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Abstract

This paper proposes a technique to specify and verify the correct synchroniza-
tion of concurrent programs with condition variables. We define correctness
of synchronization as the liveness property: “every thread synchronizing un-
der a set of condition variables eventually exits the synchronization block”,
under the assumption that every such thread eventually reaches its synchro-
nization block. Our technique does not avoid the combinatorial explosion
of interleavings of thread behaviours. Instead, we alleviate it by abstracting
away all details that are irrelevant to the synchronization behaviour of the
program, which is typically significantly smaller than its overall behaviour.
First, we introduce SyncTask, a simple imperative language to specify par-
allel computations that synchronize via condition variables. We consider a
SyncTask program to have a correct synchronization iff it terminates. Fur-
ther, to relieve the programmer from the burden of providing specifications
in SyncTask, we introduce an economic annotation scheme for Java programs
to assist the automated extraction of SyncTask programs capturing the syn-
chronization behaviour of the underlying program. We show that every Java
program annotated according to the scheme (and satisfying the assumption
mentioned above) has a correct synchronization iff its corresponding Sync-
Task program terminates. We then show how to transform the verification
of termination of the SyncTask program into a standard reachability prob-
lem over Colored Petri Nets that is efficiently solvable by existing Petri Net
analysis tools. Both the SyncTask program extraction and the generation of
Petri Nets are implemented in our STaVe tool. We evaluate the proposed
framework on a number of test cases.
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1. Introduction

Condition Variables in Concurrent Programs. Condition variables (CV) are
a commonly used synchronization mechanism to coordinate multithreaded
programs. Threads wait on a CV, meaning they suspend their execution
until another thread notifies the CV, causing the waiting threads to resume
their execution. The signaling is asynchronous: the effect of the notification
can be delayed. If no thread is waiting on the CV, then the notification
has no effect. CVs are used in conjunction with locks; a thread must have
acquired the associated lock for notifying or waiting on a CV, and if notified,
must reacquire the lock.

Many widely used programming languages feature condition variables. In
Java, for instance, they are provided both natively as an object’s monitor [1],
i. e., a pair of a lock and a CV, and in the java.util.concurrent library, as
one-to-many Condition objects associated to a Lock object. C/C++ have
similar mechanisms provided by the POSIX thread (Pthread) library, and
C++ features CVs natively since 2011 [2] as the std::condition_variable
class. The mechanism is typically employed when the progress of threads
depends on the state of a shared variable, to avoid busy-wait loops that poll
the state of this shared variable.

Example 1 (Condition variables in Java).
Figure 1 shows a simple example with two threads: The first thread,

Utilizer, wants to use a shared resource. The resource is guarded with
a common lock (line 2) to ensure that only one thread, the lock holder,
can change the state of the resource. Because no high-level constructs like
await(resource_available) exist in Java, the Utilizer thread has to check
if the condition holds by using a conditional statement (line 3). If the con-
dition is false, the Utilizer suspends itself by calling wait in line 4. This
call implicitly relinquishes the lock, to allow another thread to access it and
modify the condition variable. At some point, another thread may make the
resource available. That thread then has to signal the state change to the
condition variable. In our example, thread Provider uses the same lock to
access the shared variable, and calls notify to signal a change in line 12.

As a result of that signal, one of the waiting threads is woken up. It
has first to re-check the condition, since it might have been re-invalidated
by another thread in the meantime. To do this, the lock is (implicitly)
re-acquired. In case another thread has already consumed the resource,
and resource_available is again false, the while loop in line 3 is re-
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01 class Utilizer extends Thread {
synchronized(lock) {

03 while (!resource_available) {
lock.wait();

05 }
}

07 }

class Provider extends Thread {
09 synchronized(lock) {

// prepare resource
11 resource_available = true;

lock.notify();
13 }

}

Figure 1: A simple Java program using wait/notify.

entered. Otherwise, the waiting thread may proceed under the assumption
that resource_available is true. This assumption holds if all accesses to
the shared condition variable are protected by a common lock, i. e., if the
whole program is data race free.

The notify method wakes up any one thread that is waiting at the time
the notification is sent; there is no mechanism to ensure that a particular
thread gets woken up. If multiple waiting threads may check or use shared
conditions in different ways (for example, by using a function over multiple
shared variables), the notifying thread should call notifyAll, to ensure each
waiting thread gets woken up once and can re-check the condition variable
to see if the “right” condition is true.

Waiting threads may get interrupted in real Java programs, so they have
to guard any call to wait with a try/catch block, to catch an Interrupted-
Exception. Furthermore, the Java Specification [3, § 17.2] permits (but
discourages) JVM implementations to perform spurious wake-ups, and rein-
forces the coding practice of invoking wait inside loops guarded by a logical
condition necessary for thread progress. We elide these functionalities in our
paper.

Writing correct programs using condition variables is challenging, mainly
because of the complexity of reasoning about asynchronous signaling. Never-
theless, condition variables have not been addressed sufficiently with formal
techniques, to no small part due to this complexity. For instance, Leino et
al. [4] acknowledge that verifying the absence of deadlocks when using CVs
is hard because a notification is “lost” if no thread is waiting on it. Thus,
one cannot verify locally whether a waiting thread will eventually be no-
tified. Furthermore, the synchronization conditions can be quite complex,
involving both control-flow and data-flow aspects as arising from method
calls; their correctness thus depends on the global thread composition, i. e.,
the type and number of parallel threads. All these complexities suggest the
need for programmer-provided annotations to assist the automated analysis,
which is the approach we are following here.
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In this work, we present a formal technique for specifying and verifying
that “every thread synchronizing under a set of condition variables eventu-
ally exits the synchronization”, under the assumption that every such thread
eventually reaches its synchronization block. The assumption itself is not ad-
dressed here, as it does not pertain to correctness of the synchronization, and
there already exist techniques for dealing with such properties (see, e. g., [5]).
Note that the above correctness notion applies to a one-time synchronization
on a condition variable only; generalizing the notion to repeated synchroniza-
tions is left for future work. To the best of our knowledge, the present work
is the first to address a liveness property involving CVs. As the verification
of such properties is undecidable in general, we limit our technique to pro-
grams with bounded data domains and a bounded number of threads. Still,
the verification problem is subject to a combinatorial explosion of thread
interleavings. Our technique alleviates the state space explosion problem by
delimiting the relevant aspects of the synchronization.

SyncTask. First, we consider correctness of synchronization in the context
of a synchronization specification language. As we target arbitrary program-
ming languages that feature locks and condition variables, we do not base our
approach on a subset of an existing language, but instead introduce Sync-
Task, a simple concurrent programming language where all computations
occur inside synchronized code blocks. We define a SyncTask program to
have a correct synchronization iff it terminates. The SyncTask language has
been designed to capture common patterns of CV usage, while abstracting
away from irrelevant details. It has the relevant constructs for synchroniza-
tion, such as locks, CVs, conditional statements, and arithmetic operations.
However, it is non-procedural, data types are bounded, and it does not al-
low dynamic thread creation. These restrictions render the state-space of
SyncTask programs finite, and make the termination problem decidable.

