
steer the process of test generation towards MUTs whose code
is not well covered.

Selection of methods to generate input data. Object-
oriented testing executes methods and usually requires objects
as input arguments. The selection of the right methods to
generate valid sequences (that return objects) is a central and
difficult problem in random testing. We identify two main
aspects of method selection:

1) Properties of methods. The main properties of a method
are characterized by the method signature, including the
return type and parameter types. In object-oriented pro-
grams, high-level super-types, instead of exact subtypes,
are often used to declare parameters for the purpose of
design flexibility (i.e., to allow run-time substitution of
objects with compatible types). Considering both static
and dynamic type information can capture properties
of methods more accurately. Moreover, the purity of
methods, whether they have side effects or not in changing
program states, is an important method property relevant
to test generation.

2) Dependencies of methods. It is usually infeasible to con-
sider all applicable methods (MUTs and their dependent
methods) in test generation, because this wastes testing
effort on methods that are not the targets. However, if
the pool of methods to choose from is limited (e. g., only
the MUTSs), necessary objects of certain types cannot be
created by FRT, making all the MUTs depending on such
objects unable to be tested. Thus, the pool of available
methods needs to be chosen appropriately. Dependencies
among methods can be explored to identify relevant
methods.

Composition of method sequences. FRT generates new
method sequences based on concatenation of existing se-
quences. Existing tools mostly compose sequences by select-
ing a sequence returning an object with compatible type at
random, but a well designed strategy can optimize this task by
considering several factors related to the cost-effectiveness of
testing, such as the time required to execute a sequence and
the likelihood to cover more unexecuted code.

The workflow overview of guided random testing (GRT), which combines information from static analysis with run-time guidance.

To address these issues and also keep the technique open to
further enhancement, we propose the architecture of GRT [21]
as shown in Fig. 1: First, GRT performs static analysis on the
MUTs to extract information. Second, tests are generated at
run-time guided by dynamic analysis. The run-time phase is
based on the original framework of feedback-directed random
testing [27], with GRT components plugged into each step.
Specifically, GRT has six collaborative components, which
are orchestrated so that program information (either static or
dynamic) is extracted by some components at specific steps
and passed to others to facilicate their tasks. The rest of this
section describes details of the design and implementation of
each GRT’s component.

Constant mining enriches the initial set of primitive values
by extracting constants from the SUT through static analysis.
The mined constant values are useful to create more diverse
objects to cover more branches. We implement constant mining
as an abstract interpreter based on the ASM interpreter frame-
work [5]. It analyzes the Java bytecode of each class under
test (CUT) and performs constant propagation and folding.
Since constant mining analyzes Java bytecode, rather than
source code, it is able to work even if the source code of
the SUT is unavailable.

To be scalable, constant mining manages the extracted
constants in two levels, namely global level and local level.
At the global level, constants are prioritized so that those used
frequently by many classes are more likely to be used for test
input generation. At the local level, when generating test cases
for an MUT, constants mined from the MUT’s declaring class
(i.e., the CUT) are preferable, as they are often more relevant
to the MUT and thus effective to cover specific branches.

Impurity boosts the effect of constant mining through input
fuzzing by favoring methods that can change object states.
Meanwhile, the input fuzzing can be enhanced with constants
extracted by constant mining. For primitive numeric values,
we adopt a Gaussian distribution, with the assumption that
the extracted constants from constant mining are already close
to satisfying some branch conditions. The deviation of the
Gaussian distribution and the ratio to perform fuzzing are
provided as parameters that can be adjusted according to
SUT-specific features. String values are fuzzed by randomly
inserting, replacing or removing a character, and taking a
substring of a given string.

It is challenging to fuzz non-primitive objects, as it requires
to identify methods that mutate the object states. To this end,

we perform purity analysis to determine whether an MUT has
side effects and prefer methods with side effects. When a non-
primitive object is selected as input and requires fuzzing, we
use the corresponding impure methods to mutate the object
before passing it to the MUT. The current GRT implements
Impurity based on the Relm & RelmlInfer framework [15]
because of its scalability and robustness. ReIm & RelmlInfer
analyzes the reference purity information of an SUT, and infers
side effects of all methods. This framework does not require
an expensive, complete analysis of the program. Its algorithm
infers method purity using the type system.

