Model Checking of Concurrent Algorithms:
From Java to C

Cyrille Artho!, Masami Hagiya?, Watcharin Leungwattanakit?,
Yoshinori Tanabe®, and Mitsuharu Yamamoto?

! Research Center for Information Security (RCIS), AIST, Tokyo, Japan
2 The University of Tokyo, Tokyo, Japan
3 National Institute of Informatics, Tokyo, Japan
4 Chiba University, Chiba, Japan

Abstract. Concurrent software is difficult to verify. Because the thread
schedule is not controlled by the application, testing may miss defects
that occur under specific thread schedules. This problem gave rise to soft-
ware model checking, where the outcome of all possible thread schedules
is analyzed.

Among existing software model checkers for multi-threaded programs,
Java PathFinder for Java bytecode is probably the most flexible one. We
argue that compared to C programs, the virtual machine architecture of
Java, combined with the absence of direct low-level memory access, lends
itself to software model checking using a virtual machine approach. C
model checkers, on the other hand, often use a stateless approach, where
it is harder to avoid redundancy in the analysis.

Because of this, we found it beneficial to prototype a concurrent algo-
rithm in Java, and use the richer feature set of a Java model checker,
before moving our implementation to C. As the thread models are nearly
identical, such a transition does not incur high development cost. Our
case studies confirm the potential of our approach.

1 Introduction

Concurrent software is often implemented using threads [26] to handle multi-
ple active units of execution. Because the thread schedule is not controlled by
the application, the usage of concurrency introduces implicit non-determinism.
Without proper guards against incorrect concurrent access, so-called race condi-
tions may occur, where the outcome of an two concurrent operations is no longer
well-defined for all possible interleavings in which they may occur.

In software testing, a given test execution only covers one particular instance
of all possible schedules. To ensure that no schedules cause a failure, it is desir-
able to model check software. Model checking explores, as far as computational
resources allow, the entire behavior of a system under test by investigating each
reachable system state [10], accounting for non-determinism in external inputs,
such as thread schedules. Recently, model checking has been applied directly to
software [5,6,8,11,12,13,27,28]. Initially, software model checkers were stateless:

after backtracking, the program is restarted, and the history of visited program
states is not kept [13]. This makes the model checker more light-weight, at the
expense of potentially analyzing redundant states. Stateful model checkers keep
a (possibly compressed) representation of each visited state. This allows a model
checker to backtrack to a previously visited state without having to re-execute
a program up to that point, and also avoids repeated explorations of equivalent
(redundant) states.

Certain programming languages, such as C [17] or C++ [25], allow direct
low-level memory access. Pointer arithmetic allows the usage of any integer off-
set together with a base pointer, making it impossible to guarantee memory
safety in the general case. Memory safety implies that memory which is read has
been allocated and initialized beforehand. Program behavior is undefined for un-
safe memory accesses. More recently developed programming languages, such as
Java [14], Eiffel [21], or C# [22], can restrict memory accesses to be always safe.
This feature, in conjunction with garbage collection, relieves the developer from
the burden of manual memory management. It also makes it easier to define the
semantics of operations, and to perform program analysis.

Embedded systems may be implemented on a platform supporting either
Java or C. Due to its managed memory, Java is easier to develop for, but the
ease comes at the expense of a higher memory usage. Embedded systems, or core
algorithms used therein, may therefore be prototyped in Java, and moved to C
if resource constraints require it. In such cases, it is useful to verify the Java
version in detail before translating it to C for further optimization.

In addition to memory safety, the object-oriented semantics and strong typ-
ing of many more recent programming languages facilitate the analysis of the
heap structure. This enables efficient execution inside a virtual machine [20]
and also allows program states to be mutated and compared easily. Software
model checking benefits greatly from this, as stateful model checking can be
implemented much more readily for such programming languages. Besides the
promise of avoiding redundant states, the statefulness of a model checker can
also be exploited for programs that utilize network communication. The results
of network communication can be cached, making analysis orders of magnitude
more efficient than in cases where the entire environment has to be restarted [4].
Such an input/output cache has been implemented for the Java PathFinder
model checker, which analyzes Java bytecode [27]. That cache is one of about 15
available extensions for that model checker, making it much more flexible and
feature-rich than its counterparts for C or C++.

