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Abstract

Software model checkers work directly on single-process
programs, but not on multiple processes. Conversion of pro-
cesses into threads, combined with a network model, allows
for model checking distributed applications, but does not
cover potential communication failures. This paper con-
tributes a fault model for model checking networked pro-
grams. If a naïve fault model is used, spurious deadlocks
may appear, because certain processes are terminated be-
fore they can complete a necessary action. Such spurious
deadlocks have to be suppressed, as implemented in our
model checker extension. Our approach found several faults
in existing applications, and scales well because exceptions
generated by our tool can be checked individually.

1. Introduction

Model checking [7] explores the entire behavior of a sys-
tem by investigating each reachable system state. Recently,
model checking has been applied directly to software. Un-
like in classical model checking, the actual implementation,
and not just the design, is model checked. Java [14, 20] is a
popular object-oriented, multi-threaded programming lan-
guage. Verification of Java programs has become increas-
ingly important. Several model checkers for Java-based
programs have been created [4, 9, 34]. Existing software
model checkers can explore only a single process and are
not applicable to networked applications, where several pro-
cesses interact. Many non-trivial programs that are in use
today use network communication.

Process centralizationis a technique that allows model
checking of distributed applications: Processes [32] are
converted intothreads[14, 32] and merged into a single
process [29]. Networked applications can then run inside
one multi-threaded process. Previous work has addressed
modeling of TCP/IP communication [3] but has not cov-

ered potential network failures. Unlike other approaches,
centralization uses a faithful transformation of all processes
involved and does not use an abstraction of other processes.

The Java programming language uses exceptions to sig-
nal failure of a library or system call [14]. The ideas in
this paper are thus applicable to any other programming
language supporting exceptions, such as C++ [30], Eif-
fel [21], or C# [22]. When an exception is thrown, the cur-
rent stack frame is cleared and its content replaced with a
single instance of typeException. In Java, failures of net-
work operations result in exceptions of typeIOException
or ConnectException [6, 12].

Our program model consists of applications using
TCP/IP networking. Target language is Java, because pos-
sible failures are easily identifiable through exception sig-
natures. We model library calls to network operations
as open operations that can generate an exception non-
deterministically. This is similar to other approaches [5,8,
11, 19]. However, we combine this approach with process
centralization, which allows to model check several appli-
cations interacting with each other [3]. Due to the large
state space, exhaustive treatment of exceptions is not al-
ways possible, and may force the choice of a slight under-
approximation of the program behavior. Based on insights
gained from this work, our contributions are as follows:

1. We show that modeling potential network failures in-
dependently is an effective, scalable way of enhancing
the model checking of distributed applications.

2. We show how a failure in one process may trigger an
exception in another process.

3. We introduce an automated tool that instruments po-
tential failures. Model checking the resulting program
found several faults that were not detected by other
means.

4. We show the problem of inter-process deadlocks aris-
ing due to processes being prematurely terminated by
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an exception. Some, but not all, of these deadlocks are
spurious; we show a solution to this problem.

This paper is organized as follows: Section 2 gives the nec-
essary background about network failures and the exception
mechanism in Java. Section 3 describes how fault injection
is implemented. Initial experiments revealed the need for
special treatment of inter-process deadlocks; this run-time
component is described in Section 4. The results of our ex-
periments are given in Section 5. Sections 6 and 7 describe
related and future work and Section 8 concludes.

2. Background

An exception, as commonly used in many programming
languages [14, 21, 22, 30], indicates an extraordinary condi-
tion in the program, such as the unavailability of a resource.
In Java, a method call that fails may “throw” an exception
by constructing a new instance ofjava.lang.Exception
or a subtype thereof, and using athrow statement to “re-
turn” this exception to the caller [14]. At the call site, the
exception will override normal control flow. The caller may
install an exceptionhandlerby using thetry/catch state-
ment. Atry block includes a sequence of operations that
may fail. Upon failure, remaining instructions of thetry
block are skipped, the current method stack frame is re-
placed by a stack frame containing only the new exception,
and control is transferred to the exception handler, indicated
in Java by the correspondingcatch block.

