
Java Pathfinder on Android Devices

Alexander Kohan1, Mitsuharu Yamamoto1, Cyrille Artho2,3, Yoriyuki Yamagata2,
Lei Ma1, Masami Hagiya4, Yoshinori Tanabe5

1Chiba University, Japan 2AIST/ITRI, Japan 3KTH Royal Institute of Technology, Sweden
4The University of Tokyo, Japan 5Tsurumi University, Japan

ABSTRACT
Because Android apps are written in Java and executed on
a virtual machine (VM), there is an opportunity to employ
Java Pathfinder (JPF) for their verification. There already
exist two JPF extensions, jpf-android and jpf-pathdroid.
The former executes Java bytecode on the Java VM, while
the latter executes Android applications in their original for-
mat. Both do not support native methods, and thus depend
on a model of the Android environment. This paper intro-
duces an alternative approach: we run JPF as an Android
application that executes Java bytecode, which gives us di-
rect access to the Android environment. This approach al-
lows us to verify rich Android apps that rely on native calls.

Keywords
Android; Java Pathfinder; software model checking

1. INTRODUCTION
Android apps are written in Java and executed on a vir-

tual machine (called ‘Dalvik’ prior to Android 5.0 and ‘An-
droid Runtime’ (ART) afterwards [3]). As Android apps also
use the standard Java libraries, this makes them attractive
for verification with Java Pathfinder (JPF). Two existing
JPF extensions are able to execute Android applications,
but they rely on model classes to replace native methods:
jpf-android [13] executes Java bytecode from the early com-
pilation stage of an Android project, while jpf-pathdroid [9]
supports DEX code but not native Android methods.

The key problem is that existing extensions run on a desk-
top computer, where Android libraries cannot be executed.
It is therefore not possible to delegate native method calls to
an Android run-time environment. Because of this, verifica-
tion of Android apps is limited to cases where all necessary
native methods are covered by model classes.

This paper introduces an alternative approach to perform
verification directly on Android devices. We implement a
service, called jpf-mobile [7], that runs an adapted version
of JPF on Android. This allows us to interface directly with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

the Android run-time environment, paving the way towards
executing rich Android applications in JPF.

The rest of the paper is structured as follows: Section II
provides an overview of JPF and related works on verify-
ing Android apps; Section III explains implementation de-
tails of the jpf-mobile project; its evaluation is presented in
Section IV; Section V summarizes the obtained results and
explains directions for future work.

2. BACKGROUND

2.1 Apps on the Android platform
Android is a wide-spread operating system for smartphones

and tablets. It has a Linux kernel at its core, its system li-
braries are written in C and C++, while user applications,
often called apps, are developed in Java. Android apps com-
prise components of two main types: activities and services.
Activities are associated with GUI (windows), and services
are usually long-running background tasks.

The apps have several unique traits that distinguishes
them from Java programs on the desktop. First, their exe-
cution is mostly event-driven; an app must register callbacks
to perform desired actions when system or user events occur.
Second, there is no main() function, and an app may have
multiple entry points. Third, there is only one app that can
be executed at the moment; if a user switches to another
app, the current app is paused or destroyed (this restriction
is lifted in Android N, where multiple apps are supported si-
multaneously [2]). Fourth, apps can communicate with the
system and with each other only by asynchronous messages,
called Intents.

The differences between Android and desktop apps make
application of desktop tools for analysis of apps non-trivial.

2.2 Java Pathfinder and its extensions
The JPF is a framework to find and explain defects in

Java applications. Its core is a virtual machine for Java
bytecode that runs on the top of the system JVM. The vir-
tual machine is extended with capabilities to detect execu-
tion choices of a system under test (SUT), so that the JPF
can perform model checking of a SUT by analyzing all its
execution paths. The JPF is not limited to model checking;
its core functionality is extended with modules that handle
symbolic execution, network communication, specification
generation, UML chart modeling, and more.

