
A Knoppix-based demonstration environment for JPF

Richard Potter
School of Information Science

and Technology
The University of Tokyo,

Tokyo, Japan
potter@is.s.u-tokyo.ac.jp

Cyrille Artho
Research Institute for Secure

Systems
AIST, Amagasaki, Japan
c.artho@aist.go.jp

Kuniyasu Suzaki
Research Institute for Secure

Systems
AIST, Tsukuba, Japan
k.suzaki@aist.go.jp

Masami Hagiya
School of Information Science and Technology

The University of Tokyo, Tokyo, Japan
hagiya@is.s.u-tokyo.ac.jp

ABSTRACT
This paper explores how a KVM virtual machine booted
with a Knoppix Live DVD can provide a simple and reliable
system for sharing demonstrations of JPF, and in particu-
lar, for running regression tests in a repeatable way before
changes are committed to shared repositories. To make the
system easy to automate, we integrated host file system ac-
cess and a server for script execution. To make it practi-
cal for an interactive workflow, checkpointing was added to
avoid booting and configuration delays. As an unexpected
benefit, the isolation provided by the virtual machines al-
lows multiple tests to run in parallel without risk of clashes
over resources such as server ports.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Experimentation

Keywords
Virtual Machines, Regression Testing, Demonstrations

1. INTRODUCTION
One of the first motivations for the development of virtual
machines (VMs) back in the 1970’s was the development and
testing of software for legacy systems [4]. VMs are effective
for this because they can be used to reproduce almost every
detail of a system, including hardware interfaces, operat-
ing systems, and software libraries. With the recent trends
towards distributed development, this same capability now
enables software developers and researchers to confidently

VM
Boot

disk
Installation

Test

Demonstration

Figure 1: Starting from the same virtual ma-
chine software and repeating same steps gives re-
producible demonstrations.

know that they share the exact same computer configura-
tion, which makes comparison of results and overall collab-
oration more efficient [2, 6].

We became interested in virtual machines’ ability to facili-
tate collaboration in JPF development because of inconsis-
tent results when running regression tests. After confirm-
ing newly written code passed regression tests, a developer
would commit code only to learn that it made regression
tests fail on another developer’s machine. For JPF [11] and
net-iocache [1], numerous differences between developers’
machines can affect results. Subtle configuration changes in
JPF can be hard to keep track of, especially when a devel-
oper is working with multiple configurations. Net-iocache
uses peer server applications, which may tie up network
ports if a peer fails to shut down from a previous test. For
debugging, developers might make changes in code or con-
figuration and forget to undo some. Having all developers
demonstrate their code passes regression tests on a standard
test machine helps remove these differences.

Virtual machines provide a way to share exact copies of the
same test machine with every developer. Each copy can
be trusted to provide an equivalent environment because
the VM builds it up from software components that can
be verified to be exactly the same. If each developer then
installs the same software and runs the same tests in the
same way, the test results will likely be the same (Figure 1).
Differences, if any, can be narrowed down to just a few causes
mostly involving the test’s sensitivity to subtle timing issues.

While it is clearly possible to use VMs as standardized test
machines, we started to wonder whether such use could be
fit into our workflow smoothly. Could each developer set it
up and use it easily? Could we trust it? How hard would it
be to develop a workable solution?

With easy development in mind, our first idea was simply to
boot a VM using a Knoppix Live DVD image. Setup would
be easy because all it required was downloading one Knoppix
ISO file and booting it with KVM using a short command
line. However, using it was not easy enough. It took quite
a few manual steps to copy our project into to the VM and
run the regression tests. Waiting for each step to complete
added to the tedium. On the bright side though, Knoppix
plus KVM did run the regression tests successfully. And it
did so in a way that we could easily understand and trust,
because it used only two open source components, KVM and
Knoppix, which all developers could independently acquire
and easily verify to be unchanged. These strengths made us
want to find a way to make this combination easier to use.

Automating all the manual steps was the obvious way to
improve ease of use and also to increase trust, since an au-
tomated solution would guarantee that steps were performed
exactly the same. So the question became whether it was
possible to provide automation in a way that preserved the
way that KVM and Knoppix were easy to set up and easy
to trust.

Our solution comes in two parts. The first part is a gen-
eral script we call dinkvm [7], for “do in Knoppix virtual
machine”, which automates the process of booting a fresh
Knoppix virtual machine and then running a script inside.
The second part is a script that automatically loads the
latest commit directly from a developer’s project directory,
does a fresh build, and runs regression tests. dinkvm has ad-
ditional features that make scripts easier to write and run.
However, the core simplicity is retained so that, if necessary,
anybody can run the script without dinkvm, using only stan-
dard KVM and Knoppix downloads.