The usage and semantics of exceptions covers a wide
range of behaviors. In Java, exceptions are used to signal the
unavailability of a resource (e.g., when a file is not found or
cannot be written), failure of a communication (e.g., when
a socket connection is closed), when data does not have the
expected format, or for programming errors such as access-
ing an array at an illegal index. Two fundamentally different
types of exceptions can be distinguished:Uncheckedexcep-
tions andcheckedexceptions. Unchecked exceptions are of
type RuntimeException and do not have to be declared
in a method. They typically concern programming errors,
such as array bounds overflows, and can be tested through
conventional means, by white box testing.1 On the other
hand, checked exceptions have to be declared by a method
that may throw them. Failure of external operations results
in such checked exceptions [6, 12]. Such external failures
cannot be tested easily, as the operations leading to a fail-
ure occur in external library operations, which cannot be
controlled by the application. For instance, a network con-
nection outage is hard to simulate. This work focuses on
such external failures.

1This involves writing a test case where the code in question is called
with incorrect parameters.

Code instrumentationinjects additional code into an ap-
plication, adding extra behavior to it, while not changing the
original behavior or only changing it in a very limited way.
It corresponds to a generic form of aspect-oriented pro-
gramming [17], which organizes code instrumentation into
a finite set of operations.Program steering[18] overrides
normal execution flow, typically altering program behav-
ior using application-specific properties [18], or as schedule
perturbation [28], which covers non-determinism in thread
schedules.Fault injection[2, 16] refers to influencing pro-
gram behavior by simulation of failures in hardware or
software. In model checking, such faults can be injected
non-deterministically, covering both the successful and the
failed case [5, 8]. In our case, we used the Java PathFinder
(JPF) model checker [34] to analyze our programs, as JPF
currently is the only openly available Java model checker
supporting user-defined non-deterministic outcomes.

Software model checkersexecute a software application
directly, with little or no abstraction. Such model checkers
use a concrete initial state, provided by a test case. There-
fore, model checking can be seen as program testing with an
exhaustive exploration of non-deterministic choices. Such
choices include all possible interleavings of threads. Multi-
ple threads share the address space of a process [32], requir-
ing proper synchronization to avoid access conflicts. A dis-
tributed application consists of several processes communi-
cating through means such as TCP/IP networking. Because
writing multi-threaded programs is difficult, software model
checkers have received much attention in the last years as
a means of finding defects in concurrent software. Unlike
classical testing, model checkers do not have to rely on the
environment to generate a particular schedule that revealsa
fault in the program.

Unfortunately, almost all software model checkers can
only model check a single process [4, 9, 34]. Alterna-
tives provide an interesting direction for future research
but do not yet scale to anything but very small applica-
tions [24]. Therefore, model checking networked appli-
cations provides two fundamental problems: The fact that
multiple processes have to be model checked, and the prob-
lem of treating network communication. The first problem
can be solved bycentralization,which converts processes
into threads and transforms other aspects of the program
such that the original semantics is preserved [3, 29]. These
transformations ensure that each process can run indepen-
dently and maintain a different address space for each pro-
cess. Therefore, centralization embodies a reversible, iso-
morphic transformation: Each state in the resulting single-
process program corresponds to a state in the original multi-
process program. Network communication has been ad-
dressed by a recent model [3]. This model uses inter-thread
signals (wait/notify in Java) to simulate blocking system
calls, and inter-thread pipes to model the communication
channel itself.
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The above-mentioned work [3] does not cover transmis-
sion failures, which are modeled in this paper. Our model
checking process works as follows: (1) The source code is
compiled, (2) the centralization tool merges all processes,
(3) faults are injected into the application, (4) the resulting
application is model checked using a test case as the ini-
tial state of a model checking run. This contribution of this
paper covers steps 3 and 4, as described in Sections 3 and 4.