Finally, it is easier to debug a concurrent implementation when memory
safety is not an issue; the developer can focus on concurrency aspects without
worrying about memory safety. Because of this, and the flexibility of Java model
checkers, we argue that it is often beneficial to develop a concurrent algorithm in
Java first. After analysis, the Java version can be readily converted to C (or C++)
using the pThreads thread library. We have successfully applied this paradigm to
multiple implementations of concurrent algorithms. Compared to a compilation
of Java to machine code, a source-level translation has the advantage that stack

memory for non-primitive data types and other optimizations are available. A
verification of the resulting C code detects possible translation errors.

Translations from a higher-level language to a lower-level one are common in
model-based code generation. However, in that domain, more abstract languages
such as state charts [15] are common. High-level models prevent low-level access
conflicts but cannot be optimized for fine-grained concurrency in ways that Java
or C code can. Our translation is on code level, because thread-level parallelism
with the explicit usage of mutual exclusion through locking is still prevalent in
implementations of concurrent systems.

Related work exists in translating C code to Java [16]. That translation con-
siders self-contained programs and mostly targets the implementation of pointer
arithmetic in C as arrays in Java. For concurrent programs, manual case stud-
ies have been performed on the conversion of a space craft controller written in
C, to Java [7]. The Java version was developed for analysis purposes because
no suitable tools for analyzing multi-threaded C software existed at that time.
We advocate the reverse direction, a translation from Java to C, because the
Java version can be more readily developed, given the higher automation of low-
level tasks by the run-time environment, and because more powerful concurrency
analysis tools are available.

The rest of this paper is organized as follows: Section 2 introduces threads
in Java and C. Section 3 shows our mapping of multi-threaded Java code to C.
Experiments are described in Section 4. Section 5 concludes.

2 Thread Models in Java and C

A thread is an independent unit of execution, with its own program counter
and stack frame, and possibly a separate memory region (thread-local mem-
ory) [26]. It typically interacts with other threads through semaphores (signals),
and ensures mutual exclusion by using monitors (locks). Threads are started by
a parent thread, which is the only thread of execution in a process at its cre-
ation. Execution may merge with other threads by “joining” them, waiting for
their termination.

The standard version of Java has built-in support for multi-threading. In
Java, a thread has its own program counter and stack frame, but shares the main
memory with all other application threads. Threads may run on one or more
hardware processors, potentially by using time-slicing to support more threads
than available processors [14]. The C programming language has no built-in
support for threads [17]. However, on most modern operating systems, threads
are supported by libraries following the POSIX threads (pThreads) standard [23].

As Java threads were designed with the possibility of an underlying pThreads
implementation in mind, the two thread models have much in common. The
specified memory model allows each thread to hold shared data (from main
memory) in a thread-local cache. This cache may be out of date with respect
to the copy in main memory. Whenever a lock is acquired or released, though,
values in the thread-local cache are synchronized with the main memory [14].

This behavior of Java is similar to other programming environments, in par-
ticular typical environments supporting the pThreads standard. Furthermore,
there are no constraints on the thread scheduling algorithm; while it is possi-
ble to set thread priorities, both the Java and the pThreads platforms do not
have to adhere to thread priorities strictly [14,23]. Most importantly, the rather
unrestricted memory model used by Java does not imply the sequential consis-
tency [18] of a sequence of actions within one thread. Instruction reorderings,
which are performed by most modern hardware processors, are permitted, re-
quiring a concurrent implementation to use locking to ensure mutual exclusion
and correct execution. As a consequence of this, a concurrent program in Java
needs to use the same safeguards that a concurrent program written in C uses.

Finally, variables in Java and C may be declared as volatile, disallowing
thread-local caching of such values. Because read-and-set accesses of volatile
values are not atomic, there exist few cases where they are actually used in
practice. We do not cover volatile values further in this paper.

3 Mapping Java to C

We define a mapping of Java thread functions to C here. This allows a developer
to write an initial version of a concurrent algorithm in Java. The version can then
be transformed to C, for example, if the memory requirements of Java may not be
fulfilled by an embedded platform. The translation is discussed both in terms of
differences in the concepts and in the application programming interface (API)
of the two implementations. A complete transformation of a program entails
addressing other issues, which are mentioned at the end of this section.