Verification of Concurrent Programs. Next, we address the problem of ver-
ifying the correct usage of CVs in real concurrent programming languages.
We show how SyncTask can be used to capture the synchronization of a Java
program, provided it is bounded. Object-oriented languages similar to Java,
such as C++ and C#, can be analyzed likewise. There is a consensus in Soft-
ware Engineering that synchronization in a concurrent program must be kept
to a minimum, both in the number and complexity of the synchronization
actions, and in the number of places where it occurs [6, 7]. This avoids the
latency of blocking threads, and minimizes the risk of errors, such as dead-
and live-locks. As a consequence, many programs present a finite (though ar-
bitrarily large) synchronization behaviour. That is, the number of variables
involved in the synchronization, and their data domains are bounded.
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Implementation. To assist the automated extraction of finite synchroniza-
tion behaviour from Java programs as SyncTask programs, we introduce an
annotation scheme, which requires the user to (correctly) annotate, among
others, the initialization of new threads (i. e., creation of Thread objects),
and to provide the initial state of the variables accessed inside the synchro-
nized blocks. We establish that for correctly annotated Java programs with
bounded synchronization behaviour, correctness of synchronization is equiv-
alent to termination of the extracted SyncTask program.

As a proof-of-concept of the algorithmic solvability of the termination
problem for SyncTask programs, we show how to transform it into a reacha-
bility problem on hierarchical Colored Petri Nets2 (CPNs) [8]. We define how
to extract CPNs automatically from SyncTask programs, following a previous
technique fromWestergaard [9]. Then, we establish that a SyncTask program
terminates if and only if the extracted CPN always reaches dead markings
(i. e., CPN configurations without successors) where the tokens representing
the threads are in a unique end place. Standard CPN analysis tools can effi-
ciently compute the reachability graphs, and check whether the termination
condition holds. Also, in case that the condition does not hold, an inspection
of the reachability graph easily provides the cause of non-termination.

Evaluation. We implement the extraction of SyncTask programs from anno-
tated Java and the translation of SyncTasks to CPNs as the STaVe tool.
We evaluate the tool on two test-cases, by generating CPNs from annotated
Java programs and analyzing these with CPN Tools [10]. The first test-case
evaluates the scalability of the tool w. r. t. the size of program code that does
not affect the synchronization behaviour of the program. The second test-
case evaluates the scalability of the tool w. r. t. the number of synchronizing
threads. The results show the expected exponential blow-up of the state-
space, but we were still able to analyze the synchronization of several dozens
of threads.

In summary, this work makes the following contributions: (i) the Sync-
Task language to model the synchronization behaviour of programs with
CVs, (ii) an annotation scheme to aid the extraction of the synchronization
behaviour of Java programs, (iii) an extraction scheme of SyncTask models
from annotated Java programs, (iv) a reduction of the termination problem
for SyncTask programs to a reachability problem on CPNs, (v) an imple-

2The choice of formalism has been mainly based on the simplicity of CPNs as a general
model of concurrency, rather than on the existing support for efficient model checking.
For the latter, model checking tools exploiting parametricity or symmetries in the models
may prove more efficient in practice.

5



SyncTask ::= ThreadType* Main
ThreadType ::= Thread ThreadName { SyncBlock* }

Main ::= main { VarDecl* StartThread* }

StartThread ::= start(Const,ThreadName);
Expr ::= Const | VarName | Expr ⊕ Expr

| min(VarName) | max(VarName)
VarDecl ::= VarType VarName(Expr* );
VarType ::= Bool | Int | Lock | Cond

SyncBlock ::= synchronized (VarName) Block

Block ::= { Stmt* }

Assign ::= VarName = Expr ;

Stmt ::= SyncBlock | Block
| Assign | skip;
| while Expr Stmt
| if Expr Stmt else Stmt
| notify(VarName);
| notifyAll(VarName);
| wait(VarName);

Figure 2: SyncTask Syntax

mentation of the framework by means of STaVe, and (vi) its experimental
evaluation.

Outline. The remainder of the paper is organized as follows. Section 2 in-
troduces SyncTask. Section 3 describes the mapping from annotated Java
to SyncTask, while Section 4 presents the translation into CPNs. Section 5
presents STaVe and its experimental evaluation. We discuss related work
in Section 6. Section 7 concludes and suggests future work.

2. SyncTask

SyncTask abstracts from most features of full-fledged programming lan-
guages. For instance, it does not have objects, procedures, exceptions, etc.
However, it features the relevant aspects of thread synchronization. We now
describe the language syntax, types, and semantics.

2.1. Syntax and Types
The SyncTask syntax is presented in Figure 2. A program has two main

parts: ThreadType*, which declares the different types of parallel execution
flows, and Main, which contains the variable declarations and initializations
and defines how the threads are composed, i. e., it statically declares how
many threads of each type are spawned.

Each ThreadType consists of adjacent SyncBlocks, which are critical sec-
tions defined by a code block and a lock. A code block is defined as a sequence
of statements, which may even be another SyncBlock. Notice that this allows
nested SyncBlocks, thus enabling the definition of complex synchronization
schemes with more than one lock.

There are four primitive types: booleans (Bool), bounded integers (Int),
reentrant locks (Lock), and condition variables (Cond). Expressions are eval-
uated as in Java. The Boolean and integer operators are the standard ones,
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01 Thread Producer {
synchronized(m_lock){

03 while(b_els==max(b_els)){
wait(m_cond);

05 }
if (b_els<max(b_els)) {

07 b_els=(b_els+1);
} else {

09 skip;
}

11 notifyAll(m_cond);
}

13 }

Thread Consumer {
15 synchronized(m_lock){

while((b_els==0)){
17 wait(m_cond);

}
19 if((b_els>0)) {

b_els=(b_els-1);
21 } else {

skip;
23 }

notifyAll(m_cond);
25 }

}

27 main {
Lock m_lock();

29 Cond m_cond(m_lock);
Int b_els(0,7,1);

31 start(2,Consumer);
start(1,Producer);

33 }

Figure 3: Modelling of synchronization via a shared buffer in SyncTask

while max and min return a variable’s bounds. Operations between integers
with different bounds (overloading) are allowed. However, an out-of-bounds
assignment leads the program to an error configuration.

Condition variables are manipulated by the unary operators wait, notify,
and notifyAll. Currently, the language provides only two control flow con-
structs: while and if-else. These suffice for the illustration of our tech-
nique, while the addition of other constructs is straightforward.

The Main block contains the global variable declarations with initializa-
tions (VarDecl* ), and the thread composition (StartThread*). A variable is
defined by declaring its type and name, followed by the initialization argu-
ments. The number of parameters varies per type: Lock takes no arguments;
Cond is initialized with a lock variable; Bool takes either a true or a false
literal; Int takes three integer literals as arguments: the lower and upper
bounds, and the initial value, which must be in the given range. Finally,
start takes a positive number and a thread type, signifying the number of
threads of that type that it spawns.

Example 2 (SyncTask program).
The program in Figure 3 models synchronization via a shared buffer. Pro-

ducer and Consumer represent the synchronization behaviour: threads syn-
chronize via the CV m_cond to add or remove elements, and wait if the buffer
is full or empty, respectively. Waiting threads are woken up by notifyAll
after an operation is performed on the buffer, and compete for the monitor
to resume execution. The main block contains variable declarations and ini-
tialization. The lock m_lock is associated to m_cond. b_els is a bounded
integer in the interval [0,7], with initial value set to 1, and represents the
number of elements in the buffer. One Producer and two Consumer threads
are spawned with start.

Notice that this SyncTask program simulates the usage of a Java monitor
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since it uses a pair of lock and CV for synchronization. However, it could
be more efficiently implemented with two CVs associated to the same lock:
one to notify when the buffer is full, and another when it is empty. This
alternative approach simulates the usage of Condition and Lock from the
java.util.concurrent concurrency package.