3. Fault injection

Prior to model checking a centralized application, faults
that simulate possible transmission failures are injectedinto
the code. The first challenge in fault injection is the iden-
tification of the methods where exceptions should be gen-
erated. We implemented a tool that analyzes given pro-
grams for calls to these methods. Before each such call,
code that usesVerify.randomBool from JPF is inserted .
This simulates both the successful case, where no special
action is taken and the following library call succeeds, and
the failure case. In the failure case, a new instance of type
IOException is constructed and thrown. If a correspond-
ing exception handler is present, it is then triggered by that
exception; otherwise, the exception propagates up the call
stack. Therefore, code instrumentation corresponds to in-
sertion of the following code sequence before each method
call in question:

if (Verify.randomBool()) {
throw new IOException();

}

This example does not include a message string. Mes-
sage strings represent a human-readable explanation, and
are used for displaying diagnostic messages [2]. Our imple-
mentation includes a fixed message, distinguishing injected
exceptions from conventional ones for human analysis.

Almost any method may throw exceptions. Certain ex-
ceptions, such as exceptions referring to character encod-
ing support, can be tested through conventional white-box
testing and should not be instrumented.2 Furthermore, we
did not model failures of typeSocketException, which
concern low-level TCP methods that were not used by our
example applications. Table 1 shows all methods of the rel-
evant classes in packagesjava.net andjava.io that can
throw anIOException. Such exceptions are used to sig-
nal the occurrence of an I/O error or similar problems [31].
Certain methods, such as constructors, are declared to throw
possible exceptions, but not all constructor variants ac-
tually implement them. Such exceptions were excluded
in our model. Finally, failures that do not involve non-

2This proposition assumes that treatment of malformed inputis entirely
thread-local and of no consequence to the global program state. Input han-
dling can then be tested for one thread by conventional unit testing. If this
is not the case, more exceptions can be included for fault injection.

determinism can be tested conventionally (through white-
box testing) or, in the case ofbind, by using the same port
twice, and are not relevant for the kind of faults we analyze.

We focus on exceptions that occur after communica-
tion failures, which may result in one or several excep-
tions [6, 12]. In our tool, we used the SERP bytecode
instrumentation library [36] to instrument all these meth-
ods (or a subset of choice). Choosing a subset greatly im-
proves efficiency of the model checking process, as shown
by experiments. On the other hand, it constitutes an under-
approximation, as multiple failures in different method calls
are no longer accounted for. This may miss complex errors
involving several distinct I/O failures. Therefore, the opti-
mization of instrumenting only certain methods should only
be used if coverage of multiple errors is too expensive for a
given application.

4. Inter-process deadlocks

The previous section describes how possible network
faults are simulated using non-determinism. Unfortunately,
some of these simulated failures lead to spurious or triv-
ial inter-process deadlocks, which mask real faults, because
spurious deadlocks are seen as a failure state by the model
checker. Such deadlocks therefore have to be ignored. This
section describes how spurious deadlocks are recognized
and suppressed automatically. JPF considers the following
situation as a deadlock:

“[JPF checks] the absence of states of the sys-
tem where no thread can execute: this does not in-
clude states where threads are waiting for a time-
out. If the system reaches one of these states, it
will stay in that state indefinitely: this situation is
improperly called a deadlock.” [25]

In other words, such a deadlock occurs if all threads are
waiting for a lock or are suspended inside await call. Let
T be the set of all threads of a process. For each threadt,
function isAlive returnstrue if a thread has been started and
not yet terminated [14]. Similarly, let function isWaiting
returntrue if a thread is either inside await orjoin method
call, or waiting on a lock. Therefore, a deadlock as above
can be defined formally as

deadlock :∀t ∈ T : ¬isAlive(t)∨ isWaiting(t).

4.1. Spurious inter-process deadlocks

The problem is that such deadlocks can also be reported
across centralized processes. Such reports can include triv-
ial or spurious deadlocks where a server is blocked inside
an operation waiting for a client to connect. Such dead-
locks would not be considered as deadlocks in a normal
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Class Method Fails upon Remark
Socket constructor I/O error exceptions subsumed by

plain constructor +connect
bind bind failure/address in use can be tested conventionally
connect error during connection
getInputStream socket closed/not connected
getOutputStream I/O error/not connected
close I/O error
shutdownInput/Output I/O error not used by example apps
setSocketImplFactory I/O error not used by example apps