3.1 Threads

Both in Java and C, threads are independent units of execution, sharing global
memory. Data structures that are internal to a thread are stored in instances of
java.lang.Thread in Java [14], and of the pthread_t data structure when using
pThreads [23]. These data structures can be initialized via their constructor in
Java or by setting attributes in pThreads. The functionality of the child thread
is specified via inheritance in Java, and via a function pointer in C. These mech-
anisms correspond to the object-oriented paradigm of Java and the imperative
paradigm of C, and can be easily transformed. Likewise, functions to start the
child thread, join the execution of another thread (awaiting its termination) or
terminate the current thread, are readily translated (see Table 1).

3.2 Locks

Some of the concurrent functionality of Java cannot be mapped isomorphi-
cally. Specifically, important differences exist for locking and shared conditions
(semaphores). In Java, each object may be used as a lock; the initialization of
the lock, and access to platform-specific lock properties, are not specified by

Table 1. Comparison between thread primitives for Java and C.

Function [J ava [C

Thread start java.lang.Thread.start pthread_create

Thread end end of run method pthread_exit

Join another thread java.lang.Thread. join pthread_join

Lock initialization implicit with object creation pthread_mutex_init
Acquire lock synchronized keyword pthread_mutex_lock
Release lock synchronized keyword pthread_mutex_unlock
Lock deallocation implicit with garbage collection|pthread_mutex_destroy
Initialize condition conditions are tied to locks pthread_cond_init
Wait on condition java.lang.0Object.wait pthread_cond_wait
Signal established cond.|java.lang.0Object.notify pthread_cond_signal
Broadcast est. cond. java.lang.0Object.notifyAll |pthread_cond_broadcast
Deallocate condition implicit with garbage collection|pthread_cond_destroy

Java code and happen internally in the Java virtual machine [20]. In pThreads,
on the other hand, lock objects have to be created and initialized explicitly.
Locks use the opaque C data type pthread_mutex_t, which is initialized through
pthread_mutex_init and managed by the library. In Java, classes derive from
base class java.lang.0bject and carry their own data, in addition to the im-
plicit (hidden) lock; in C using pThreads, application data and lock data are
separate. Therefore, locks in Java have to be transformed in two possible ways,
depending on their usage:

Lock only: Instances of java.lang.Object carry no user-defined data and
may be used for the sole purpose of locking. They can be substituted with
an instance of pthread_mutex_t in pThreads.

Locks combined with data: In all other cases, instances are used both as
data structures and as objects. They have to be split into two entities in C,
where application-specific data structures and pThread locks are separate.

Similarly, the syntax with which locking is used is quite different between the
two platforms: In Java, a synchronized block takes a lock as an argument. The
lock is obtained at the beginning of the block and released at the end of it.
The current thread is suspended if the lock is already taken by another thread.
Locks in Java are reentrant, i.e., nested acquisitions and releases of locks are
possible. Furthermore, there exists a syntactic variation of locking, by annotating
an entire method as synchronized. This corresponds to obtaining a lock on the
current instance (this) for the duration of a method, as if a synchronized block
spanning the entire method had been specified.

After transforming synchronized methods to blocks, lock acquisitions and
releases in Java can be readily mapped to C. The beginning of a synchronized
block is mapped to pthread_mutex_lock, using the lock corresponding to the
argument to synchronized. Lock releases are mapped likewise (see Table 1).
Reentrancy is supported by pThreads through a corresponding attribute. Finally,
locks should be explicitly deallocated in C to prevent resource leaks.

Java C
synchronized (lock) { pthread_mutex_lock (&lock);
while (!condition) { while (!condition) {
try {
lock.wait(); pthread_cond_wait (&cond_var, &lock);
} catch (InterruptedException e) { // explicit condition variable
} // of type pthread_cond_t
} }
assert (condition); assert (condition);
. // condition established ... // condition established
} pthread_mutex_unlock (&lock);

Fig. 1. Inter-thread conditional variables in Java and C.