2.2. Structural Operational Semantics
We now define the semantics of SyncTask, to provide the means for es-

tablishing a formal correctness result.
The semantic domains are defined as follows. Booleans are represented

as usual. Integer variables are triples Z×Z×Z, where the first two elements
are the lower and upper bound, and the third is the current value. A lock o
is defined as (Thread_id × N+) ∪ ⊥, which is either ⊥ if the lock is free, or
a pair of the id of the thread holding the lock, and a counter of how many
times the lock was acquired by this thread.

A condition variable d only maps to its associated lock (Lock is the data
domain); here is where the one-to-many relation from locks to CVs is defined.
The auxiliary function lock(d) returns the associated lock to d. Note that the
set of threads waiting on a condition variable is not stored on the CV itself;
below we define that this is stored at the thread state.

SyncTask contains global variables only, and all memory operations are
synchronized. Thus, we assume the memory to be sequentially consistent [11].
Let µ represent a program’s memory. We write µ(l) to denote the value of
variable l, and µ[l 7→ v] to denote the update of l in µ with value v.

A thread state is either running (R) if the thread is executing, waiting (W )
if it has suspended the execution on a CV, or notified (N) if another thread
has woken up the suspended thread, but the lock has not been reacquired
yet. The statesW and N also contain the CV d that a thread is/was waiting
on, and the number n of times it must reacquire the lock to proceed with the
execution. The auxiliary function waitset(d) returns the id’s of all threads
waiting on a CV d.

We represent a thread as (θ, t,X), where θ denotes its id, t the executing
code, and X its thread state. We write T = (θi, ti, Xi)|(θj, tj, Xj) for a
parallel thread composition, with θi 6= θj. Also, T |(θ, t,X) denotes a thread
composition, assuming that θ is not defined in T . For convenience, we abuse
set notation to denote the composition of threads in the set; e. g., T dW =
{(θ, t, (W,d, n))} represents the composition of all threads in the wait set of
d. A program configuration is a pair (T, µ) of the threads’ composition and its
memory. A thread terminates if the program reaches a configuration where
its code t is empty (ε); a program terminates if all its threads terminate. We
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[s1]a T |(θ, synchronized(o) b, R), µ −→ T |(θ, synchronized’(o) b, R), µ[o 7→ (θ, 1)]

[s2]b T |(θ, synchronized(o) b, R), µ −→ T |(θ, synchronized’(o) b, R), µ[o 7→ (θ, n+ 1)]

[s3]b
T |(θ, b1, R), µ −→ T |(θ, b2, X), µ?

T |(θ, synchronized’(o) b1, R)), µ −→ T |(θ, synchronized’(o) b2, X), µ?

[s4]c T |(θ, synchronized’(o) ε, R)), µ −→ T |(θ, ε, R), µ′[o 7→ (θ, n− 1)]

[s5]d T |(θ, synchronized’(o) ε, R), µ −→ T |(θ, ε, R), µ′[o 7→ ⊥]

[wt]e T |(θ, wait(d), R), µ→ T |(θ, ε, (W,d, n)), µ[lock(d) 7→ ⊥]

[nf1]ef T |(θ, notify(d), R), µ→ T |(θ, ε, R), µ

[nf2]eg T |(θ, notify(d), R)|(θ′, t′, (W,d, n)), µ→ T |(θ, ε, R)|(θ′, t′, (N, d, n)), µ

[na1]ef T |(θ, notifyAll(d), R), µ→ T |(θ, ε, R), µ

[na2]eg T |(θ, notifyAll(d), R)|T d
W , µ→ T |(θ, ε, R)|{(θ′, t′, (N, d, n))|(θ′, t′, (W,d, n)) ∈ T d

W }, µ

[rs]h T |(θ, t, (N, d, n)), µ→ T |(θ, t, R), µ[lock(d) 7→ (θ, n)]

aµ(o) = ⊥ bµ(o) = (θ, n) cµ(o) = (θ, n) ∧ n > 1 dµ(o) = (θ, 1)

eµ(lock(d)) = (θ, n) fwaitset(d) = ∅ gwaitset(d) 6= ∅ hµ(lock(d)) = ⊥

Figure 4: Operational rules for synchronization

say that a SyncTask program has a correct synchronization iff it terminates.
The initial configuration is defined with the declarations in Main. As

expected, the variable initializations set the initial value of µ. For example,
Int i(lb,ub,v) defines a new variable such that µ(i) = (lb, ub, v), lb ≤ v ≤
ub, and Lock o() initializes a lock µ(o) = ⊥. The thread composition is
defined by the start declarations; e. g., start(2,t) adds two threads of
type t to the thread composition: (θ, t, R)|(θ′, t, R).

Figure 4 presents the operational rules, with superscripts a−h denoting
conditions. Rule names with prefixes s, wt, nf, na and rs are short for
synchronized, wait, notify, notifyAll and resume, respectively. We only define
the rules for the synchronization statements, as the rules for the remaining
statements are standard [12, § 3.4-8].

In rule [s1], a thread acquires a lock, if available, i. e., if it is not assigned
to any other thread and the counter is zero. Rule [s2] represents lock reen-
trancy and increases the lock counter. Both rules replace synchronized with
a primed version to denote that the execution of synchronization block has
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begun. Rule [s3] applies to the computation of statements inside synchro-
nized blocks, and requires that the thread holds the lock. Rule [s4] decreases
the counter upon terminating the execution of a synchronized block, but pre-
serves the lock. In rule [s5], a thread finishes the execution of a synchronized
block, and relinquishes the lock.

In the [wt] rule, a thread changes its state to W , stores the counter of
the CV’s lock, and releases it. The rules [nf1] and [na1] apply when a thread
notifies a CV with an empty wait set; the behaviour is the same as for the
skip statement. By rule [nf2], a thread notifies a CV, and one thread in its
wait set is selected non-deterministically, and its state is changed to N . Rule
[na2] is similar, but all threads in the wait set are awoken. By the rule [rs],
a thread reacquires all the locks it had relinquished, changes the state to R,
and resumes the execution after the control point where it invoked wait.

3. From Annotated Java To SyncTask

The annotation process supported by STaVe relies on the programmer’s
knowledge about the intended synchronization, and consists of providing
hints to the tool to automatically map the synchronization to a SyncTask
program. In this section we present an annotation scheme for writing such
hints, illustrate SyncTask extraction on an example, define our notion of
synchronization correctness for Java programs, and characterize the notion
as termination of the corresponding SyncTask program.

3.1. An Annotation Language and Annotation Scheme for Java
An annotation in STaVe binds to a specific type of Java declaration (e. g.,

classes or methods). The annotation starts in a comment block immedi-
ately above a declaration, with additional annotations inside the declara-
tion’s body. Annotations share common keywords (though with a different
semantics), and overlap in the declaration types they may bind to. The ambi-
guity is resolved by the first keyword (called a switch) found in the comment
block. Comments that do not start with a keyword are ignored.

Figure 5 presents the annotation language. Arguments given within
square brackets are optional, allowing the programmer to (attempt to) leave
their inference to STaVe, while text within parentheses tells which decla-
ration types the annotation binds to. The programmer has to provide, by
means of annotations, the following three types of information: resources,
synchronization and initialization. Below, we describe these information
types, and how they should be provided, i. e., our annotation scheme.