ServerSocket constructor I/O error exception subsumed bybind
bind bind failure/address in use can be tested conventionally
accept I/O error
close I/O error
implAccept I/O error not used by example apps
getSoTimeout I/O error different exception type for (client)

socket; not used by examples
setSocketFactory I/O error not used by example apps

Input- read I/O error
StreamReader close I/O error
Output- write I/O error
StreamWriter flush I/O error

close I/O error

Table 1. Possible exceptions in Java library methods that ar e related to I/O errors.

production environment, because of the special nature of a
server process, which normally runs inside an endless loop.
A server process in this context is defined as a process that
accepts incoming requests [33].

Consider the case where anIOException prevents a
client from connecting to the server. In a test setup, the
server is programmed to serve a certain number of clients.
If one of these clients cannot complete its connection oper-
ation, the server will wait forever for the final client. JPF
will report this situation as a deadlock even though the fact
that a server waits indefinitely for clients constitutes itsnor-
mal mode of operation. Only for testing, where the number
of connections is finite, the server is expected to terminate.
Therefore, a deadlock report where a server process is still
waiting for incoming requests is spurious.

For JPF, we have implemented a custom search class that
is capable of suppressing these deadlocks. A spurious dead-
lock occurs if:

1. JPF detects a deadlock because no thread can execute,
as defined above.

2. At least one thread waits for a connection and is
blocked inServerSocket.accept.

Let inAccept returntrue if a thread is blocked in
ServerSocket.accept. Then, a true deadlock can be de-
fined by ignoring such spurious deadlocks:

trueDeadlock : deadlock∧∀t ∈ T : ¬inAccept(t)

This rule can be generalized to programs using different
communication models. In order for the server main loop to
terminate, a particular operation by another (client) process
is necessary to allow a blocking system call on the server to
return. If a failure on the client side prevents this operation
from happening, then a deadlock is reported. Under normal
operation, the number of clients is potentially infinite, and
another process would eventually perform the operation un-
der question. In testing, the number of clients is finite, and
therefore deadlocks that arise in such situations are spuri-
ous. Such scenarios can be discarded safely.

4.2. True inter-process deadlocks

True deadlocks correspond to situations where even a
successful client connection (which allows the server to
continue) leads to a deadlock. Such inter-process deadlocks
occur when several threads are dependent on the action of
another thread. Some of these threads may belong to the
same centralized process. Such deadlocks correspond to
genuine faults in the program.

Figure 1 shows a scenario where JPF reported a deadlock
despite the suppression mechanism described above. The
reason is a recursive dependency: The server main thread
waits until all worker threads have terminated, such that it
can close the open port. In the faulty scenario, one of the
worker threads blocks inside aread call and waits forever
for a response from a client. This response never arrives due
to a fault in the client (such as an infinite loop). Because the
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Server
application

does not occur

Worker never
terminates

Operation of client

waits for

waits for

Worker

Server (main)

Client

Figure 1. An inter-process deadlock that in-
volves recursive dependencies.

worker thread never terminates, the server main thread is
also prevented from terminating.

This deadlock corresponds to a situation where a block-
ing call never returns. Reliable programs, such as servers,
should use a timeout mechanism to prevent a deadlock in
such a situation. In the given chat server version, this mech-
anism was not used. Therefore, this scenario corresponds to
a real error.

5. Experiments

The goal of the experiments was to evaluate our dead-
lock suppression algorithm, and to determine the overhead
caused by exception instrumentation. Four categories of
operations were chosen, representing two pairs of opera-
tions that occur either once per connection or once per mes-
sage (see Table 2). Experiments were executed using JPF
3.0a [25, 34] on a dual-processor PowerPC G5 (2.7 GHz,
8 GB RAM, 2 GB RAM per Java process, 512 KB of
L2 cache per CPU), running Mac OS 10.4.7.3 For model
checking the centralized applications, we first instrumented
I/O methods for simulating network failures. The instru-
mented code, together with the run-time libraries for net-
working and suppression of spurious deadlocks, was exe-
cuted in the JPF model checker in order to evaluate the out-
come of all possible communication interleavings and fail-
ures. The default properties of JPF were verified: uncaught
exceptions, assertion failures, and deadlocks.