3.3 Conditions

Efficient inter-thread communication requires mechanisms to notify other threads
about important status (condition) changes. To avoid busy-waiting loops, Java
and pThreads offer mechanisms to wait for a condition, and to signal that the
condition has been established. The mechanism is similar on both platforms,
with one major difference: In Java, locks are used as a data structure to signal
the status of a shared condition. In pThreads, there is a need for a separate
condition variable, in addition to the lock in question.

In Java, due to the absence of condition objects, there always exists a one-
to-one relationship between locks and condition variables. In pThreads, several
condition variables may relate to the same lock, a fact that is further elucidated
below. Figure 1 shows how shared conditions are mapped. The condition itself is
expressed through a boolean variable or a complex expression. If the condition
is not established, a thread may suspend itself using wait, awaiting a signal.
Both in Java and C, a lock has to be held throughout the process; Java further-
more requires to check for the presence of an InterruptedException, because
a waiting thread may optionally be interrupted by another thread.

3.4 Possible implementation refinements for pThreads

There are a couple of differences between Java threads and POSIX threads that
allow for a more efficient implementation in C, by exploiting low-level data struc-
tures that are not accessible in Java. This may be exploited when translating
an algorithm from Java to C. As such a translation cannot always be done au-
tomatically, another verification against concurrency defects is advisable when
optimizing the C/pThreads implementation.

— When using pThreads, the function executing in its own thread may return
a pointer to a thread waiting for its termination. This allows a thread to
return data directly, rather via other ways of sharing.

— Separate condition variables in pThreads (pthread_cond_t) enable a decou-
pling of related but distinct conditions. In the experiments, we describe a
case where the Java version uses one lock to signal the emptiness or fullness

of a queue. In C, the two cases can be separated, which sometimes yields
performance improvements.

— The pThreads library has a function pthread_once, for which no direct
equivalent exists in Java. This mechanism allows a function to be executed at
most once, resembling the way static initializers are used in Java to initialize
class-specific data. Unlike static initializers, the execution of pthread_once
is not tied to another event, such as class initialization.

— In pThreads, it is possible to forgo the acquisition of a lock when the lock is
already taken, by using pthread_mutex_trylock. In some cases, the same
effect may be achieved in newer versions of Java by checking if a particular
thread already holds a lock (by calling Thread.holdsLock, available from
Java version 1.4 and higher).

Furthermore, both platforms offer ways to fine-tune the performance of thread
scheduling using specific API calls in Java, and via attributes in pThreads. This
does not affect the correctness of algorithms, and is elided here.

Finally, newer versions of Java (1.5 and later) offer read-write locks
(java.util.concurrent.lock.ReentrantReadWriteLock), and barriers
(java.util.concurrent.CyclicBarrier), which facilitate the implementation
of certain distributed algorithms. Equivalent facilities are provided by pThreads,
as pthread_rwlock_t and pthread_barrier_t, respectively. The translation of
these and other similar functions resemble the translations shown above, and are
not described in further detail here.

3.5 Other mappings

It is possible to compile Java to machine code, or to automate the mapping
of Java programs to C, but the result will not be efficient. Java allocates all
non-primitive data on the heap, while C allows complex data to be allocated on
the stack. Stack-based allocation requires no explicit memory management or
garbage collection, and is more efficient than heap memory. Furthermore, if Java
heap memory is emulated in C, that memory has to be managed by garbage
collection as well. A manual translation therefore yields better results.

Among library functionality other than multi-threading, Java offers many
types of complex data structures such as sets, maps, and hash tables. These
have to be substituted with equivalent data structures in C, provided by third-
party libraries. In our experiments, we used a publicly available hash table [9]
as a substitute for the hash table provided by the Java standard library.

Finally, for programs using input/output such as networking, the correspond-
ing library calls have to be translated. In these libraries, the Java API offers
some “convenience methods”, which implement a sequence of low-level library
calls. The C version may require additional function calls and data structures.

4 Experiments

In our experiments, we verify two concurrent algorithms, and one concurrent
client/server program. To our knowledge, no higher-level code synthesis approach

supports all types of parallelism used, so we advocate a verification of the imple-
mentation itself. We verified the Java and C versions using Java PathFinder [27],
and inspect [28], respectively. At the time of writing, they were the only model
checkers to support enough of the core and thread libraries to be applicable.