A resource annotates data types of variables that are manipulated by
the synchronization and influence its progress, such as loop guards. The
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Resource annotation:
@resource [ResourceId ] (classes)
[@object Id [-> Sid ]]
@value Id [-> Sid ]
@capacity Id
[@defaultval Int ]
[@defaultcap Int ]
@predicate (methods)
@inline [@maps Id ->@{ Code }@]
@code -> @{ Code }@
@operation (methods)
@inline [@maps Id ->@{ Code }@]
@code -> @{ Code }@

Synchronization annotation:
@syncblock [ThreadId ] (synchronized blocks)
@resource Id [:ResourceId ] -> Sid
@lock Id -> Sid
@condvar Id -> Sid
@monitor Id -> Sid

Initialization annotation:
@synctask [STid ] (methods)
@resource Id [:ResourceId ] -> Sid
@lock Id -> Sid
@condvar Id -> Sid
@monitor Id -> Sid
@thread [Int :ThreadId ]

Figure 5: Annotation language for Java programs

annotation defines an abstraction of the data structure state into a bounded
integer, and how the methods operate on it. Potentially the bounded integer
is a ghost variable (as in [13]), and in this case we say that the variable
extends the program memory. For example, the annotation abstracts a linked
list or a buffer to its size. More elaborated, compound data types may
be annotated, such as stacks or lists containing elements from a bounded
domain. However, if a thread’s progress depends on an element’s value, then
the structure cannot be abstracted into a single bounded integer; instead, we
require an initialization annotation (see below) for each element of the data
structure.

Resources bind to classes only. The switch @resource starts the dec-
laration. In case that a resource definition is spread across several classes
(because of inheritance), it requires a common ResourceId for each anno-
tated class. The @object keyword is optional and instructs STaVe that
the data structure to analyze is a given variable or field in the annotated
class. @value defines which class member, or ghost variable, stores the ab-
stract state. Both allow an optional mapping to an alias Sid, which becomes
mandatory in case the resource is defined in more than one class. @capacity
defines the upper bound for @value. @defaultval and @defaultcap de-
fine the resource’s default @value and @capacity, respectively; these may
be overwritten in the initialization annotation (see below). The keyword
@operation binds to method declarations, and specifies that the method po-
tentially alters the resource state. Similarly, @predicate binds to methods
and specifies that the method returns a predicate about the state.

There are two ways to extract an annotated method’s behaviour. @code
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tells STaVe not to process the method, but instead to associate it to the code
enclosed between @{ and }@, while @inline tells STaVe to try to infer the
method declaration. The inline is potentially aided by @maps declarations,
which syntactically replaces a Java command (e. g., a method invocation)
with a SyncTask code snippet.

The synchronization annotation defines the observation scope. It binds
to synchronized blocks and methods, and the switch @syncblock starts
the declaration. Similarly to the @resource switch, a common ThreadId is
required in case the annotation is defined in more than one method or block.
Nested, inner synchronization blocks and methods are not annotated; all the
required information has to be provided at the top-level annotation. Here,
@resource is not a switch, and thus has a different meaning. It defines
that a local variable Id is a reference to a shared object of an (optional)
annotated resource type (ResourceId), and is referenced by an alias Sid across
other @syncblock declarations. The keywords @lock and @condvar define
which mutex and condition variable object are observed. @monitor has the
combined effect of both keywords for an object’s monitor, i. e., a pair of a lock
and a condition variable. Similarly to @resource, these require a mapping
an alias that is common to other synchronization declarations.

Initialization annotations define the global pre-condition for the elements
involved in the synchronization, i. e., they define initial values for locks, condi-
tion variables and resource declarations. They also define the global thread
composition, i. e., how many and which type of threads participate in the
synchronization. Initializations bind to methods, and the switch @synctask
starts the declaration. Here, @resource, @lock, @condvar and @monitor
instantiate with program variables the shared aliases defined at @syncblock.
Finally, @thread defines that the following object corresponds to a spawned
thread that synchronizes within the observed synchronization objects. The
object’s type is automatically detected, and must have been annotated with
a synchronization annotation. Alternatively, the annotation can be followed
by a thread type and a number indicating how many of these are spawned,
so that the thread instantiation becomes less verbose.

Some of the above information STaVe is capable of inferring itself; the
remaining information needs to be provided by the programmer. STaVe will
always indicate when the provided hints are insufficient. This is discussed in
more detail in Section 5.

Example 3 (Annotated Java program).
The SyncTask program in Figure 3 was generated from the Java pro-

gram in Figure 6. We now discuss how the annotations delimit the expected
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01 class Producer extends Thread {
Buffer pbuf;

03 Producer(Buffer b){pbuf=b;}
public void run() {

05 /*@syncblock
@monitor pbuf -> m

07 @resource pbuf:Buffer->b_els*/
synchronized(pbuf) {

09 while (pbuf.full())
pbuf.wait();

11 pbuf.add();
pbuf.notifyAll();

13 }
}

15 }
class Consumer extends Thread {

17 Buffer cbuf;
Consumer(Buffer b){cbuf=b;}

19 public void run() {
/*@syncblock

21 @monitor cbuf -> m
@resource cbuf:Buffer->b_els*/

23 synchronized(cbuf) {
while (cbuf.empty())

25 cbuf.wait();
cbuf.remove();

27 cbuf.notifyAll();
}

29 }
}

31 /*@resource @capacity cap
@object els -> els

33 @value els -> els */
class Buffer {

35 int els; final int cap;
/* @operation @inline */

37 void remove(){if (els>0)els--;}
/* @operation @inline */

39 void add(){if (els<cap)els++;}
/* @predicate @inline */

41 boolean full(){return els==cap;}
/* @predicate @inline */

43 boolean empty(){return els==0;}
/*@synctask Buffer

45 @monitor b -> m
@resource b:Buffer->b_els */

47 static void main(String[] s) {
Buffer b = new Buffer();

49 b.els = 1; b.cap = 7;
/* @thread */

51 Consumer c1 = new Consumer(b);
/* @thread */

53 Consumer c2 = new Consumer(b);
/* @thread */

55 Producer p = new Producer(b);
c1.start();

57 p.start();
c2.start();

59 }
}

Figure 6: Annotated Java program synchronizing via shared buffer

synchronization, indirectly illustrating the SyncTask extraction.
The @syncblock annotations (lines 5/20) add the following synchro-

nized blocks to the observed synchronization behaviour, and its arguments
@monitor and @resource (lines 6/21 and 7/22, respectively) map local ref-
erences to shared aliases. The @resource annotation (line 31) starts the
definition of a resource type. @value, @object, @capacity (lines 31/32/33)
define how the abstract state is represented by a bounded integer. Here, to
keep the running example simple, the abstract state has been chosen to be
equal to the bounded integer els. However, in a typical buffer implemen-
tation the abstraction would be from the buffer content to a ghost variable
containing the number of elements in the buffer. The @operation (lines
36/38) and @predicate (lines 40/42) annotations define how the methods
operate on the state. Notice that the annotated methods have been inlined
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in Figure 3, i. e., add is inlined in lines 6-10. The @synctask annotation
above main starts the declaration of locks, CVs and resources, and @thread
annotations add the underneath objects to the global thread composition.

The annotations provided in this example were sufficient for STaVe to
infer that different variables that are spread along the code actually point to
the relevant artifacts. Furthermore, STaVe was either able to infer or inline
the other information it needed (methods’ control flow, initializations, etc),
or the information was provided in the annotations.