5.1. Example applications

As realistic applications require heavy manual abstrac-
tions, only two examples were available: an echo server
and a chat server (including test clients for each). The echo
server returns the input received to the client. The chat

3Attempts were also made to use a recent version (Jan. 2007) ofJPF 4,
but a regression defect in JPF 4 made it unable to handle one ofthe case
studies that JPF 3.0a was able to run.

Method Abbr. Java methods

open o Socket.connect, ServerSocket.accept
close c Socket.close, ServerSocket.close
write w OutputStreamWriter.write, flush
read r InputStreamReader.read

Table 2. Instrumented methods.

Process

Client

Process

Client

Thread

Thread

Worker

accesses

Worker

Server

main

creates

Thread

Process

Figure 2. Chat server architecture.

server sends the input of one client back to all clients, in-
cluding the one that sent the input. All applications were
supplied with two test clients. The echo client sends three
lines and expects the same lines back. The chat client sends
and reads a single line. While the echo server is a simple
application, the architecture of the chat server is fairly com-
plex, involving a main server thread to accept connections
and one worker thread per connection. Worker threads use
shared data structures to send a message to all other clients
(see Figure 2). This architecture is comparable to modern
web servers [1].

5.2. Overhead measured

Experiments measured the overhead for both applica-
tions when one or several of each category of method calls
were instrumented to simulate possible failures. Table 3
shows the run times when model checking the echo ap-
plication. The first four columns indicate which method
calls were instrumented for a particular model checking run.
The time measured (in seconds, and relative to the uninstru-
mented case) is shown in the next two columns. Finally, the
last four columns show the overhead of a particular type of
fault injection relative to the total set of injected faults. In
other words, it lists the additional overhead of the argument
to ovh(). For instance, ovh(o) refers to the overhead for
“open”. In the fifth data entry, only “open” is instrumented,
and the overhead given by ovh(o) corresponds to the total
overhead (factor 1.13). Four rows below, both “open” and
“read” are instrumented. The entry in ovh(o) corresponds to
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o c w r time [s] overhead ovh(o) ovh(c) ovh(w) ovh(r)

8.71 1.00
1 68.02 7.81 7.81

1 65.49 7.52 7.52
1 19.93 2.29 2.29

1 9.82 1.13 1.13
1 1 156.33 17.95 2.30 2.39

1 1 128.36 14.74 1.89 6.44
1 1 133.35 15.31 2.04 6.69

1 1 69.89 8.02 1.03 7.12
1 1 66.00 7.58 1.01 6.72
1 1 32.47 3.73 1.63 3.31

1 1 1 292.88 33.63 1.87 2.28 2.20
1 1 1 160.07 18.38 1.02 2.29 2.43
1 1 1 304.52 34.96 2.37 4.36 9.38
1 1 1 332.89 38.22 2.50 5.04 10.25
1 1 1 1 742.19 85.01 2.53 4.64 2.44 2.23

Table 3. Experiments with the echo applica-
tion. Instrumented method calls are indicated
by a “1”.

the additional overhead of instrumenting “open” compared
to instrumenting “read” only. This additional overhead is
very small (1.03), because the overhead for instrumenting
“read” is already quite high (7.81) compared to the com-
bined overhead of 8.02. Measurements exhibited some vari-
ations, so small differences between different tests have no
significance.

The key observation from Table 3 is that instrument-
ing each call individually, and model checking each ver-
sion separately, is much more efficient than instrumenting
all method calls at once, without having missed any errors
in our examples. The first “sequential” approach model
checks the program four times, with a total overhead of
18.75, while the total overhead of the analysis with all meth-
ods instrumented amounts to 85.

Similar results were obtained when model checking the
instrumented chat application (see Table 4). The difference
between open/close and read/write is relatively small, be-
cause only a single message is sent by each client, result-
ing in few messages being sent across the entire network.
Checking each possible failure individually has an over-
head of factor 16.08, which is much more efficient than
model checking with all failures enabled (overhead: 35.44).
Of course, this optimization misses failures that only arise
when several network failures occur. However, we have not
found any extra faults under these circumstances. This sug-
gests that failures resulting from combined I/O problems are
rare in practice.