Elephant Brain manages all the objects stored in the object
pool by using exact (run-time) type. The type information is
obtained by analyzing objects returned by the execution of
the method sequences through reflection. We store a method
sequence into the object pool by using the exact type of
the returned object as key. When an MUT requires an input
with declared static type 7', we search in the object pool for
sequences that return object with compatible type of T. We
perform random selection to use exact type match or subtype
match with a user-defined ratio (default=0.5). Elephant Brain
can find objects that cannot be generated using static type
information alone, so it equips other components, such as
Impurity and Detective, with additional exact type information
to improve their effectiveness.

Detective constructs objects that are needed to test MUTs
but cannot be found in the main object pool. Detective per-
forms static analysis on MUTs to find their input and output
type dependencies, and constructs the missing input objects
on demand at run-time. When an input object of type T is
needed, Detective first randomly constructs an object with
type T' or subtypes of T' (if 1" represents an interface or an
abstract class). Then, it analyzes all methods of T that can
return the corresponding objects, and recursively finds methods
returning objects that are type compatible with parameters
of the previous methods. After finding all relevant methods,
Detective executes them in a topological order: the method
that does not depend on return values of other methods is
executed first. If an object of the required type T is successfully
generated, it is stored in the main object pool for further use.
Other generated objects are kept in a secondary object pool for
further fast querying. Using the secondary object pool avoids
polluting the main object pool with many irrelevant objects.

Orienteering estimates the execution cost of each method
sequence by analyzing its execution time and length of the
sequence (i.e., the number of method invocation statements).
We calculate a weight for each sequence based on these two
kinds of information. The weight is so defined that less costly
method sequences have higher probability of being selected,
while expensive method sequences that generate interesting
new objects are also included. Orienteering accelerates the
overall test generation process of GRT.

Bloodhound intelligently selects MUTs that are not well
covered. By covering more code of an MUT, more program
states can be reached, which potentially creates objects to
further improve testing effectiveness. Bloodhound records cov-
erage information of the target MUTs, calculates a weight
for each of them, and randomly selects the next MUT based
on the weight. In most cases, it is prohibitively expensive
to monitor code coverage after the execution of each single

method sequence. In addition, always selecting MUT with
low code coverage is problematic, since they can contain
branches that are too difficult to cover. To solve these issues,
Bloodhound recalculates the coverage weight of each MUT
periodically, and balances the selection of MUTs with low
code coverage and those selected less often.

Bloodhound adapts the robust coverage evaluation tool
JaCoCo [17] to monitor code coverage. JaCoCo does not
support online coverage profiling, so we modify JaCoCo so
that each covered code fragment and branch of the executed
method sequence are stored for further analysis. When test
generation starts, Bloodhound loads and instruments the CUT
with the probes to collect code coverage information. If the
corresponding part of the code is executed, the probes in that
executed code fragment will be marked as covered by the
executed test case.

III. USAGE SCENARIOS

As GRT is designed to be an automatic test generator,
which does not require any user intervention after being
launched, the current implemention is a command-line tool
without graphical user interface. This section demonstrates
two main usage scenarios of GRT: (1) detecting defects in
the current version of a program and (2) generating regression
tests for future program versions.

A. Defect Detection

The first usage scenario is using GRT to generate test cases
to find defects in the current version of a program. There are
only three steps to follow:

1) Prepare the program to be tested. Specifically, the user
first builds the program and puts the built classes (*.class
files) of the SUT into a directory <sut_dir>. Then
the user needs to place all libraries necessary to build
the program and the program source code (optional) into
directories <1ib_dir> and <src_dir>, respectively.

2) Run GRT to generate test cases using the command
below:
java -jar GRT.jar <sut_dir>\
—--mptest_SUTLibPaths=<lib_dir>\
—--mptest_SUT_Src_Path=<src_dir>\
——timelimit=<time_budget>\
—-—output-tests=fail
GRT also provides a shell script template that allows the
user to directly execute GRT with slight adjustments on
the parameters. After GRT completes test generation, it
outputs JUnit test cases that have failed.!