2. BASIC USAGE
Dinkvm can be installed simply by cloning its repository.
The cloned local copy can be put anywhere, and there is
no compilation step. The one addition step that there is,
is to download the Knoppix image from one of the mirrors
listed at http://www.knopper.net. This 4 GB image file can
simply be placed inside the clone of the repository directory.

Assuming a demonstration script has already been set up, a
developer can invoke it like this:

$ cd /path/to/work/directory

$ /path/to/dinkvm -dofresh /path/to/script.sh

This will run the script in a virtual machine that has been
freshly booted with a Knoppix DVD ISO image. The script
runs inside the virtual machine as user knoppix, with the
current directory set to /home/knoppix. The script has ac-
cess to an X Windows display and can access any files on
the host at /path/to/work/directory by using the path
/home/knoppix/onhost. Output from the script is forwarded
to dinkvm’s standard output. When the script terminates,
the virtual machine is removed.

The above example shows the two core parameters: the
script to run and the host directory to make available to

the virtual machine. Other parameters exist, but can usu-
ally be ignored because they receive default values that are
usually acceptable. No root access privileges are required,
so any user can run these commands.

For a user who wishes to package and share a reproducible
demonstration, one style of using dinkvm is to put the script
and all resources required by the script in one directory tree
and then compress that into a single archive file. Using
LaTeX as a simple (and half serious) example, the direc-
tory tree for this paper with an added script file (DEMO-
SCRIPT.sh) looks like this:

latexdemo/Makefile

latexdemo/acm_proc_article-sp.cls

latexdemo/build.sh

latexdemo/dot/Makefile

latexdemo/dot/process.dot

latexdemo/jpf-workshop2013.bib

latexdemo/jpf-workshop2013.tex

latexdemo/DEMO-SCRIPT.sh

The contents of DEMO-SCRIPT.sh could be the following:

#!/bin/bash

[-f onhost/jpf-workshop2013.tex] || exit

sanity check

cp -r onhost localcopy

cd localcopy

make

cp jpf-workshop2013.pdf /home/knoppix/onhost

An archive file with the above contents is small and easy to
share. Anybody could then duplicate the demonstration by
doing, for example:

$ tar xzvf latexdemo.tar.gz

$ cd latexdemo

$ /path/to/dinkvm -dofresh DEMO-SCRIPT.sh

It is guaranteed to work, because all resources accessed by
the script are in the archive or the Knoppix ISO image, and
these can be verified to be unchanged. Everything needed
for the demonstration has been verified by the author to be
in the resources, including things that might be forgotten
like the dot graphics package (for building the figure), and
the specific pdf conversion package used. Notice that the
shared directory can be used to copy results out to the host
before the virtual machine is removed.

3. NET-IOCACHE SCRIPT
For our JPF work, the goal is to produce many demonstra-
tions, each showing that a particular commit passes regres-
sion tests. Rather than include everything for each demon-
stration in a separate archive, we archive only what is com-
mon for running the regression tests, because the other in-
formation that is particular to each commit naturally can
come from our project’s Mercurial repositories.

http://www.knopper.net

One key point is that we want to check out code from the
developer’s local copy of the repositories, so that a commit
there can be verified before pushing it to the shared reposi-
tories. This can be achieved by having the developer’s JPF
project directory be the host directory that is made available
to the virtual machine at /home/knoppix/onhost. Therefore
we have adopted the following directory layout for running
net-iocache regression tests using dinkvm.

jpf-project-dir/jpf-core/

jpf-project-dir/jpf-core/{files and directories}

jpf-project-dir/net-iocache/

jpf-project-dir/net-iocache/{files and directories}

jpf-project-dir/nioc-inkvm/

jpf-project-dir/nioc-inkvm/one-step.sh

jpf-project-dir/nioc-inkvm/{several *.deb files}

And then the developer can copy the demonstration re-
sources and invokes the script like this:

$ cd /path/to/jpf-project-dir/

$ git clone https://bitbucket.org/potter/nioc-inkvm.git

$ /path/to/dinkvm -dofresh nioc-inkvm/one-step.sh

The nioc-inkvm directory contains all the common resources
for running the regression tests, which includes necessary
software that is not part of the Knoppix DVD. We were sur-
prised that Mercurial is not on the DVD, but this is problem
is easily solved by including the Debian distribution files for
mercurial in the nioc-inkvm directory and adding the fol-
lowing line in the script:

sudo dpkg -i ~/onhost/nioc-inkvm/*.deb

An alternative would be to use apt-get, however putting the
specific *.deb file in the archive guarantees that exactly the
same resources are used, increasing the chances of repeatable
results. It also runs much faster by avoiding network access.