The impact of injected faults becomes smaller for faulty
applications, because there tend to be many execution traces
leading to a system failure. Therefore, an error trace is

o c w r time [s] overhead ovh(o) ovh(c) ovh(w) ovh(r)

217.21 1.00
1 1787.11 8.23 8.23

1 780.90 3.60 3.60
1 532.89 2.45 2.45

1 391.39 1.80 1.80
1 1 3240.17 14.92 1.81 4.15

1 1 2824.72 13.00 1.58 5.30
1 1 1133.77 5.22 1.45 2.13

1 1 3149.58 14.50 1.76 8.05
1 1 1350.14 6.22 1.73 3.45
1 1 906.53 4.17 1.70 2.32

1 1 1 4338.23 19.95 1.34 1.53 3.82
1 1 1 5426.49 24.98 1.67 1.72 4.02
1 1 1 4745.83 21.85 1.68 1.51 5.24
1 1 1 1975.65 9.10 1.74 1.46 2.18
1 1 1 1 7698.17 35.44 1.78 1.42 1.62 3.90

Table 4. Experiments with the chat applica-
tion. Instrumented method calls are indicated
by a “1”.

found quickly, after exploring only a small percentage of
the state space, as illustrated by Table 5. Even with multi-
ple instrumented failures, the fact that a faulty path is found
quickly out-balances the overhead introduced by fault in-
jection. The model checker can even find faults in instances
where it would normally run out of its 2 GB of memory.
Note that versions where the read call was instrumented did
not execute successfully due to a faulty partial-order reduc-
tion in JPF. JPF 3.0a sometimes fails to break up transitions
inside an infinite loop within an application thread, leading
to an infinite loop in JPF itself.

5.3. Faults found in the given applications

Initially, JPF reported spurious deadlocks, which were
suppressed by the algorithm described in Section 4. This
prompted our definition of spurious deadlocks and the cor-
responding extension to JPF. Subsequently, three genuine
faults were found in the given applications, as shown in the
overview in Table 6. The first fault occurs in the same thread
as where it was triggered. However, it has consequences for
other processes, as will be explained below. The second
fault caused another exception in the client process. The
third fault resulted in a complex deadlock between several
processes and threads, as outlined in Section 4.2.

Figure 3 illustrates the first fault. In the chat server, a
worker thread keeps on reading the input until the input is
closed or an exception occurs. Each line read is sent to all
chat clients. After a chat client quits, it is removed from the
global set of chat clients (such that no other worker thread
will send data to a closed socket), and its connection is
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2 clients 3 clients

o c w time [s] overhead # of trans. in o c w time [s] overhead # of trans. in
counterex. counterex.

1
se

rv
ed

217.21 1.00 −

1
se

rv
ed

12523.57 1.00 −

1 5.64 0.03 55 1 41.47 0.00 63
1 1 8.71 0.04 55 1 1 84.23 0.01 63

1 1 7.71 0.03 58 1 1 130.03 0.01 67
1 1 1 14.45 0.07 58 1 1 1 345.46 0.03 67

2
se

rv
ed

27284.65 1.00 −

2
se

rv
ed

out of memory after 80 hours
1 1338.91 0.05 136 1 7559.18 n/a 141

1 1 5783.89 0.21 138 1 1 51928.85 n/a 143
1 1 1366.68 0.05 140 1 1 15342.20 n/a 146
1 1 1 5925.03 0.22 142 1 1 1 107681.30 n/a 148

Table 5. Results when using the faulty chat application, whi ch deadlocks when a write call fails on
the server side. Instrumented method calls are indicated by a “1”. Tests have been run for two and
three clients, out of which one or two were served at the same t ime.

Methods where faults were injected Application failures

open (ServerSocket.accept, Socket.connect) –
close (Socket andServerSocket) Chat: Double removal of worker thread

in exception handler of chat server
write (OutputStreamWriter) Echo:NullPointerException in

client after failed send in server
Chat: Possible deadlock in worker thread

read (InputStreamReader) –

Table 6. Faults found in the echo and chat server application s.