The jpf-android project [13] is a JPF extension (module)
to verify Android apps on the desktop. The extension par-
tially models Android environment, including the message

jpf-core service

Main Activity

onCreate()

unpack
files

onButtonClick()

RunJPF.main(arguments)

> arguments
settings
extensions
libraries

JPF log

Results

Output

JPF
Extension
Selector
Activity

Figure 1: The Architecture of jpf-mobile

queue and Intent mechanism for interprocess communica-
tion. It allows verifying GUI-based Android apps according
to a user-supplied script that defines sequences of system
and user events. The extension is being actively developed;
its authors are currently researching the ways to model An-
droid environment more accurately using information col-
lected during app’s execution [12].

Another JPF extension, jpf-pathdroid [9], targets Android
apps for which the source code is not available. Jpf-pathdroid
implements Android Dalvik VM instruction set to perform
verification based on bytecode analysis of apps distributed
in binary dex and apk files. The extension allows discovering
generic defects, such as race conditions, in Android apps.

3. IMPLEMENTATION
We first show the architecture of the Android application

containing jpf-core, followed by a description of how the sys-
tem under test is loaded into that application. Finally, we
highlight some key technical challenges we faced and how
we overcame them.

3.1 Architecture
The jpf-mobile project is designed as an Android applica-

tion with a graphical user interface (GUI) that incorporates
the entire jpf-core as a background service. JPF runs in a
separate thread so the GUI remains responsive while JPF is
executing.

The overview of jpf-mobile’s architecture is shown on Fig-
ure 1; its GUI is demonstrated on Figure 3. The GUI con-
tains Main Activity that provides an input field to pass ar-
guments for underlying jpf-core (the main method in the
RunJPF class) when a user clicks the button to start the ver-
ification process. The Main Activity also contains a frame
to display the output of jpf-core.

The project aims to make as few changes as possible to
the source of incorporated jpf-core to make easier the tran-
sition to its newer versions. Therefore, we preserved the
original initialization phase that relies on site.properties

and jpf.properties. The configuration files and dependent
libraries are bundled in the app and are copied onto device’s
hard disk upon the first launch (the arrow from onCreate

on Figure 1). These files are placed in jpf-mobile’s public
directory, so they can be accessed and customized by a user.

The JPF extension loading mechanism is also preserved.
Extensions (currently, only jpf-nhandler) are loaded in the
usual way, according to a list in the file site.properties.

Because editing of textual files on a mobile device is less
convenient than on a desktop, jpf-mobile includes Exten-
sion Selector Activity that provides a list with checkboxes
to enable/disable available extensions.

3.2 Systems under test
As desktop version of jpf-core is mainly designed for ver-

ification of command-line Java programs, and support for
GUI applications is added later by extensions such as jpf-
awt, we consider the same principle for jpf-mobile project.
The project is hence mainly aimed to provide model check-
ing capabilities for non-GUI elements of Android apps, such
as background services.

Modern Android apps are usually developed with An-
droid Studio IDE that utilizes the Gradle build automation
tool. The build process comprises compilation of java files
into class files, conversion of class files into Dalvik ex-
ecutable (DEX) format, and creation of Android Package
(APK) archive from dex files and app’s resources.

To use such app as a SUT for jpf-mobile, the class files
generated during an intermediate stage must be copied onto
a user-accessible directory on an Android device. A regular
.jpf file must accompany the SUT to specify the target
class, classpath, listeners and other properties.

In addition to event-driven GUI apps, Android supports
execution of compatible command-line Java programs with
dalvikvm command. Example test cases included in the
jpf-core distribution (BoundedBuffer, Racer) fall in this cat-
egory. Command-line programs can be used as SUT for
jpf-mobile the same way as regular Android apps.

3.3 Technical challenges
Challenges in the implementation arose from differences

between Java runtime environments and resource manage-
ment on the desktop and on mobile devices.

