Iterative Delta Debugging

Cyrille Artho!, Etsuya Shibayantaand Shinichi Honideh

1 Research Center for Information Security (RCIS), AIST, yimklapan
2 National Institute of Informatics, Tokyo, Japan

Abstract. Automated debugging attempts to locate the reason foraéaiDelta
debugging minimizes the difference between two inputs,re/loae input is pro-
cessed correctly while the other input causes a failuregusiseries of test runs
to determine the outcome of applied changes. Delta debgdgiapplicable to
inputs or to the program itself, as long as a correct versfdheoprogram exists.
However, complex errors are often masked by other progrdactie making it
impossible to obtain a correct version of the program thhodigjta debugging in
such cases. Iterative delta debugging extends delta diefguggd removes series
of defects step by step, until the final unresolved defectels isolated.

1 Introduction

Testing is a scalable, economic, and effective way to uncfavsts in software [4,5].
Automated test runs allow efficient verification of softwaeit evolves. However, in
the case of failure, defect localization (debugging) i$ atiargely manual task.

In the last few years, several automated debugging techsiave been developed
in order to facilitate fault-finding in complex software T2, Delta debugging (DD) is
one such technique [3,8]. It takes two sets of inputs, onehvhields a correct result
and another one which causes a failure. DD then modifies logitlts with the goal
of minimizing their difference while preserving the test@ame (one input succeeds,
another one fails). DD can be applied to the program inpubhersource code of the
program itself, using two different revisions of the samegvam. The latter variant
treats the source code as an input to DD. It therefore insl@deompile-time step,
which produces mutations of the program to be analyzed, and-ime step, where
the outcome of that mutation is verified by testing.

DD obtains an explanation for a test failure. The scenarisittered here is where
a test fails for the current version. If an older correct i@mrexists, DD can distill the
essential change that makes the new version fail on a gig&reted thus reduce a large
change set to a minimal one [8]. DD is applicable when thergt®a known version
that passes the test. For newly discovered defects, thisnoialye the case. For such
cases, we propose iterative delta debugging (IDD). The isldéased on the premise
that there exists an old version that passes the test inigogbtt older versions of
the program may have earlier defects that prevent them fiingdso. By successively
back-porting fixes to these earlier defects, one eventoaligins a version that is capa-
ble of executing the test in question correctly.

IDD vyields a set of changes, going back to previous revisidine final change,
applied to the oldest version after removal of earlier disfespnstitutes an explanation
for the newest defect.

VErsion 2 3
1 2 ; 7\:|
vlEme==ar | |0
=5 — = —
—— [_ fail
= err A ai
[.
— PIT _/fa”
pass

Fig. 1. Iterative delta debugging.

original_version = current_version = latest_version();
patchset = {}
original_result = current_result = test(original_version);
while (current_result # pas$ {
current_version = predecessor(current_version);
current_result = test(current_version & patchset);
if (current_result # original_result) {
delta = DD(current_version, original_version);
patchset = patchset U delta;
original_version = current_version;

}
}

return delta;

Fig. 2. IDD algorithm in pseudo code.

2 Iterative Delta Debugging

Assume there exists a test that fails on a current versionwilesall this outcome
fail. A correct result is denoted lpyass Besides these two outcomes, there may also
be different incorrect outcomes of the test, denoteeilsy A set of changes between
two versions of a program is referred to agatch.Delta Debugging (DD) identifies a
minimal change set that preserves the behavior of a tesbedseen two versions [8].
Usually, this change set is used to explain a failure.

Figure 1 shows how IDD builds on DD. IDD is starts from a newsien, which
fails (version 3 in Figure 1). Unlike in the original scerwfor DD, a version that passes
does not exist a priori. IDD successively goes back to previersions and assesses
whether the same failure persists. If the test outcomerdifféD is then applied to
the last failing version and the older version. This ideesifthe source code change
that made the old version behave differently. One IDD iterathus either produces a
correct version, or eliminates a older defect that coveredeaver one.

In many cases, IDD will not find a successful version in ongifen. Instead, an
older version fails in a different waye(r). Assume version 2 is such a version. DD
is then applied between versions 2 and 3. The resulting naihailnange can then be
applied as a patch to version 2, fixing the earlier defect nsiva 2, and producing a

new version 2 The resulting version fails again in the same way as ver3idid. In
Figure 1, the change that is back-ported is shown by an aroimtipg to the correct,
changed code, in grey. Assume that one change does not deiypépair the program.
In that case, the iterative process is repeated. HowevViereotihe test is run on an even
older version (such as version 1), the fix is back-portedmgabducing version’lon
which the test is run. If that version behaves differentlynir2, DD is applied again
to find the minimal change required to fix the program. Thi-dpiaes a version with
another patch (the change betweéra@d 1) applied on top of the original one (the
change between 3 and 2), resulting in a new versidn IflIDD terminates, it will
eventually find a version that passes the test, or run outiefrelersions (see Figure 2).