1 BufferedReader in;
try {
in = new BufferedReader(new
InputStreamReader(sock.getInputStream()));

5 String s = null;
// main loop
while ((s = in.readLine()) != null) {
chatServer.sendAll(n + ": " + s);

}
10 // clean-up

chatServer.remove(n);
sock.close();

} catch(IOException e) {
System.out.println("Worker thread "+n+": "+e);

15 chatServer.remove(n);
}

Figure 3. Double removal of a worker thread.

closed. Unfortunately, the initial implementation contained
the following fault: During “clean-up”, after a client has
been removed from the working set, an exception may oc-
cur in Socket.close (at line 11). The exception handler
will remove the client again (at line 15). Because the entire
block of code is not atomic, this creates several problems:

1. Another worker thread may already have been started
using the recently-freed slot. In that case, the excep-

tion handler of the dying worker thread would remove
a different thread. The corresponding new chat client
would never receive any response from the server.
As no actual run-time error would occur, even model
checking would not find this failure, unless a specifica-
tion exists stating that a certain output from the server
is expected.

2. The server maintains a counter for the number of ac-
tive worker threads. Callingremove too often there-
fore triggers a premature shutdown of the chat server.
Certain scenarios even caused the value of the counter
to drop below zero. This triggered an assertion fail-
ure, which allowed us to find the fault. Fixing the fault
involves moving the clean-up code from thetry and
catch blocks into afinally block.

The second fault found is an example for acascading
exception,an exception that provokes a run-time error in
another process. Figure 4 illustrates this situation. Assume
the client has successfully sent itsN strings at lines 2 and 3.
It then waits for the response of the server (lines 5–7). The
server normally sends back its input line by line (lines 5–7
on the right-hand side of Figure 4). If one of thesewrite
operations fails, fewer lines than expected will be sent, and
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Echo client Echo server
1 int i;
for (i = 0; i < N; i++)
out.writeln(i);

5 for (i = 0; i < N; i++)
System.out.print("Received " +
in.readLine());

// in.readLine() may return null

1 String line;

5 while ((line=in.readLine())!=null)

out.writeln("Echo " + line);

Figure 4. NullPointerException in the echo client at line 7 if the server cannot send data.

methodreadLine will return null on the client side. The
client code does not check against anull pointer, which
results in aNullPointerException in the chat client.

This failure could also be discovered when model check-
ing the client process in isolation, using a stub for method
readLine. That stub would return a string ornull non-
deterministically. However, we think that the reason for the
NullPointerException may not be apparent when model
checking one process in isolation. Indeed, a programmer
writing the stub or evaluating such an error trace may over-
look this failure potential, or treat it as a false positive.Our
method delivers a concrete failure scenario.

6. Related work

The classical application domain of model checking con-
sists of the verification of algorithms and protocols [15].
More recently, model checking has been applied directly
to software, sometimes even on concrete systems. Such
model checkers include the Java PathFinder system [34],
JNuke [4], and similar systems [5, 9, 13, 28].

Regardless of whether model checkers are applied to
models or software, they suffer from the state space explo-
sion problem: The size of the state space is exponential in
the size of the system, which includes the number of threads
and program points where thread switches can occur. Sys-
tem abstractionoffers a way to reduce the state space by
merging several concrete states into a single abstract state,
thus simplifying behavior. In general, an abstract state al-
lows for a wider behavior than the original set of concrete
states, preserving any potential failure states [5, 9].

Most software model checkers analyze a single OS-level
process. They cannot handle distributed systems [4, 5, 9, 13,
27, 34]. When using manual program abstraction, I/O op-
erations can be replaced by stubs that mimic each possible
operation. However, creation of such stubs is application-
specific and can be quite labor-intensive for complex appli-
cations. Automation is either imprecise [8, 19] or requiresa
large model of the underlying functionality [5, 23]. Such an
abstraction models all possible outcomes of an interaction
with an external process without modeling the entire state
and history of that external process. Therefore, traces of

external processes are not available. This makes debugging
an error trace much more difficult, and may affect perfor-
mance and precision of the model, because an imprecisely
modeled response may result in spurious successor states.