3) For the failed test cases, the user needs to perform manual
analysis to check whether they detect real bugs in the SUT
or they are false positives.

For non-trivial programs, GRT may generate many failed
tests, making it difficult to manually analyze all of them. We
recommend the following steps of manual analysis:

By default, GRT uses exceptions and the predefined contracts of the base
class java.lang.Object (e.g., the reflexivity property of equals ()) as
the test oracle [27].

1) Filter out test cases that are obviously caused by issues
that are known to be less relevant to real defects. These
issues include:

o Deprecated methods. Methods may be marked as
deprecated if they contain or expose design flaws.
Such methods are usually removed from the program
in the future. Tests involving such code often reveal
previously known issues. The failed test cases may
be considered as true positives, but as the code tends
to be removed soon, the possible defects may not be
fixed. Ignoring these issues allows the user to focus on
unknown flaws.

o Internal packages. Some packages are specific to the
given reference implementation and not supposed to be
used by others. Possibly unsafe API uses found by test
cases are therefore irrelevant.

e Stack overflows in containers. Container classes, such
as those in the Java Collections, Apache Collections
and Guava, usually allow recursive nesting of data. For
example, a test case can insert a list [; into another list
lo, followed by an insertion of [into /7. As a result,
operations such as list iteration or a call to method
toString () will never terminate on the list objects.2

2) Compare the failure stack traces of the failed test cases,
and classify similar failed tests (with similar stack traces)
as one issue for further analysis.

3) For the remaining classified failed tests, check whether
they reveal true defects by analyzing the program code
and relevant documentation (if available).

B. Regression Test generation

The second usage scenario is using GRT to generate regres-
sion test cases to help developers capture defects introduced
by program changes. This scenario consists of four steps:

1) Preparation the program to be tested is identical to that
of the first scenario: After compilation, the source files,
compiled files, and necessary libraries have to be placed
in their respective directories.

2) Run GRT to generate test cases using the command
below:
java —jar GRT.jar <sut_dir>\
—--mptest_SUTLibPaths=<lib_dir>\
—--mptest_SUT_Src_Path=<src_dir>)\
——timelimit=<time_budget>\
——output—-tests=pass
Note that the command sets the option
—-output-tests to pass, instead of fail. It
is critical, because GRT is used to output all passed test
cases, rather than failed ones, as regression tests that
capture the behavior of the current version of the SUT.

3) Although all the generated test cases have passed during
test generation, some of them may still fail in future
executions (when being used as regression tests) on the
same program, due to non-deterministic behavior. To
mitigate this problem, GRT provides a test cleaner that
removes such flaky tests iteratively.

2t is possible to make iteration robust against infinite recursion, but a fix
entails keeping track of previously visited object instances during iteration.
This requires an amount of memory that is linear to the size of the collection,
which worsens the problem in most cases.

4) When program changes occur, the user can run the
generated test cases as normal JUnit test cases to detect
regression in the new program version.

IV. EXPERIENCE

The design and implementation of GRT have lasted for
more than a year. During this period, we gained valuable
experience in using GRT on real-world programs.

We applied GRT to over 30 open source projects. The
results show its scalability and effectiveness in achieving high
code coverage [21]. We also used GRT to detect real bugs by
generating test cases for 10 well developed and maintained
programs. The test cases successfully detected 23 previously
unknown bugs that are confirmed by developers. For example,
in the Apache Commons Codec project, GRT generates the
simple test case as below:

1 public void test () throws Throwable {
DoubleMetaphone var0 = new DoubleMetaphone () ;
boolean var3 =

var0.isDoubleMetaphoneEqual ("", "", false);

After the test case failed, our manual analysis re-
vealed that the failure was caused by the incorrect im-
plementation of encoding empty strings (or other special
strings). In the method isDoubleMetaphoneEqual in
class DoubleMetaphone, a string is first encoded and then
compared by invoking method equals (). However, some
strings (e. g., the empty string) are encoded as null, causing
a null pointer exception during the comparison of equality.