3.3.1 Java version and the standard classes
The current version of jpf-core depends on Java 8, while

the maximum supported version on Android is Java 7. To
achieve compatibility, we replaced all Java 8 specific con-
structions in jpf-core source code. The changes are mainly
related to default methods in interfaces; a few modifications
were also required in native peers. For example, the field
seed in the class java.util.Random has type long in Java 7
and type AtomicLong in Java 8. The corresponding peer
class need to be adjusted, because casting to a wrong type

Table 1: Evalution of jpf-mobile
No Test Case Pass Memory Tdesk Temu tdevice Observed Output

Test cases from jpf-core distribution
1 HelloWorld + 57 Mb 0 s 1 s 4 s No errors are detected
2 BounderBuffer + 57 Mb 0 s 1 s 4 s A deadlock is detected
3 oldclassic + 57 Mb 0 s 1 s 4 s A deadlock is detected
4 Crossing + 102 Mb 1 s 12 s 57 s The solution is shown
5 NumericValueCheck − 57 Mb 0 s 1 s 3 s The listener does not report a violation
6 Rand + 57 Mb 0 s 1 s 4 s Uncaught arithmetic exception is found
7 StopWatch + 57 Mb 0 s 1 s 3 s Time constraint violation is reported
8 Coverage + 57 Mb 0 s 1 s 3 s Coverage statistics are displayed
9 RobotManager + 166 Mb 3 s 2 m 56 s − Uncaught NPE is found
10 Racer + 57 Mb 0 s 1 s 5 s A race condition is detected

11
DiningPhil (n = 4) + 106 Mb 1 s 30 s 2 m 37 s A race condition is detected
DiningPhil (n = 5) + 408 Mb 5 s 4 m 21 s − A race condition is detected
DiningPhil (n = 6) − 853 Mb 41 s (31 m 31 s) − Abortion due to an out of memory error

Test cases for jpf-nhandler
12 Hostname + 72 Mb 1 s 2 s 6 s Hostname is printed
13 HeapMemory + 11 Mb − 1 s 4 s Size of the used native heap is printed
14 SystemClock + 15 Mb − 1 s 4 s Elapsed time from device boot is printed
15 AndroidOpenFile + 35 Mb − 1 s − Existing file is opened in read-only mode

using Unsafe methods results in a segmentation fault. Un-
safe methods access a value directly in memory, and the
use of a different data type results in accessing unallocated
memory in this case.

The other problem was that some classes from the stan-
dard Java library are missing on Android. In particular, the
only class available in sun.misc package is sun.misc.Unsafe,
which is supposed to be accessed only by Android internal
apps. Because jpf-core extensively uses the Unsafe class, we
achieve the access to it with Java reflection API. The other
classes from this package, such as SharedSecrets, seem to
be used only for performance improvements, so their use is
replaced with analogous constructions.

3.3.2 System libraries
During initialization phase, jpf-core requires access to all

Java classes that are used in SUT, including classes from
the standard Java library. The desktop version of jpf-core
reads the sun.boot.class.path system variable to get the
JRE location, and then loads standard classes from rt.jar

included in JRE distribution. However, this variable is not
set on Android, there is no rt.jar file, and system libraries
are distributed across several files in /system/framework/

directory.
The Android libraries are usually stored in DEX or op-

timized DEX (ODEX) formats. However, on devices with
Android 5.0 and greater, the libraries can also be stored in
the new OAT format [10], which is based on Linux ELF
format. It contains native code generated during ahead-of-
time (AOT) compilation of original Java bytecode, but also
incorporates original DEX files as is.

We currently supply system libraries as a jar archive that
contains compiled classes from the latest (6.0.1) version of
Android source code. This temporary measure allows us to
execute jpf-mobile on older devices or emulators as well due
to the backward compatibility of the libraries.

3.3.3 Class loaders and class generation
To handle native calls in Android apps, we include in the

project the jpf-nhandler extension that delegates the calls
to the underlying Java virtual machine [11]. The extension
uses Apache BCEL library [4] to generate and compile peer
classes, which are then loaded by jpf-core.

Classes generated by jpf-nhandler are loaded using the
URLClassLoader. However, this class loader is not imple-
mented on Android, and loading from class and jar files is
not possible. Hence, the only supported format for external
code that can be loaded by an Android app is dex.

To overcome this problem, we modified jpf-nhandler to
use the same class loader that is being used for jpf-core.
Moreover, we incorporated an invocation of dx utility [1] to
convert class files into dex format on the fly.