An alternative to stubs consists of lifting the power of
a model checker from process level to OS level [24]. The
effects of system calls are modeled by hand, allowing sev-
eral processes to be model checked together without modi-
fying the application code. The difference to our approach
is that centralization transforms a multi-process system into
a single-process one, while the other tool expands the scope
of model checking to several processes. Furthermore, the
OS-level model checker does not model communication
failures, and has a slower performance than process-level
model checkers.

Static analysis[10] uses abstractions similar to the ones
used by model checking. Static analysis computes a fix
point of all possible behaviors of the abstract program.
As in model checking, non-deterministic decisions are ex-
plored exhaustively. For verification of correct resource
deallocation, there exist static analysis tools that consider
each possible exception or failure location [11, 35]. The
same effect can be achieved by using a model checker on
an abstract version of the program [19]. However, these
techniques only cover a part of the program behavior, such
as resource handling. For a more detailed analysis, code ex-
ecution (by testing [2] or by model checking the concrete
system involving all processes) is necessary. While effi-
cient comprehensive fault injection mechanisms exist for
unit testing [2], test-based fault injection only addresses
non-determinism introduced by failed external operations,
but cannot account for non-deterministic scheduling.

Centralization includes all processes. Model check-
ing a centralized system therefore provides a comprehen-
sive analysis. The extra information of external processes,
which are included in the centralized version, makes an er-
ror trace more understandable. When using instrumenta-
tion to replay the error trace schedule [26], centralization
even makes it possible to replay traces of all processes in
a conventional debugger. Furthermore, violations of live-
ness properties may only appear for particular interleavings
of processes (not just threads inside one process) [3] and
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could be lost by modular checking. Therefore, centraliza-
tion is a useful technique for such client/server applications.
Centralization has first been proposed and implemented by
Stoller et al. [29]. The original approach did not model
certain fine points of the Java semantics with full accuracy,
and did not cover generic TCP/IP communication. Recent
work addressed this shortcoming by covering the Java se-
mantics in more detail, and by adding a model for generic
TCP/IP network communication [3]. The original TCP/IP
model did not cover communication failures. Our work
combines extended centralization with fault injection. It
constitutes the first model for network operations that can
actually transmit data between (centralized) Java processes,
while covering potential network failures, and treating spu-
rious deadlocks correctly.

7. Future work

Future work includes enhancements to our network li-
brary model and to the centralization process, in order to re-
flect more aspects of the Java semantics. Currently, timeout
mechanisms are not supported by our model. The addition
of shutdown semantics for the termination of a centralized
process will also expand the scope of our model. Besides
such functional extensions, we also consider optimizations
that reduce the overhead in model checking.

Experiments have shown that checking for each kind of
failure individually results in an improved performance. We
are looking into splitting up instrumentation into smaller
subsets to explore this further. For instance, failures could
be simulated individually per class or method. Finally,
when considering the dynamic program state, even more
optimizations are possible. For instance, each possible ex-
ception occurrence may be limited to the first few iterations
of a loop. Usually, the program state inside a loop does not
change significantly, such that the outcome of the excep-
tion handler will not differ after one or many loop iterations.
Similar reductions are possible pertry/catch block, or per
method.

8. Conclusions

By combining centralization with a network model for
TCP/IP, networked Java applications can be model checked
in any Java model checker. However, certain faults can be
detected only if potential network failures are taken into ac-
count. Java PathFinder allowed us to model such failures
as non-deterministic actions. Some network failures lead to
application failures, and may even cause failures in other
processes. However, while a model of all combined pro-
cesses can yield a precise failure scenario, it also increases
the state space significantly. Fortunately, most program

faults can be observed as a consequence of a single network
failure. This allows for checking each kind of failure indi-
vidually, which is much more efficient than model checking
combined failures. Finally, due to the multi-process nature
of the applications considered, a model checker may detect
spurious deadlocks, which result from failed connection at-
tempts. Such deadlocks have to be suppressed in the model
checker itself.
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