Another example is a test case generated by GRT on
Apache Commons Compress. The test case reveals a bug
of ChangeSet by adding the input data and invoking
deleteDir, which leads to an exception. Randoop cannot
detect the bug, because ByteArrayInputStream is not
a class in the SUT and none of its methods is present in
the method pool of Randoop, making it impossible to create
an instance of the class (i.e., var5). In GRT, the Detective
component starts with ChangeSet and finds missing objects
transitively, so GRT can identify the need for an instance of
java.io.ByteArrayInputStream.

I public void test () throws Throwable {
ChangeSet var(0 = new ChangeSet ();
SevenZArchiveEntry varl = new SevenZArchiveEntry();

byte[] var3 = new byte[] { (byte)10, (byte)1l0};

java.ilo.ByteArrayInputStream var5 =

new java.io.ByteArrayInputStream(var3, 1, 1);
TarArchivelInputStream varé6 =

new TarArchiveInputStream((java.io.InputStream)var5);

var0O.add((ArchiveEntry)varl,
(java.io.InputStream)varé6);

varO.deleteDir (
"0x7875_Zip, Extra Field: UID=1000_GID=1002");

We used GRT to detect defects collected by the Defects4]
framework [19]. The purpose of Defects4] is to facilitate
controlled study in software testing. For each bug, Defects4]
has a fixed version, a buggy version, and a patch. The fixed
version is converted into the buggy version by applying the
patch, which simulates the situation of introducing a bug
during program changes. We used GRT to generate regression
test cases for the fixed (correct) version of each pair of program
versions, applied the patch, and ran the regression test cases
to check whether they could reveal the introduced bug in

the buggy version. In this setting of regression testing, GRT
detects 147 (out of 224) real bugs from four studied subject
programs [21].

GRT also participated in the third round of the SBST Java
unit testing tool contest, in which test cases were generated
on a per class basis (instead of complete programs) [30], [22].
Among all the seven participating tools, GRT obtained the
highest score, in terms of code coverage, mutation score, and
execution time. While the detailed scores indicate that GRT
still has room for improvement (the combined result of all
participating tools is better than individual tools), the overall
result demonstrates the effectiveness and efficiency of GRT.

V. RELATED WORK

While a large body of work on automated testing exists [1],
[24], [28], [9], this section only discusses publicly accessible
tools that are closely related to GRT.

1) Random Test Generators: Most mainstream random
test generators create input objects as method sequences,
whose returning objects can be used as inputs for further
test generation. JCrasher [6] adopts top-down input object
construction by using a parameter graph to analyze method
dependencies and to create test sequences. Eclat [25] and
Randoop [27], [26] perform feedback-directed random test
generation to incrementally construct complex objects from
primitive types, in a bottom-up style. GRT adopts the basic
framework of feedback-directed random testing and addresses
several common issues to improve test effectiveness.

Some tools combine external knowledge and random test-
ing to improve code coverage and bug detection ability.
MSeqGen [33] mines client code bases to extract frequently
used sequence patterns to assist test generation. OCAT [18]
captures input object states by running developer-written test
cases, and directly using these objects as input for random
test generation. Similar to OCAT, Palus [38] trains a method
sequence model from existing test cases, and uses the derived
model to guide test generation at run-time. GRT also performs
program analysis and uses the analysis results to guide test
generation at run-time. GRT differentiates from previous work
in that GRT is fully automated and requires no additional
sources of information (e. g., existing test cases and code bases)
other than the SUT itself.

2) Systematic Test Generators: Symbolic execution rep-
resents input as symbolic values and uses abstract seman-
tics for execution to collect the path constraints. The con-
straints are solved by constraint solvers to derive input object
states that satisfy corresponding branch conditions. Symbolic
PathFinder [20] is a representative test generator based on
symbolic execution. There are also tools combining random
testing and symbolic execution, including DART [13], Cute
and JCute [32], [31], Pex [34], and Dsc [16].

Bounded exhaustive testing is an alternative systematic
approach. It exhaustively generates method sequences up to
a small bound of sequence length, and is implemented in
tools such as TestEra [23], Korat [4] and Symstra [37]. The
technique implemented by GRT is orthogonal to systematic
approaches, and the combination of both kinds of techniques
is an important direction of our future work.