4.1 Example programs

We originally tried to obtain multi-threaded programs written in Java and C
from a well-known web page hosting benchmarks for various problems, imple-
mented in different programming languages [1]. Unfortunately, the quality of
the implementations is not sufficient for a scientific comparison. The different
implementations are not translations from one language to another, but com-
pletely independent implementations. Their efficiency, due to differences in the
algorithm, may vary by orders of magnitudes.

Hash The first example is provided by a source that strives for a faithful trans-
lation of a benchmark from Java to C4++ [24]. We then translated the C++
version to C, and implemented a concurrent version in C and Java.

The program counts the number of matching strings for numbers in hexadec-
imal and decimal notation, up to a given value. It uses a hash table to store
the strings, and worker threads to compute the string representations of each
number. While the concurrent implementation is not faster than the sequen-
tial one, due to contention on the lock guarding the global data structure, it is
still a useful benchmark for model checking. The program utilizes the typical
worker thread architecture with fork/join synchronization, which is also found
in mathematical simulations and similar problems.

Queue This example implements a blocking, thread-safe queue that offers atomic
insertions and removals of n elements at a time. The queue uses a fixed-size
buffer, and obeys the constraints that the removal of n elements requires at least
n elements to be present, and that the buffer size may not be exceeded. When
these constraints cannot be fulfilled, the queue blocks until the operation can be
allowed. The queue uses a circular buffer, which wraps around when necessary.

The C version of the queue is used in an ongoing project about model checking
networked software [19]. The algorithm has originally been developed and verified
in Java, before it has been translated to C, inspiring this paper.

Alphabet client/server The last benchmark is a client/server program. The
alphabet client communicates with the alphabet server using two threads per
connection: a producer and a consumer thread. The server expects a string con-
taining a number, terminated by a newline character, and returns the corre-
sponding character of the alphabet [3]. In this case, both the client and the
server are multi-threaded, and were model checked in two steps; in each step,
one side is run in the model checker, using a cache layer to intercept commu-
nication between the model checker and peer processes [4]. For the alphabet

server, we used both a correct and a faulty version. The faulty version included
a read-write access pattern where the lock is released in between, constituting
an atomicity race [2], as confirmed by an assertion failure that checks for this.

4.2 Translation to C

Translation of the Java version to the C version proceeded as described in Sec-
tion 3. For the hash benchmark, we kept the optimization where the C version
allocates a single large buffer to hold all strings [24]. This optimization is not
(directly) possible in Java. In the Java version, locking was used implicitly by
wrapping the global hash table (of type java.util.HashMap) in a synchronized
container, using java.util.Collections.synchronizedMap. A corresponding
lock was used in the C translation.

In the queue example, we split the conditions for fullness/emptiness into
separate condition variables, as described in Section 3. There were no special
issues when translating the alphabet client/server. However, for the experiments,
the execution of the peer processes had to be automated by a script, which checks
for the existence of a temporary file generated whenever the C model checker
inspect starts a new execution run.

4.3 Verification results

All experiments were run on the latest stable release of Java PathFinder (4.0
r1258) and the C model checker inspect, version 0.3. We analyzed the default
properties: the absence of deadlocks; assertion violations; and, for Java, uncaught
exceptions. Table 2 shows the results. It lists each application (including param-
eters), the number of threads used, and the time and number of transitions taken
for model checking the Java and C version, respectively.

Being a stateful model checker, Java PathFinder (JPF) can check if tran-
sitions lead to a new or previously visited state. In the latter case, the search
can be pruned. The ratio of such pruned branches to new states grows for more
complex cases. This is indicated as a percentage in Table 2; one should keep in
mind that previously visited states may include entire subtrees (with additional
redundant states), so the percentage is a lower bound on the potential overhead
of a stateless search. The C model checker fares much better on small systems
with fewer states, as its lightweight architecture can explore more execution runs
in a given time than JPF does. One should note that transitions are not always
equivalent in the two versions, owing to differences in the language semantics of
Java and C, and in the implementations of the model checker platforms.