Annotations can be understood as program invariants in the usual static
analysis sense. That is, as control-point invariants which hold every time
program execution is at a given control point (at which the annotation is
placed). A program is then considered to be correctly annotated whenever
the provided annotations hold. Although outside the scope of the present
work, the annotations can potentially be checked, or partially generated,
with existing static analysis techniques, such as [14, 4]. We shall henceforth
assume that the programmer has correctly annotated the program. Further-
more, we shall assume the memory model of synchronized actions in a Java
program to be sequentially consistent.

3.2. Synchronization Correctness
The synchronization property of interest here is that “every thread syn-

chronizing under a set of condition variables eventually exits the synchro-
nization”. We work under the assumption that every such thread eventually
reaches its synchronization block. There exist techniques [5] for checking the
liveness property that a given thread eventually reaches a given control point;
checking validity of the above assumption is therefore out of the scope of the
present work.

The following definition of correct synchronization applies to a one-time
synchronization of a Java program. However, the notion easily generalizes to
programs that operate in sessions by repeatedly re-spawning the synchroniz-
ing threads (i. e., the one-time synchronization scheme), provided that the
synchronization variables are reset at the start of each session. Figure 7
illustrates this notion with a modified version of the main method from Ex-
ample 3.

We should stress that we use the term correctness here to refer exclusively
to the property mentioned above; we do not refer with it to other undesirable
synchronization phenomena, such as data race freedom.

Definition 1 (Synchronization Correctness). Let P be a Java program with
a one-time synchronization, where every thread eventually reaches the entry
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static void main(String[] s) {
Buffer b = new Buffer();
b.els = 1;
b.cap = 7;
Consumer c1;
Consumer c2;
Producer p;

while (true) {
c1 = new Consumer(b);
c2 = new Consumer(b);
p = new Producer(b);
c1.start(); p.start(); c2.start();
c1.join(); c2.join(); p.join();
b.els = 1; b.cap = 7;

}
}

Figure 7: Example of support for sessions.

point of its synchronization block. We say that P has a correct synchroniza-
tion iff every thread eventually reaches the exit point of the block.

We now connect synchronization schemes of correctly annotated Java
programs with SyncTask programs.

Theorem 1 (Characterization). A correctly annotated Java program has a
correct synchronization iff its corresponding SyncTask terminates.

Proof Sketch. To prove the result, we define a binary relation R between the
configurations of the Java program and its corresponding SyncTask program,
and show it to be a weak bisimulation (see [15]) for a suitably chosen notion
of observable and silent transitions between configurations. One aspect of
the choice is that the annotations guarantee that the control flow of the
original program is preserved, and thus, no infinite silent behaviours are
possible within the synchronization. Therefore, a weak bisimulation relation
is adequate and sufficient to establish the desired progress property. We refer
to the accompanying technical report [16] for the full formalization and for
the most interesting proof cases, namely the notify and wait instructions.

The Java annotations define a bidirectional mapping between (some of)
the Java program variables and ghost variables and the corresponding bounded
variables in SyncTask. Thus, we define R to relate configurations that agree
on their common variables. Similarly, we define the set of observable tran-
sitions as the ones that update common variables, and treat all remaining
transitions as silent. We argue that R is a weak bisimulation in the standard
fashion: We establish that (i) the initial values of the common variables are
the same for both programs, and (ii) assuming that observed variables in
a Java program are only updated inside annotated synchronized blocks, we
establish that any operation that updates a common variable has the same
effect on it in both programs.

To prove (i) it suffices to show that the initial values in the Java pro-
gram are the same as the ones provided in the initialization annotation, as
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described in Section 3.1. The proof of (ii) requires to show that updates to a
common variable yield the same result in both programs. This goes by case
analysis on the Java instructions set. Each case shows that for any config-
uration pair of R, the operational rules for the given Java instruction and
for the corresponding SyncTask instruction lead to a pair of configurations
that again agree on the common variables. As the semantics of SyncTask
presented in Section 2 has been designed to closely mimic the Java semantics
defined in [12], the elaboration of this is straightforward.

4. Verification of Synchronization Correctness

In this section we show how termination of SyncTask programs can be
reduced to a reachability problem on Colored Petri Nets (CPN).

4.1. SyncTask Programs as Colored Petri Nets
Various techniques exist to prove termination of concurrent systems. For

SyncTask, it is essential that such a technique efficiently encodes the concur-
rent thread interleaving, the program’s control flow, synchronization prim-
itives, and basic data manipulation. Here, we have chosen to reduce the
problem of termination of SyncTask programs to a reachability problem on
hierarchical CPNs extracted from the program. CPNs are supported by
analysis tools such as CPN Tools, and allow a natural translation of common
language constructs into CPN components. For this we reuse results from
Westergaard [9], and only had to model the constructs involving CVs that we
present below. We assume some familiarity with CPNs, and refer the reader
to [8] for a detailed exposition.

The color set THREAD associates a color to each Thread type decla-
ration, and a thread is represented by a token with a color from the set.
Some components are parametrized by THREAD, meaning that they declare
transitions, arcs, or places for each thread type. For illustration purposes,
we present the parametrized components in an example scenario with three
thread types: blue (B), red (R), and yellow (Y).

The production rules in Figure 2 are mapped into hierarchical CPN com-
ponents, where substitute transitions (STs; depicted as doubly outlined rect-
angles) represent the non-terminals on the right-hand side. Figure 8a shows
the component for the start symbol SyncTask. The Start place contains all
thread tokens in the initial configuration, connected by arcs (one per color)
to the STs denoting the thread types, and End, which collects the terminated
thread tokens. It also contains the places that represent global variables.
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Figure 8: Top-level component and condition variables operations

Figure 8b shows the modelling of wait. The transition wait cond pro-
duces two tokens: one into the place modelling the CV, and one into the place
modelling the lock, representing its release. The other transition models a
notified thread reacquiring the lock, and resuming the execution. Figure 8c
shows the modelling of notify. The Empty_cond transition is enabled if
the CV is empty, and the other transitions, with one place per color, model
the non-deterministic choice of which thread to notify. The component for
notifyAll (not shown) is similar.

The initialization in Main declares the initial set of tokens for the places
representing variables, and the number and colors of thread tokens. A Lock
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creates a place containing a single token; it being empty represents that some
thread holds the lock. The color set CPOINT represents the control points
of wait statements. A Condition variable gives rise to an empty place
representing the waiting set, with color set CONDITION. Here, colors are
pairs of THREAD and CPOINT. Both data are necessary to route correctly
notified threads to the correct place where they resume execution.

4.2. SyncTask Termination as CPN Reachability
We now enunciate the result that reduces termination of a SyncTask

program to a reachability problem on its corresponding CPN.

Theorem 2 (SyncTask Termination). A SyncTask program terminates iff
its corresponding CPN unavoidably reaches a dead configuration in which the
End place has the same marking as the Start place in the initial configuration.

Proof Sketch. A CPN declares a place for each SyncTask variable. Moreover,
there is a clear correspondence between the operational semantics of a Sync-
Task construct and its corresponding CPN component. It can be shown by
means of weak bisimulation that every configuration of a SyncTask program
is matched by a unique sequence of consecutive CPN configurations. There-
fore, if the End place in a dead configuration has the same marking as the
Start place in the initial configuration, then every thread in the SyncTask
program terminates its execution, for every possible scheduling (note that
the non-deterministic thread scheduler is simulated by the non-deterministic
firing of transitions).

CPN termination itself can be verified algorithmically by computing the
reachability graph of the generated CPN and checking that: (i) the graph
has no cycles, and (ii) the only reachable dead configurations are the ones
where the marking in the End place is the same as the marking in the Start
place in the initial configuration.