3.3.4 Heap size limit
Android imposes a heap size limit per Android app, which

usually varies between 24 and 128 Mb and is quite small for
the needs of JPF. However, this restriction can be lifted by
setting largeHeap property in the jpf-mobile app’s manifest.
In this case, once the soft limit is reached, the app’s heap
size starts to slowly increase until it hits the hard limit. The
hard heap size limit is set for a device by a manufacturer; it
cannot be modified unless the device is rooted.

However, the hard limit can be adjusted for a standard
QEMU emulator by setting the corresponding system prop-
erty. This allows us to allocate at most of 740 Mb of heap,
which is enough for small and medium-sized apps (setting a
larger size results in errors due to a possible bug in QEMU [5]).

4. EVALUATION
Performance of the current implementation of jpf-mobile

is tested on the examples included in the distribution of jpf-
core. Each example is executed on a desktop machine using
standard version of jpf-core to record execution time and
memory in use. The example is then executed on an emu-
lator and on a smartphone using jpf-mobile. The obtained
performance data is shown in Table 1. The successful detec-
tion of a deadlock in one of the examples, BoundedBuffer,

within an emulator, is shown on Figure 3. All tests were exe-
cuted on a desktop machine with the following specifications:
Intel Core i5-3210M 2.50 GHz, 4 Gb RAM, Gentoo Linux;
and on a mobile device with Krait Quad-Core 1.5 GHz, 2 Gb
RAM, Android 4.4.2.

The experiments show that the performance of jpf-mobile
is satisfactory for cases with low memory requirements. The
performance is degraded when memory required by JPF ex-
ceeds the soft heap size limit. In this case, the app cannot
allocate all the memory it needs at once, but slowly proceeds
with increasing the heap size by the predefined value. If the
memory required is below the hard limit, jpf-mobile finishes
quickly once the heap is resized. However, when the hard
limit is reached, the execution aborts due to an out of mem-
ory error, which we observe for the “Dining Philosophers”
example with number of philosophers set to six.

The obtained data also shows that jpf-mobile is executed
few times faster on an emulator than on a real device. Some
examples with large memory requirements (i.e. RobotMan-
ager and DiningPhil with n = 5 and n = 6) can be executed
only on an emulator, because the hard heap size limit set on
the device cannot be easily increased.

The integration of jpf-nhandler is tested on several ex-
amples that make use of native calls to obtain data on the
environment. For the example 12 listed in Table 1, we try to
obtain the host name of the device. During the execution,
jpf-nhandler successfully generates source files for classes
libcore.io.Posix and android.system.OsConstants, pro-
duces .class files, and converts them into dex format. The
JPF loads the generated classes, prints the host name, lo-
calhost, and successfully finishes the verification.

In the example 13, we obtain the size of natively allocated
heap by calling the Debug.getNativeHeapAllocatedSize()

method, which forces jpf-nhandler to generate the peer class
OTF_JPF_android_os_Debug. Unlike the host name exam-
ple, we use Android-specific API, so that the example can-
not be executed on the desktop version of jpf-core. Finally,
we invoke an Android-specific native methods to print time
elapsed since the device is booted (example 14) and to open
a file in the read-only mode using low-level method open

from android.system.Os class (example 15, Figure 2).

import java . i o . ∗ ;
import android . system . ∗ ;

public class AndroidOpenFile {
public stat ic void main (St r ing [] a rgs) {

St r ing path = ”/ sdcard /Android/ data / ” +
”jp . ac . ch iba u . s . math . j p f / f i l e s / ” +
” t e s t i n g / t e s t . txt ” ;

try {
F i l e D e s c r i p t o r fd = Os . open (path ,

OsConstants .O RDONLY, 0) ;
System . out . p r i n t l n (fd . v a l i d ()) ;
Os . c l o s e (fd) ;

} catch (ErrnoException e) {
e . pr intStackTrace () ;

}
}

}

Figure 2: Source code for Example 15

Figure 3: The Interface of jpf-mobile App

5. FUTURE WORK
The next step of the project is the verification of small

and medium-sized open-sourced Android apps with back-
ground services. A straightforward way to apply the tool
to a real Android app is by injection of the main() method
that sets up services to be verified and their clients. How-
ever, it may be difficult to properly instantiate a service in
main(), because app’s components are typically launched
by Android OS itself. For this reason, we plan to use a
JUnit 4-compatible test runner from Android Testing Sup-
port Library [8], which enables component instantiation in-
side JUnit tests that are executed on an Android device. As
the JPF already supports JUnit [6], it can be used to ex-
ecute the code inside each test, verifying the behavior of a
service.