Inspect had an internal problem when analyzing the alphabet client. We
expect such problems to disappear as the tool becomes more mature. Other than
that, the alphabet server case stands out, where inspect was very fast. In the
correct version of the alphabet server, there is no data flow between threads. The
data flow analysis of inspect recognizes this, allowing inspect to treat these thread
executions as atomic, and to skip the analysis of different orders of network
messages on separate channels. After the insertion of an atomicity race [2] into

Table 2. Verification results for Java and C versions of the same programs.

Application # thr. Java C
Time [s] Transitions Time [s]| Trans.
new visited|vis./new [%)]
Hash (4 elements) 1 1.36 73 34 46 0.03 91
2 2.76 1,237 1,500 121 0.76 1,438
3|| 128.84| 124,946| 218,748 175 10.72 18,789
4 >1h 288.02| 501,576
Hash (8 elements) 1 1.41 121 58 47 0.04 147
2 3.56 2,617 3,416 130(119.27| 181,332
3|| 283.90| 381,233| 748,583 196 >1h
4 >1h >1h
Hash (17 elements) 1 1.56 205 100 48 0.07 268
2 7.25 9,882 13,709 138 >1h
3[[1034.51[1,617,695| 3,386,368 209 >1h
Queue 2 1.45 121 72 59 0.06 7
(size 5, atomic 3 2.15 958 699 72 0.91 1,130
insert/remove with 4 23.25| 47,973 81,849 170 54.67| 62,952
two elements) 5| 236.72| 494,965| 975,576 197 >1h
6([2622.14(4,982,175(12,304,490 246 >1h
Alphabet Client 3 3.01 1,607 4,226 262
(3 messages) 4{| 20.12| 21,445 83,402 388
5| 291.95| 275,711| 1,423,326 516
Alphabet Client 3 3.83 2,354 6,032 256|| Assertion failure
(4 messages) 4] 32.68| 35,159| 133,556 379|| inside inspect
5[553.87| 501,836] 2,533,616 504/ model checker
Alphabet Client 3 4.63 3,281 8,234 250
(5 messages) 4 50.73| 53,957| 201,122 372
5[972.50] 843,521| 4,182,406 495
Correct 3 8.08 589 1,164 197 0.14 33
Alphabet Server 4 21.29 12,635 36,776 291 0.15 42
(3 messages) 5| 124.75| 89,590| 351,517 392 0.19 51
Correct 3 8.61 959 1,903 198 0.14 36
Alphabet Server 4] 30.48] 22,560 65,617 290 0.15 46
(4 messages) 5| 253.93| 179,197| 704,855 393 0.19 61
Correct 3 9.23 1,455 2,894 198 0.14 39
Alphabet Server 4] 44.55] 37,327 108,466 290 0.17 50
(5 messages) 5| 391.17| 326,862| 1,287,935 394 0.21 61
Atomic-race 3 7.45 141 225 159 1.83 2,633
Alphabet Server 4 9.63 146 333 228 43.64| 76,502
(3 messages) 5 11.79 158 457 289(| 2905.33|3,565,667
Atomic-race 3 7.60 183 304 166 1.79 2,747
Alphabet Server 4 9.82 190 453 238 44.43| 79,213
(4 messages) 5 12.04 204 619 303|| 2542.21(3,667,525
Atomic-race 3 7.76 231 395 170 1.86 2,861
Alphabet Server 4 10.04 240 591 246 45.20| 81,924
(5 messages) 5 12.26 256 805 314} 2541.16(3,769,383

the alphabet server, transitions inside a thread are broken up, resulting in an
explosion of the state space. JPF has an advantage in that case, because the
caching of network input/output [4] enables the model checker to generate most
interleavings of network messages in memory, as opposed to having to execute
the peer process many times (up to 113,400 times for five messages).

5 Conclusions

Nowadays, embedded systems may be developed either in Java or C. Java offers
easier development, but a translation to C may be necessary if system constraints
require it. We show that a development approach where a concurrent core algo-
rithm is developed in Java and then translated to C. Concurrency primitives in
Java can be readily mapped to POSIX threads in C. A direct, automatic trans-
lation from Java to C is theoretically possible, but a manual translation may
yield a more efficient program. Areas where the C code can be optimized include
memory allocation and a more fine-grained treatment of condition variables.