With these fundamental issues resolved, the entire script,
shown below, becomes straightforward.

#!/bin/bash

(1) put all this in a unique folder name to make sure
path dependencies do not get into the project
datestring="$(date +%y%m%d-%H%M%S)"
mkdir proj-$datestring
cd proj-$datestring

(2) make a site-properties to match unique folder
mkdir ~/.jpf

cat >~/.jpf/site.properties <<EOF
jpf-core = \${user.home}/proj-$datestring/jpf-core
jpf-net-iocache = \${user.home}/proj-$datestring/net-iocache
extensions+=,\${jpf-net-iocache}
EOF

(3) Knoppix does not have mercurial and thttpd, so load them
sudo dpkg -i ~/onhost/nioc-inkvm/*.deb

(4) clone a copy of the mercurial repositories from the host
hg clone ~/onhost/jpf-core
hg clone ~/onhost/net-iocache

host OS booted VM
VM from
snapshot

boot or restore n/a 25.9 4.0
install *.deb n/a 19.5 n/a
clone or pull n/a 107.4 1.3
compile 12.9 11.2 1.4
tests 31.6 39.9 39.4

Table 1: Run times for regression tests (seconds)

(5) compile everything
cd jpf-core
ant
cd ../net-iocache
ant
ant make

(6) run the tests!!
./bin/regression-tests.sh

The entire setup fits conveniently into our JPF workflow.
Without changing anything on their machine, a developer
can run the above commands. The script copies the latest
commit from each repository, ensuring that exactly the files
checked into the repository will pass the regression tests.
The developer can continue working on the host copy of the
files while the test runs in the background.

4. SNAPSHOTS
The time required to run the steps in the above script on a
2.8 GHz 8-core server is summarized in the second column
of Table 1. Because the script is easy to invoke and can run
unattended in the background, the total of a bit more than
three minutes is not too long to wait for believable confirma-
tion that a commit will not break the build. However, faster
is always better, especially when debugging iteratively. VM
snapshots provide a compromise between exact demonstra-
tions from scratch and fast approximations.

The first step to using snapshots is to invoke dinkvm with
one extra parameter that specifies a path where dinkvm can
create a new directory. This directory will be used as a
handle to refer to the virtual machine, which will not be
removed after the script finishes. After the script finishes, a
-save command can be issued. For the net-iocache, it could
be done like this:

$ /path/to/dinkvm -dofresh nioc-inkvm/one-step.sh ./my-vm-handle
$ /path/to/dinkvm -save ./my-vm-handle ./my-snapshot
$ /path/to/dinkvm -rm ./my-vm-handle

After the snapshot has been saved, the third line removes
the virtual machine. Now instead of running a script in a
freshly booted machine, it is possible to run it in a machine
that has been freshly restored from the snapshot. For our
net-iocache tests, only pulling the latest changes is necessary,
so a simple script like this would suffice:

#!/bin/bash
cd proj*/net-iocache
hg pull ~/onhost/net-iocache
ant
./bin/regression-tests.sh

And the invocation is the same, except the shorter script is
used and the snapshot directory is appended:

$ /path/to/dinkvm -dofresh nioc-inkvm/quick-test.sh ./my-snapshot

Example run times are shown in the third column of Table 1.
Restoring the 778 MB snapshot takes only 4 seconds, which
is much faster than the 25 seconds required for booting,
and no time is needed to install software. Pulling the latest
changes and doing an incremental compile step is also much
faster than cloning the entire repository and doing a full
compile. Overall, running regression tests inside KVM is
reduced to about 46 seconds, which is close to the 31 seconds
possible on the host machine.

5. IMPLEMENTATION
The booting step is easy using KVM and a Live CD/DVD
like Knoppix with the following short command line:

$ kvm -cdrom live-cd-image.iso

Knoppix boots without starting the ssh server daemon or
other similar services. It makes sense that Knoppix would
be configured this way, because on a real machine connected
to a network this makes Knoppix more secure. However, it
complicates getting a script to run automatically inside the
machine after booting.

Our solution uses a special KVM feature to specify the kernel
and initial RAM disk (initrd) on the command line. When a
Linux system boots, first the kernel and then the contents of
a small RAM disk are copied into memory. The first user-
mode program that the kernel runs will be on this RAM
disk. Therefore it is possible to have complete control over
the booting of Knoppix by using a modified copy of the RAM
disk. The original contents of the RAM disk are inside the
ISO file at boot/isolinux/minirt.gz. We added 62 lines
to the startup script inside the RAM disk so that it starts
a simple server to listen on port 11222 (inside the virtual
machine) and take any text sent to that port and execute it
as a Bash script.