5. The STaVe Tool

In this section we present the implementation of our tool, discuss its
capabilities to infer some of the information needed for the translation to
SyncTask, and present the results of our experimental evaluation.

5.1. Implementation
We have implemented the parsing of annotated Java programs to generate

SyncTask programs, and the extraction of hierarchical CPNs from SyncTask,
as the STaVe tool. It has been written in Java, and is available at [17].
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STaVe processes the annotations in an intricate scheme. It takes the
annotated Java program as input, and uses the JavaParser library to gen-
erate the AST. Then it converts the JavaParser’s AST into the one of the
OpenJDK compiler, to take advantage of its symbol table querying, type
checking and code optimization. We have adopted JavaParser for the pars-
ing because it associates the comments per-AST node, while OpenJDK’s
parser discards annotations of a finer granularity than methods. For in-
stance, the use of JavaParser allows the annotation of synchronized blocks.
Next, STaVe traverses the Java AST three times to extract the SyncTask
program’s AST. The first pass processes resource annotations, and extracts
information about how threads operate on shared variables. The second
pass processes synchronization annotations, and uses the information from
the previous pass to generate the control flow structure of the threads. The
third pass processes initialization annotations, and checks if the declared
variables and thread types have been properly parsed in the previous steps.
After the SyncTask AST is created, it is traversed following the mapping
described in Section 4 to generate the corresponding CPN.

Two parts of STaVe turned out to be useful in itself, i. e., useful for
other projects. The first is JavaParser2JCTree3, a library that translates
JavaParser ASTs to OpenJDK ASTs. The second is libcpntools4, a library
that generates hierarchical CPNs in the CPN Tools’s XML-based file format.

5.2. Static Analysis
Some of the information about the synchronization behaviour of the ana-

lyzed program, which is needed for the extraction of the SyncTask program,
can be deduced by STaVe itself. Basically, this is the information which the
Java compiler can deduce. Thus, the tool can automatically (the examples
in parentheses refer to Figure 6):

• deduce initialization involving constants: the number of threads, a re-
source capacity, etc. (lines 50–55);

• deduce simple control-flow of the synchronization blocks, including the
case of method invocations without recursion;

• name a SyncTask construct from its originating Java counterpart, as
for instance, an annotated synchronized block will be named after the
Java class that defines it (class Consumer);

3Available at https://github.com/pcgomes/javaparser2jctree
4Available at https://github.com/pcgomes/libcpntools
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• assign automatically a label to variables with the same name and type,
even if declared and used in distinct files and/or methods;

• infer information that involves the class hierarchy, as for instance, it
is able to understand a “resource” that has some methods defined in a
parent class, while other methods in the annotated class.

Our tool could be extended with several additional, specialized static
analyses that would automate the inference of various types of information,
needed for the translation to SyncTask. The main candidate would be a
pointer analysis, which would infer when two variables in distinct parts of
the code invariably point to the same object. Currently the tool requires the
user to “tie” such variables using labels. That is, the user manually assigns
a global label to a Java variable, and the label will become the name of the
respective SyncTask variable. For instance, lines 6, 21 and 45 in Figure 6
define that the Java variables named buffer, buffer and b in their respective
methods, actually reference the same object m (which is a label to refer to
that object).

5.3. Experimental Evaluation
We now describe the experimental evaluation of our framework. This

includes the process of annotating Java programs, extraction of the corre-
sponding CPNs, and the analysis of the nets using CPN Tools.

Our first test case evaluates the usage of STaVe and the annotation
process in a real-world program. For this, we annotated PIPE [18] (version
4.3.2), a rather large CPN analysis tool written in Java. It contains a single
(and simple) synchronization scheme with two threads using CVs: when
there is a new connection attempt from a remote client, a thread establishes
the connection and then notifies the shared CV; the other thread writes
logs to the client, and waits on the CV if the socket is not ready. This
test case illustrates that synchronization involving CVs is typically simple
and bounded. It also exemplifies a session synchronization since the only
variable, a boolean that flags if the socket is ready, has the same value (false)
at the start of each session. We stress, however, that STaVe analyzes it as
being a one-time synchronization. Manually annotating the program took
just a few minutes, once the synchronization scheme was understood. The
CPN extraction time was negligible, and the verification process took just a
few milliseconds to establish correctness.

Our second test case evaluates the scalability of our approach using
STaVe and state-space exploration (with CPN Tools) w. r. t. the number
of threads. We took Example 3, and instantiated it with a varying number
of threads, buffer capacity, and initial value.
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As a reference, we used Java Pathfinder to analyze the same program.
Java Pathfinder [19] (JPF) is an obvious choice for analyzing Java programs
with wait/notify, as it can detect the same types of deadlock (lack of progress)
that STaVe analyzes. JPF supports the full bytecode instruction set and
can analyze the full state space of concurrent applications that have no native
methods (methods that execute machine code libraries on the host system).
For native methods, model classes can be provided to replace them with
equivalent code in Java, but this is often a complex task [20].

When using STaVe, its back-end, CPN Tools, generated the state graph,
which we later queried using its ML-based API [21]. We remark that, dif-
ferent from the preliminary version of this paper [22], here we take into
account the time of a mandatory initialization phase called Enter the State
Space. As expected, this leads to higher verification times. As before, we
collect our statistics by considering the state-space generation, computation
of the strongly connected components, and verification of the three termina-
tion conditions. Namely: whether there is at least one dead configuration;
whether, for all dead configurations, the End place has the same marking
as the Start place in the initial configuration; and whether the number of
strongly connected components is equal to the size of the state graph, im-
plying the absence of cycles.

The experiments were executed in a Linux machine with 16GB of RAM
and a quad-core Intel i5 CPU of 1.30GHz. The JPF experiments were ex-
ecuted with version 8.0 rev 32, on Java 1.8.0_121. We gave JPF 4GB of
heap space (an amount that was never fully used) and ran the experiments
without a timeout of one hour. In addition to the execution times, JPF
shows the number of explored states and the number of executed bytecode
instructions. The CPN Tools experiments were performed with version 4.0.1
in a Windows 7 virtual machine running under VirtualBox version 5.1.32
with 8GB of RAM and 2 processors.

Table 1 presents the practical evaluation for a number of initial configu-
rations with varying number of threads (Producer and Consumer), buffer
capacity and position5(elements). Column terminates? shows if an ini-
tial program configuration has correct synchronization w. r. t. Definition 1.
For the cases where JPF timed out, the presented results come from the
STaVe/CPN tools analysis only. As expected, the other results match and
come from both analysis. The term state replaces CPN configuration at
STaVe statistics to avoid confusion with the concept shown in Problem size,

5As defined in https://docs.oracle.com/javase/8/docs/api/java/nio/Buffer.
html
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Table 1: Statistics for Producer/Consumer. For given configurations, the number of
program states and the analysis time is shown for both tools. For Java Pathfinder, we also
show the number of bytecode instructions executed during the whole analysis.

Problem size Analysis results
Threads Buffer Java Pathfinder STaVe/CPN tools

pr
od

uc
er
s

co
ns
um

er
s

ca
pa

ci
ty

el
em

en
ts

te
rm

in
at
es
?