Because concurrent software is difficult to verify, we believe that software
model checking is an invaluable tool to analyze multi-threaded code. Software
model checkers for Java are currently more flexible and powerful than for C.
Because of this, it can be beneficial to develop a concurrent algorithm in Java
first. Our case studies confirm the viability of the approach.

Acknowlegdements

We would like to thank the research team developing inspect for their feedback
and advice on using their tool.
This work was supported by a kakenhi grant (2030006) from JSPS.

References

1. The computer language benchmarks game, 2010.
http://shootout.alioth.debian.org/.

2. C. Artho, A. Biere, and K. Havelund. Using block-local atomicity to detect stale-
value concurrency errors. In Proc. ATVA 2004, volume 3299 of LNCS, pages
150-164, Taipei, Taiwan, 2004. Springer.

3. C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Efficient model check-
ing of networked applications. In Proc. TOOLS EUROPE 2008, volume 19 of
LNBIP, pages 22-40, Zurich, Switzerland, 2008. Springer.

4. C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Yamamoto. Cache-
based model checking of networked applications: From linear to branching time. In
Proc. ASE 2009, pages 447-458, Auckland, New Zealand, 2009. IEEE Computer
Society.

5. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimiiller. JNuke:
Efficient dynamic analysis for Java. In Proc. CAV 2004, volume 3114 of LNCS,
pages 462—465, Boston, USA, 2004. Springer.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.
24.

25.

26.
27.

28.

T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstractions for
model checking C programs. In Proc. TACAS 2001, volume 2031 of LNCS, pages
268—285, Genova, Italy, 2001. Springer.

G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry,
C. Pasareanu, W. Visser, and R. Washington. Experimental evaluation of verifi-
cation and validation tools on Martian rover software. Formal Methods in System
Design, 25(2):167-198, 2004.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Trans. on Software Eng., 30(6):388-402, 2004.

. C. Clark. C hash table, 2005. http://wuw.cl.cam.ac.uk/ cwc22/hashtable/.
10.
11.

E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predi-
cate abstraction for ANSI-C. In Proc. TACAS 2005, volume 3440 of LNCS, pages
570-574. Springer, 2005.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proc. ICSE 2000,
pages 439-448, Limerick, Ireland, 2000. ACM Press.

P. Godefroid. Model checking for programming languages using VeriSoft. In Proc.
POPL 1997, pages 174-186, Paris, France, 1997. ACM Press.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Third Edition. Addison-Wesley, 2005.

D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231-274, 1987.

Y. Kamijima and E. Sumii. Safe implementation of C pointer arithmetics by
translation to Java. Computer Software, 26(1):139-154, 2009.

B. Kernighan and D. Ritchie. The C' Programming Language. Prentice-Hall, 1988.
L. Lamport. How to Make a Multiprocessor that Correctly Executes Multiprocess
Programs. IFEFE Transactions on Computers, 9:690-691, 1979.

W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M. Yamamoto. In-
troduction of virtualization technology to multi-process model checking. In Proc.
NFM 2009, pages 106-110, Moffett Field, USA, 2009.

T. Lindholm and A. Yellin. The Java Virtual Machine Specification, Second Edi-
tion. Addison-Wesley, 1999.

B. Meyer. Eiffel: the language. Prentice-Hall, Upper Saddle River, USA, 1992.
Microsoft Corporation. Microsoft Visual C# .NET Language Reference. Microsoft
Press, Redmond, USA, 2002.

B. Nichols, D. Buttlar, and J. Farrell. Pthreads Programming. O’Reilly, 1996.

W? Systems Design. C++ vs Java, 2009.
http://wuw.w3sys.com/pages.meta/benchmarks.html.

B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley
Longman Publishing Co., Inc., Boston, USA, 1997.

A. Tanenbaum. Modern operating systems. Prentice-Hall, 1992.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203-232, 2003.

C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan. Dynamic model checking
with property driven pruning to detect race conditions. In Proc. ATVA 2008,
volume 5311 of LNCS, pages 126-140. Springer, 2008.