IDD can be partially automated by using DD to identify thegbato back-port.
However, full automation is not possible. A given patch satat always applicable to
earlier revisions without changes, due to changes in theesarode layout and struc-
ture. When the difference between two revisions grows togelathe patch tool fails.
Therefore, large changes prevent full automation of thecsein and back-porting of
patches. However, application of DD still constitutes didutomation for extremely
difficult problems where fully manual approaches are privikidy difficult to apply.

IDD is best applicable to a source code repository contgimiany small, versioned
(tagged) changes. For instance, subversion automat@sdigns a unique tag to each
change set, making such repositories an ideal candidat®for

3 Experiments

We have applied IDD to the source repository of Java Patlg@fiGiPF), a Java model
checker [6], using revisions 1 — 208 of version 4. In versipa 4éomplex input is not
processed correctly. The defect is manifest in an inconesailt after several minutes
of processing: The analysis report of JPF states that ayfaydut (a Java program
containing a known defect) is correct. Because the poiraibfre is extremely difficult
to locate, this problem has persisted for several monthsiahdeen resolved yet.

A much older version, 3.0a, which is not maintained in the esaapository, pro-
duces a correct result, though. However, using that vefsioidentifying a change set
would not be useful, because the entire architecture of #8Fhaen redesigned since
version 3.0a was released. Hence, IDD was applied to diffesvisions of the source
repository containing all revisions of version 4. The goakwvo find a revision in the
new repository that could pass the test.

Running a test takes several minutes in recent revisiormkfia@ hours when go-
ing back to older revisions. IDD automates test executibowing these lengthy test
runs to run unattended. Our IDD implementation also ignfaisd builds (due to in-
complete revisions in the repository), and has succeggfulhd several defects, which
could all be resolved by back-porting patches. Unfortugaadter applying ten nested
patches throughout almost 200 revisions, a correct revisiidl could not obtained in
that case study. The case study, however, lead to a systespatioach of back-porting
changes, as presented in this paper.

3 At the time of writing, the defect still persists. However revisions that were made after our
experiment, the fault is now masked bjad | Poi nt er Except i on, which almost immediately

4 Futurework

When using IDD, challenges do not only occur when having tokkgort patches
throughout many revisions, but also in selecting the righitlph. Sometimes, several
faults are introduced when going back to an older revisiomhere exist several ways
to fix a fault. Therefore, the algorithm presented here mandvave to “fork” into
multiple revision trees in order to find a correct version. Kéwzve not attempted this
in our case study, as this multiplies the amount of work to deed Instead, we have
relied on our own experience with a similar model checkenffi¢n selecting the patch
of choice. IDD involving trees of revisions requires a maoplsisticated tool than our
prototype.

5 Conclusion

Delta debugging can identify minimal change sets. Howeteequires a correct ver-
sion, which may not be known when a new defect is discovergll. iBis possible
that an old revision would have processed a particular iopuectly, if subsequent bug
fixes of newer revisions were applied to it. Iterative dekdbuaigging systematizes this
process and successively carries changes from newer netsiek to older ones, until
either a correct version is found or the process is abortetlir& work includes more
case studies, and attempting to investigate trees of matidits on older revisions.

References

1. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, andweimiller. INuke: Efficient Dy-
namic Analysis for Java. IRroc. 16th Int’l Conf. on Computer Aided Verification (CAV02()
volume 3114 oLNCS pages 462-465, Boston, USA, 2004. Springer.

2. R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.E:Fxplaining Program
Failures via Postmortem Static Analysis. Bnoc. 12th Int’l Symposium on the Foundations
of Software Engineering (FSE 2004ages 63-72, Newport Beach, USA, 2004. ACM.

3. G. Misherghi and Z. Su. HDD: hierarchical delta debuggitig Proc. 28th Int'l Conf. on
Software Engineering (ICSE 200f)ages 142-151, Shanghai, China, 2006. ACM Press.

4. G. Myers.Art of Software TestingJohn Wiley & Sons, Inc., 1979.

5. D. Peled.Software Reliability MethodsSpringer, 2001.

6. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Miadecking programsAutomated
Software Engineering Journal0(2):203-232, 2003.

7. M. Weiser. Programmers use slices when debuggim@ommunications of the ACM
25(7):446-452, 1982.

8. A. Zeller and R. Hildebrandt. Simplifying and isolatingilfire-inducing input. Software
Engineering 28(2):183—-200, 2002.

leads to a failure. Even though our case study was not suatetbss experience underlines
the difficulty of manual debugging. The fact that a new falaow masks the fault we were
looking for, gives further support for the viability of outea.