# states # instr.
time
[mm:ss] # states

time
[mm:ss]

1 2 1 1 yes 1,466 43,603 0:01 42 0:05
1 2 2 0 no 22 3,878 0:00 43 0:05
2 2 1 0 yes 10,533 294,823 0:03 91 0:05
3 3 1 0 yes 613,052 21,035,480 2:12 283 0:05
4 3 1 0 yes 4,864,766 187,705,560 20:08 448 0:05
4 3 1 1 no 64 4,754 0:00 440 0:06
6 5 1 0 yes timeout after one hour 2,152 0:07
6 5 1 1 no 122 5,740 0:00 2,131 0:05
6 5 5 1 yes timeout after one hour 950 0:06
6 5 5 4 yes timeout after one hour 968 0:05
7 1 5 0 no 74 4,946 0:00 157 0:05
7 6 1 1 no 154 6,260 0:00 3,938 0:06
7 6 7 1 yes timeout after one hour 1,395 0:06
11 11 1 0 yes timeout after one hour 29,143 0:18
11 9 7 6 no 172 7,564 0:00 6,573 0:07
14 13 1 1 no 434 10,404 0:00 64,075 0:51
14 13 7 1 yes timeout after one hour 29,573 0:16
16 21 5 5 yes timeout after one hour 164,921 3:48
17 16 16 16 no 131 10,077 0:00 24,833 0:13
18 18 1 1 yes timeout after one hour 197,563 5:25
18 18 5 1 yes timeout after one hour 133,824 2:34
20 18 2 1 no 704 14,120 0:00 217,702 6:09
22 21 16 16 no 364 12,590 0:00 84,603 0:51
26 24 25 24 no 199 13,615 0:00 78,191 0:39

and to facilitate the comparison between the state-space sizes. Times pre-
sented as 0:00 mean less than one second.

We observe an expected correlation between the number of tokens repre-
senting threads, the size of the state space, and the verification time. Less
expected for us was the observed influence of the buffer capacities and ini-
tial states. We conjecture that the initial configurations which model high
contention, i. e., many threads waiting on CVs, induce a larger state space.
This effect is particularly strong with Java Pathfinder, which has to execute
all relevant configurations explicitly as program code. The experiments also
show how termination depends on the thread composition and the initial
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Table 2: Run times of JPF to analyze the full state space in various scenarios. The buffer
was filled with one element in its initial state. We show scenarios with very similar out-
comes by showing the range of parameters and measured results (as minimum. . .maximum
values).

Threads Buffer Analysis result
prod. cons. capacity # states # instructions time [mm:ss]
1 1 1. . . 10 186. . . 230 8,112. . . 8,887 0:00. . . 0:00
1 2 1. . . 10 1,466. . . 1,608 43,597. . . 46,186 0:01. . . 0:01
2 1 2. . . 10 1,744. . . 1,844 52,638. . . 54,697 0:01. . . 0:01
2 2 1. . . 10 10,981. . . 12,449 339,300. . . 387,612 0:03. . . 0:04
2 3 1. . . 10 82,806. . . 83,396 2,714,476. . . 2,814,139 0:17. . . 0:19
3 1 3. . . 10 12,825. . . 13,045 418,015. . . 423,135 0:04. . . 0:04
3 2 2. . . 10 86,701. . . 90,241 3,082,752. . . 3,125,704 0:18. . . 0:19
3 3 1. . . 10 585,200. . . 646,643 22,420,306. . . 23,968,679 2:11. . . 2:23
3 4 1. . . 10 3,963,321. . . 4,735,873 161,745,713. . . 183,001,505 18:11. . . 21:01
4 1 4. . . 10 85,277. . . 85,753 3,119,794. . . 3,132,367 0:18. . . 0:18
4 2 3. . . 10 563,183. . . 589,886 22,484,301. . . 23,038,076 2:08. . . 2:14
4 3 2. . . 10 3,820,353. . . 4,644,356 163,788,830. . . 189,499,018 16:22. . . 19:53
4 4 1 timeout after one hour
5 1 5. . . 10 536,276. . . 537,296 21,800,221. . . 21,830,503 2:02. . . 2:02
5 2 4. . . 10 3,491,907. . . 3,600,149 153,771,259. . . 156,364,195 15:14. . . 15:24
5 3 3 timeout after one hour

state. Hence, a single change in any parameter may affect the verification
result.

5.4. State space explosion with Java Pathfinder
To confirm the trend of sharply exploding state spaces for unfalsifiable

instances, we ran JPF with a number of additional configurations of Exam-
ple 3.

5.4.1. Correct Configurations
Table 2 shows configurations in which JPF detected no errors. We tested

an initial configuration with a various number of producer and consumer
threads and various buffer sizes, with one initial element. While the total
state space in configurations of up to six threads in total is easily tractable
(JPF takes between a few seconds and two minutes), larger configurations
are problematic. Configurations with seven threads took between 15 and 20
minutes to complete, while eight threads could not complete within one hour.

5.4.2. Faulty Configurations
Table 3 shows configurations in which JPF detected a deadlock, where a

producer or consumer thread could not proceed because the buffer was either
full or empty, respectively, and no active threads that could change that
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Table 3: Run times of JPF to detect faults in various scenarios. The buffer was filled with
one element in its initial state. We show scenarios with very similar results by showing
the range of parameters and measured results (as minimum. . .maximum values).

Threads Buffer Analysis result
prod. cons. capacity trace length # states # instructions time [mm:ss]

1 3. . . 10 1. . . 10 25. . . 74 26. . . 75 4,078. . . 5,520 0:00
2 1 1 10 11 3,831 0:00
3 1 1. . . 2 14 15 4,020. . . 4,041 0:00
3 2 1 37 38 4,282 0:00
4 1 1. . . 3 18. . . 20 19. . . 21 4,211. . . 4,252 0:00
4 2 1. . . 2 43. . . 47 44. . . 48 4,473. . . 4,498 0:00
4 3 1 63 64 4,748 0:00
5 1 1. . . 4 22. . . 26 23. . . 27 4,402. . . 4,461 0:00
5 2 1. . . 3 49. . . 57 50. . . 58 4,664. . . 4,714 0:00
5 3 1. . . 2 69. . . 73 70. . . 74 4,939. . . 4,964 0:00
5 4 1 91 92 5,232 0:00

. . .
10 9 1 261 262 7,922 0:00

condition were available. We tested an initial configuration with a various
number of producer and consumer threads and various buffer sizes, with one
initial element.

A larger number of threads increases the state space only slightly; this
is mostly visible by a longer error trace in cases where more threads are
involved. Still, the number of states is always small, and JPF finds the error
right away, as shown by the very small number of instructions executed, and
a run time that was always below one second (see Table 3).

Therefore, it can be seen that JPF is very effective at finding defects, and
competitive with SyncTask in terms of run-time in cases where defects are
present. For cases that are correct, JPF scales to a couple of threads, but it
fails if the number of threads grows larger. Given that no annotations are
required for JPF, it is therefore a good choice to try an example in JPF first,
before annotating it to try to prove liveness in larger cases.

6. Related Work

We present related methods and tools that are based on the following
approaches:

1. software model checking, a systematic analysis of all possible outcomes
by executing the software under all schedules;

2. deductive reasoning, using compositional techniques to reason about
the behavior of concurrent programs;
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3. abstract interpretation, and in particular thread-modular treatments;
4. schedule synthesis and permutation, where a safe schedule is to be

found, or subsets of all thread interleavings are investigated;
5. and a conversion of the program structure to Petri Nets.

6.1. Approaches Based on Software Model Checking
Java Pathfinder [19] is closely related to our work in that it checks all pos-

sible outcomes of different thread interleavings of a concurrent Java program.
By default, it checks whether any assertion failure or uncaught exception oc-
curs, and whether a program exhibits a deadlock state, which is a state where
at least one active thread exists that cannot continue because it is blocked
on a resource. A thread may block on a resource because it may wait for
input from a file or network channel, try to obtain a lock, or wait for a signal
inside wait. The latter type of deadlock corresponds to the one analyzed by
STaVe.