3) Evolutionary Test Generators: Evolutionary test genera-
tors (e. g., eToc [35], Testful [2]) start with randomly generated
test sequences and use evolutionary algorithms to evolve
and search for test sequences that optimize certain fitness
functions (e.g., branch coverage, mutation score). EvoSuite
represents the current state-of-the-art evolutionary test genera-
tor [10], [7], [12], which goes beyond traditional techniques by
adopting a hybrid approach to generate and optimize the whole
test suites. EvoSuite is shown to be effective in achieving
high coverage on real-world software [9], [11]. EvoSuite is
also used to study the impact of constant seeding strategies in
search-based software testing [8]. Compared with EvoSuite,
GRT currently does not include some optimizations that could
further improve efficacy of test generation. Using a basic
framework with lower complexity (guided random testing
vs. evolutionary testing), GRT usually requires less time for
test generation, which is desirable when testing resources are
limited. We believe that some components of GRT could
also be adapted to evolutionary test generators for further
enhancement.

VI. DISCUSSION

The original motivation of developing GRT is to improve
feedback directed random testing by addressing a number of
key issues that limit the test code coverage. As the basic
framework of FRT is quite general, GRT is highly flexible.
Constant mining can be extended to mine constant values from
other sources of information, such as existing test cases, execu-
tion traces, and even documentation. Impurity can be replaced
with other side-effect analyses, for example, to know which
variables may be changed by a method, in addition to whether
or not the method is pure. Similarly, other components can be
improved with more advanced program analysis techniques.
The overall result can be used to demonstrate the usefulness
of new techniques or combinations of existing techniques in
the context of test generation.

As an automatic test generator, GRT can be directly used to
generate test cases for different purposes. First, GRT itself can
be considered as a representative random testing tool (similar
to Randoop) for software testing research. For example, it can
be the baseline in evaluation. Moreover, test cases generated
by GRT can be useful to drive dynamic analysis or produce dy-
namic information (such as code coverage and runtime states)
to facilitate related software engineering research, including
model inference, fault localization, program repair, etc.

More information on GRT’s usage, including the detailed
descriptions of parameters and the complete set of experimen-
tal results, its video demonstration and reproduction package
are available at:

http://www.sites.google.com/site/grtprojectut/download

VII. ACKNOWLEDGMENTS

This work was supported by the SEUT project from the
University of Tokyo, kaken-hi grants 23240003 and 26280019,
the Austrian Ministry for Transport, Innovation and Technol-
ogy, the Federal Ministry of Science, Research and Economy,
and the Province of Upper Austria in the frame of the COMET
center SCCH.

[1]

[2]

[5]

[6]

[7]

[8]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

REFERENCES

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn. An
orchestrated survey of methodologies for automated software test case
generation. J. Syst. Softw., 86(8):1978-2001, Aug. 2013.

L. Baresi and M. Miraz. Testful: Automatic unit-test generation for
java classes. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE’10, pages 281—
284, Cape Town, South Africa, 2010.

L. Baresi and M. Young. Test oracles. Technical Report CIS-TR-01-
02, University of Oregon, Dept. of Computer and Information Science,
Eugene, Oregon, U.S.A., 2001.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. In Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA’02,
pages 123-133, Roma, Italy, 2002.

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation
tool to implement adaptable systems. In In Adaptable and extensible
component systems, 2002.

C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness tester
for java. Software: Practice and Experience, 34(11):1025-1050, 2004.

G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE’11, pages 416—419, Szeged, Hungary,
2011.

G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in
search-based software testing. In Proceedings of the 5th International
Conference on Software Testing, Verification and Validation, ICST 12,
pages 121-130, Los Alamitos, CA, USA, 2012.

G. Fraser and A. Arcuri. Sound empirical evidence in software
testing. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 178-188, Piscataway, NJ, USA, 2012.
IEEE Press.

G. Fraser and A. Arcuri. Whole test suite generation. [EEE Trans.
Softw. Eng., 39(2):276-291, Feb. 2013.

G. Fraser and A. Arcuri. A large-scale evaluation of automated unit
test generation using evosuite. ACM Trans. Softw. Eng. Methodol.,
24(2):8:1-8:42, Dec. 2014.