This solution has worked well but has left us wondering if
knowledge of such obscure Linux details is really necessary
just to start a simple server. Systems used in cloud comput-
ing encounter the same problem about how to take an un-
changed template disk image and customize it on first boot.
The most popular way to do this seems to be cloud-init [10],
which runs early in the boot process. It searches the VM’s
devices and resources on the network for data sources that it
then uses as instructions for how to do the customization.1

Solutions like cloud-init require that special software be pre-
installed in the startup disk. Our solution is a bit unusual
in that our startup disk stays unmodified. Also, unlike most
solutions, we experimented with avoiding using ssh, because

1For example, its most widely used data source is to ac-
cess http://169.254.169.254/, expecting that the cloud
provider has redirected that IP address to a web server set
up specially for the particular booting VM.

the encryption is unnecessary for our application and the re-
quired key management would add some complexity. If ssh
is desired, it and its keys can be set up by using the simple
script server.

We desired that the script run in an X Windows environ-
ment so that it would closely mirror our development envi-
ronment. This requires more obscure details for the solution.
In brief, our script server should be started by the default
window manager used by Knoppix, so the configuration file
/home/knoppix/.config/lxsession/LXDE/autostart needs
to be modified during the boot process to actually start our
server.

For the shared directory, we use sshfs on Knoppix, which can
share files by accessing an sftp-server on the host. The stan-
dard way to use sshfs is through an encrypted connection,
however we opted for unencrypted use by starting a fresh
copy of sftp-server on the host and using the directport fea-
ture of sshfs. All of the setup of sshfs can be done using the
simple script server, so no modifications to the RAM disk
are necessary for this feature.

We use KVM’s default user-mode networking, because it
does not require any root privileges to set up special devices
or change network routing. While it is simple to set up, it
does require port forwarding in order for servers inside the
virtual machine to be accessed from outside. The dinkvm
script automatically finds free ports on the host to forward
to the virtual machine so that multiple virtual machines
can be started simultaneously. Ports are also chosen and
forwarded for ssh access and HTTP access, because it is
difficult to set them up later if a sudden need arises during
debugging. All the forwarded ports are only bound to the
host’s localhost interface, therefore they have some security
protection because only programs running on the same host
have access to them.

The snapshot feature of dinkvm is built on top of the mi-
grate feature of KVM. Essentially it migrates the virtual ma-
chine state to a file. Automating this was straightforward,
because saving snapshots is controlled by KVM’s monitor
commands, which can be issued through a telnet interface.
Snapshots restore can be specified using KVM command line
options.

In summary, the core features added to Knoppix are a script
server that starts automatically and a shared directory via
sshfs. Even though we were trying to quickly implement a
simple solution, just the command line for KVM gives hints
that things turned out more complicated than expected.

qemu-system-x86_64 -enable-kvm -cdrom \
/media/sdb2/KNOPPIX_V7.0.4DVD-2012-08-20-EN.iso\
-net nic,vlan=0,model=virtio -net user,vlan=0,\
hostfwd=tcp:127.0.0.1:10180-:80,\
hostfwd=tcp:127.0.0.1:10122-:22,\
hostfwd=tcp:127.0.0.1:10199-:11222 -net nic,vlan=1,\
macaddr=52:54:00:12:00:00 -net socket,vlan=1,\
mcast=230.0.0.1:1234 -m 1024 -vnc :1 -vga vmware\
-monitor telnet::10197,server,nowait -kernel ./linux\
-initrd ./minirt.gz -append ’ramdisk_size=100000\
lang=en apm=power-off nomce libata.force=noncq\
hpsa.hpsa_allow_any=1 loglevel=1 tz=localtime\
screen=1024x768’

http://169.254.169.254/

6. RELATED WORK
The work closest to dinkvm is Vagrant [6], which shares an
almost identical motivation expressed by its creators as “say
goodbye to the ’works on my machine’ excuse”. Vagrant
automates creating virtual machines from scratch. It starts
with a base box, which must be specially built to include
Vagrant’s guest tools. After booting, it automatically fol-
lows a configuration script (always named Vagrantfile) to
run provisioners, which install software and configure the
machine. Support for multiple provisioners, such as Chef
and Puppet, give flexibility in supporting development en-
vironments that must mirror deployed production environ-
ments. Vagrant can use various virtual machine monitors
(e. g., VirtualBox, KVM, VMware) and can be hosted on
MacOS, Windows, and Linux.