Besides the additions necessary to proceed to the next
stage, we aim to improve the core functionality of the tool
by implementing a mechanism to load Android system li-
braries from DEX, ODEX, and OAT formats and providing
workarounds for memory allocation restrictions. We also
plan to improve UI of the tool to simplify SUT selection
and modification of .jpf configuration files.

6. CONCLUSION
In this work we proposed an alternative approach to apply

JPF for verification of Android apps directly on the Android
platform. The main benefit of this approach is that JPF can
now interact with the Android framework, so that delega-
tion of native methods calls to the underlying JVM becomes

possible, which is an important step towards verification of
sophisticated Android apps.

At the current stage of the project, we are able to execute
jpf-core on an Android device or an emulator and confirm
detection of deadlocks, races, and other issues on the ex-
amples included in jpf-core distribution. We also observe
the correct behavior of jpf-nhandler extension, as the peer
classes are generated, and execution of native methods is
delegated to a Dalvik (ART) virtual machine. The integra-
tion of jpf-nhandler lays the foundation for the future work
of applying JPF to full-fledged Android apps, which can be
accomplished by main() injection and the usage of Android
test runners.

7. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Num-

ber JP26280019. The authors would like to thank Google
Inc. for providing support to this project via Google Sum-
mer of Code 2016. The authors are also grateful to NASA
JPF team for mentoring this project and clarifying various
aspects of jpf-core.

8. REFERENCES
[1] Android developing – other tools.

http://wing-linux.sourceforge.net/guide/developing/
tools/othertools.html. [Online; accessed
3-August-2016].

[2] Android N for developers – multi-window support.
https://developer.android.com/preview/features/
multi-window.html. [Online; accessed 3-August-2016].

[3] ART and Dalvik.
https://source.android.com/devices/tech/dalvik/.
[Online; accessed 28-June-2016].

[4] The byte code engineering library API.
https://commons.apache.org/proper/commons-bcel/

manual/bcel-api.html. [Online; accessed
3-August-2016].

[5] Issue 214093: Launching emulator with a very high
ram value crashes the emulator. https://code.google.
com/p/android/issues/detail?id=214093. [Online;
accessed 1-September-2016].

[6] Java Pathfinder wiki – writing JPF tests. http:
//babelfish.arc.nasa.gov/trac/jpf/wiki/devel/jpf tests.
[Online; accessed 1-September-2016].

[7] Jpf-mobile project on BitBucket.
https://bitbucket.org/matsurago/jpf-mobile-devices.
[Online; accessed 4-August-2016].

[8] Testing support library.
https://developer.android.com/topic/libraries/
testing-support-library/index.html. [Online; accessed
1-September-2016].

[9] Peter Mehlitz. Jpf-pathdroid – readme.
http://babelfish.arc.nasa.gov/hg/jpf/jpf-pathdroid/
file/85aa01d0112c/README. [Online; accessed
3-August-2016].

[10] P. Sabanal. Hiding behind ART.
https://www.blackhat.com/docs/asia-15/materials/
asia-15-Sabanal-Hiding-Behind-ART-wp.pdf. [Online;
accessed 28-June-2016].

[11] N. Shafiei and F. v. Breugel. Automatic handling of
native methods in Java PathFinder. In Proceedings of
the 2014 International SPIN Symposium on Model
Checking of Software, SPIN 2014, pages 97–100, New
York, NY, USA, 2014. ACM.

[12] H. van der Merwe, O. Tkachuk, S. Nel, B. van der
Merwe, and W. Visser. Environment modeling using
runtime values for jpf-android. SIGSOFT Softw. Eng.
Notes, 40(6):1–5, Nov. 2015.

[13] H. van der Merwe, B. van der Merwe, and W. Visser.
Verifying Android applications using Java PathFinder.
SIGSOFT Softw. Eng. Notes, 37(6):1–5, Nov. 2012.