J. P. Galeotti, G. Fraser, and A. Arcuri. Extending a search-based test
generator with adaptive dynamic symbolic execution. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ISSTA’ 14, pages 421424, San Jose, CA, USA, 2014.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random
testing. SIGPLAN Not., 40(6):213-223, June 2005.

R. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of
Software Engineering, pages 970-978. Wiley, 1994.

W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. Reim & ReImlInfer:
Checking and inference of reference immutability and method purity.
SIGPLAN Not., 47(10):879-896, Oct. 2012.

M. Islam and C. Csallner. Dsc+mock: A test case + mock class
generator in support of coding against interfaces. In Proceedings of
the 8th International Workshop on Dynamic Analysis, WODA’10, pages
26-31, Trento, Italy, 2010.

JaCoCo v0.6.4. http://www.eclemma.org/jacoco/.

H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. Ocat: Object capture-based
automated testing. In Proceedings of the 19th International Symposium
on Software Testing and Analysis, ISSTA’10, pages 159-170, Trento,
Italy, 2010.

R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In

Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA’14, pages 437-440, San Jose, CA, USA, 2014.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

K. S. Luckow and C. S. Pasareanu. Symbolic pathfinder v7. SIGSOFT
Softw. Eng. Notes, 39(1):1-5, Feb. 2014.

L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Rudolf. GRT:
Program-analysis-guided random testing. In JEEE/ACM Int. Conference
on Automated Software Engineering, ASE’15, Lincoln, Nebraska, USA,
2015. To appear.

L. Ma, C. Artho, C. Zhang, H. Sato, M. Hagiya, Y. Tanabe, and
M. Yamamoto. GRT at the SBST 2015 tool competition. In The 8th
Int. Workshop on Search-Based Softare Testing, SBST’15, pages 48-51,
Florence, Italy, 2015.

D. Marinov and S. Khurshid. Testera: A novel framework for automated
testing of java programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering, ASE’01, pages 22-31,
San Diego, CA, USA, 2001.

P. McMinn. Search-based software test data generation: A survey:
Research articles. Softw. Test. Verif. Reliab., 14(2):105-156, June 2004.

C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classifica-
tion of test inputs. In Proceedings of the 19th European Conference on
Object-Oriented Programming, ECOOP’05, pages 504-527, Glasgow,
UK, 2005.

C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .net with
feedback-directed random testing. In Proceedings of the 2008 Interna-
tional Symposium on Software Testing and Analysis, ISSTA'08, pages
87-96, Seattle, WA, USA, 2008.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proceedings of the 29th International Con-
ference on Software Engineering, ICSE’07, pages 75-84, Minneapolis,
MN, USA, 2007.

C. S. Pasareanu and W. Visser. A survey of new trends in symbolic
execution for software testing and analysis. Int. J. Softw. Tools Technol.
Transf., 11(4):339-353, Oct. 2009.

M. Pezze and C. Zhang. Automated test oracles: A survey. Advances
in Computers, 95:1-48, 2014.

U. Rueda, T. Vos, and I. Prasetya. Unit testing tool competitions -
round three. In The 8th Int. Workshop on Search-Based Softare Testing,
SBST’15, pages 19 — 24, Florence, Italy, 2015.

K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit
path model-checking tools. In Proceedings of the 18th International
Conference on Computer Aided Verification, CAV’06, pages 419-423,
Seattle, WA, USA, 2006.

K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. SIGSOFT Softw. Eng. Notes, 30(5):263-272, Sept. 2005.

S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Mseqgen: Object-oriented unit-test generation via mining source code.
In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE’09, pages 193-202,
Amsterdam, The Netherlands, 2009.

N. Tillmann and J. De Halleux. Pex: White box test generation for
.net. In Proceedings of the 2Nd International Conference on Tests and
Proofs, TAP’08, pages 134-153, Prato, Italy, 2008.

P. Tonella. Evolutionary testing of classes. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA’04, pages 119-128, Boston, USA, 2004.

E. J. Weyuker. On testing non-testable programs.
Journal, 25(4):465-470, 1982.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution.
In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’05,
pages 365-381, Edinburgh, UK, 2005.

S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static and dynamic
automated test generation. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis, ISSTA'11, pages 353—
363, Toronto, Ontario, Canada, 2011.

The Computer