Dinkvm can be understood as a simplified Vagrant, where
the host is always Linux, the virtual machine monitor is al-
ways KVM, the base box is always Knoppix, and the only
provisioner is a shell script. This simplicity allows dinkvm to
be implemented in about 1,500 lines of shell script. Dinkvm’s
interface is more tailored to always generating machines
from scratch. For example, Vagrant requires an explicit ”va-
grant destroy” command to first remove previous machine
resources. While Vagrant supports suspending virtual ma-
chines, it does not have a feature to quickly clone multi-
ple identical environments from the suspended state, like
dinkvm can do with its snapshot feature.

The shared directory feature of dinkvm was an attempt to
duplicate the hostfs feature of User-Mode Linux [3]. It is
interesting that Vagrant independently adopted a similar
solution, suggesting that it is a natural solution. The snap-
shot feature in dinkvm was based on the snapshot feature
in SBUML [8].

Skytap [2] is a commercial cloud service that can clone test
configurations from predefined virtual machine templates for
use in testing. By hosting the templates and the virtual
machines centrally, developers can remotely access them to
have copies of the same development environment without
the logistical difficulties of transferring large virtual machine
configurations.

Although we do not know of Knoppix being used as a soft-
ware test environment, it has been used for building special-
ized software demonstrations, such a distribution for Trusted
Computing [9] and another for math applications [5].

7. CONCLUSIONS
Reproducing tests or demonstrations on different hardware
can be challenging. Working step by step from scratch using
only steps and resources known to be the same is an effective
way to produce repeatable results. Reducing the number
of steps and using only a few standardized resources helps
guarantee that others will be able to independently duplicate
the process and achieve the same results.

At its core, the solution presented in this paper uses just
two open-source components, KVM and a Knoppix DVD
image, both of which can be independently obtained and
verified to be unchanged. Knoppix was chosen because it
provides many software packages in a single resource, reduc-

ing the number of installation steps. Use of these compo-
nents is simple enough that a user could manually duplicate
a demonstration by booting KVM, copying in the resource
directory (making sure it is named /home/knoppix/onhost),
and running the script. We believe it is hard to get simpler
than this and are happy that the solution is sufficient for
testing net-iocache.

Without changing this core, the dinkvm streamlines the in-
terface so that it fits into our workflow with JPF develop-
ment. Direct from their active work environment, developers
can easily invoke tests that run automatically from scratch
until completion. Extra features extend this interface to al-
low interactive control of the virtual machine that is useful
for developing and debugging demonstration scripts. We ex-
pect this lightweight interface to be useful for other virtual
machine applications as well.

Acknowledgments
This work is supported by JSPS kaken-hi grants 23240003
and 23300004.

8. REFERENCES
[1] C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl,

and M. Yamamoto. Software model checking for
distributed systems with selector-based, non-blocking
communication. In Proc. 28th Int. Conf. on Automated
Software Engineering (ASE 2013), Palo Alto, USA,
2013. IEEE Computer Society. To be published.

[2] M. Biddick. The test lab of your dreams. Information
Week, (1330), 2012.

[3] J. Dike. User Mode Linux. Prentice Hall Ptr, 1st
edition, April 2006.

[4] R. P. Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, 1974.

[5] T. Hamada, K. Suzaki, K. Iijima, and A. Shikoda.
Knoppix/math: Portable and distributable collection
of mathematical software and free documents. In
Mathematical Software—Second International
Congress on Mathematical Software (ICMS), volume
4151 of Lecture Notes in Computer Science, pages
385–390, Castro Urdiales, Spain, 2006. Springer.

[6] J. Palat. Introducing Vagrant. Linux J., 2012(220),
Aug. 2012.

[7] R. Potter. https://bitbucket.org/potter/dinkvm,
2013.

[8] R. Potter and K. Kato. SBUML: Multiple snapshots
of Linux runtime state. Computer Software,
26(4):120–137, 2009.

[9] K. Suzaki, K. Iijima, T. Yagi, and N. A. Quynh.
Trusted boot and platform trust services on 1CD
Linux. Trusted Infrastructure Technologies Conference,
Third Asia-Pacific/Trusted Infrastructure Technologies
Conference, pages 64–71, 2008.

[10] Ubuntu. cloud-init package. https:
//launchpad.net/ubuntu/+source/cloud-init, 2013.

[11] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering Journal, 10(2):203–232, 2003.

https://bitbucket.org/potter/dinkvm
https://launchpad.net/ubuntu/+source/cloud-init
https://launchpad.net/ubuntu/+source/cloud-init

	Introduction
	Basic Usage
	Net-iocache Script
	Snapshots
	Implementation
	Related Work
	Conclusions
	References