Java Pathfinder optimizes the state space search by matching equivalent
program states and by ignoring interleavings that do not affect the global pro-
gram state [19]. Unlike our tool, Java Pathfinder executes the full bytecode
of the Java application under test, so it generally does not scale to programs
with many threads. However, by executing the actual bytecode, it does not
require annotations to check against livelocks in programs using condition
variables (CVs). A drawback of Java Pathfinder is that it cannot execute na-
tive methods. Large applications typically need elaborate model libraries to
execute functionality such as network communication [20], whereas STaVe
only considers annotations, which can be modeled to take into account any
complex libraries.

In principle, Java Pathfinder could handle a simplified program (equiv-
alent to the SyncTask program) better than the full program, because the
abstraction would eliminate native code and reduce the complexity of the
program. It may be possible to isolate subsets of the full program by using
the SyncTask annotations, but this is left as future work.

Musuvathi et al. [23] present CHESS, a tool that systematically tests thread
interleaving to try to uncover subtle concurrency bugs. The tool supports the
Windows 32 API, which features CVs. Our work shares similarities to this
one, such as the exploration of the space of thread interleaving. However,
CHESS is concerned with program safety, i. e., a program shall not reach an
error state. The present work, on the other hand, focus on a liveness property,
i. e., every waiting thread will eventually be notified and progress.
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6.2. Approaches Based on Deductive Reasoning
Leino et al. [4] propose a compositional technique to verify the absence

of deadlocks in concurrent systems with both locks and channels. They use
deductive reasoning to define which locks a thread may acquire, or to impose
an obligation for a thread to send a message. The authors acknowledge that
their quantitative approach to channels does not apply to CVs, as messages
passed through a channel are received synchronously, while a notification on
a condition variable is either received, or else is lost.

Popeea and Rybalchenko [5] present a compositional technique to prove
termination of multi-threaded programs, which combines predicate abstrac-
tion and refinement with rely-guarantee reasoning. The technique is only
defined for programs that synchronize with locks, and it cannot be easily
generalized to support CVs. The reason for this is that the thread termi-
nation criterion is the absence of infinite computations; however, a finite
computation where a waiting thread is never notified is incorrectly charac-
terized as terminating.

6.3. Approaches Based on Abstract Interpretation
A powerful framework for the static analysis of programs is abstract inter-

pretation, which allows programs to be (abstractly) executed in specialized
abstract domains to obtain algorithmically sound facts about their behaviour.
The framework is flexible in that it allows precision of the analyses to be
traded for performance, and vice versa.

To deal with the combinatorial explosion of multi-threaded programs,
some works develop thread-modular analyses to achieve scalability. Miné [24]
for instance, considers locks (mutexes) as explicit synchronization primitives,
and includes a yield statement. The locks are not reentrant: acquiring an
already acquired lock has no effect, and similarly releasing a lock that is not
acquired by a thread. No procedures are considered (but inlining can be used
for non-recursive procedural programs), and no dynamic thread creation.
The aim of the proposed method is to discover data races.

In recent follow-up work, Monat and Miné [25] extend the analysis to
relational domains, in a flow-sensitive manner, to achieve a higher precision.
The focus of the work is on numeric properties of small, but intricate mutual
exclusion algorithms. The experimental results show that the method scales
well, and allows the analysis of several hundreds of (small) threads.

Other works also use a thread-modular analysis to detect potentially un-
safe accesses. High-level data races denote unsafe access patterns to tu-
ples of values [26]. Local atomicity violations denote unsafe uses of shared

26



data [27, 28]. Both types of atomicity violations have recently been uni-
fied [29]. Atomicity violations show that the value of a CV may not always
be correct w. r. t. the global state of the program.

Another analysis that is close to ours is a data race detection tool based on
key concurrency operations extracted from the given program [30]. Similarly
to our tool, that approach builds an abstract model that contains all relevant
concurrency operations on shared data. Like STaVe’s analysis, theirs is not
completely thread-modular.

As already mentioned, one strong point of the above-mentioned meth-
ods is that most of them are thread-modular. The mutual dependencies
are handled by data-flow analysis or rely-guarantee style reasoning, which
means that an iterative fixed-point computation is performed that invokes
the thread-modular analyses on the threads in rounds, until global stabiliza-
tion.

However, data race and atomicity analyses do not cover the signaling
between threads, and therefore do not completely cover the semantics of
CVs. Since wait-notify synchronization is inherently non-local, it does not
lend itself naturally to completely thread-modular analyses. Furthermore, it
is not obvious how the analysis has to be set up to compute the interferences
(as the local effects are called) in the case of CVs, and how precise this can
be made.

6.4. Schedule Synthesis and Permutation
Raychev et al. [7] present an algorithm that takes as input a non-deterministic

parallel program, and synthesizes a synchronization specification using CVs
(and other synchronization primitives) so that the program becomes deter-
ministic, in the sense that it produces the same output for the same input,
regardless of the scheduling. This work differs substantially from ours since
we do not focus on deterministic programs (in the above sense), and we ex-
tract a synchronization specification rather than create one. However, the
two works share similarities. For instance, both focus on programs with
constant number of threads due to the complexity of reasoning about the
asynchronous signaling of CVs. Also, they abstract away from other sources
of non-determinism than thread interleaving.

Wang and Hoang [31] propose a technique that permutes actions of exe-
cution traces to verify the absence of synchronization bugs. Their program
model considers locks and condition variables. However, they cannot verify
the property considered here, since their method does not permute matching
pairs of wait-notify. For instance, it will not reorder a trace where, first, a
thread waits, and then, another thread notifies. Thus, their method cannot
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detect the case where the notifying thread is scheduled first, and the waiting
thread suspends the execution indefinitely.

6.5. Conversion to Petri Nets
Kaiser and Pradat-Peyre [32] propose the modelling of Java monitors in

Ada, and the extraction of CPNs from Ada programs. However, they do
not precisely describe how the CPNs are verified, nor provide a correctness
argument about their technique. Also, they only validate their tool on toy
examples with few threads. Our tool is validated on larger test cases, and on
a real program.

Kavi et al. [33] present PN components for the synchronization primitives
in the Pthread library for C/C++, including condition variables. However,
their modelling of CVs just allows the synchronization between two threads,
and no argument is presented on how to use it with more threads.

Westergaard [9] presents a technique to extract CPNs for programs in a
toy concurrent language, with locks as the only synchronization primitive.
Our work borrows much from this work w. r. t. the CPN modelling and anal-
ysis. However, we analyze full-fledged programming languages, and address
the complications of analyzing programs with condition variables.

Finally, Van der Aalst et al. [34] present strategies for modelling com-
plex parallel applications as CPNs. We borrow many ideas from this work,
especially the modelling of hierarchical CPNs. However, their formalism is
over-complicated for our needs, and we therefore simplify it to produce more
manageable CPNs.

7. Conclusion

We present a technique to prove the correct synchronization of Java pro-
grams using condition variables. Correctness here means that if all threads
reach their synchronization blocks, then all will eventually terminate the syn-
chronization. Our technique does not avoid the exponential blow-up of the
state space caused by the interleaving of threads; instead, it alleviates the
problem by isolating the synchronization behaviour.

We introduce SyncTask, a simple language to capture the relevant as-
pects of synchronization using condition variables. Also, we define an an-
notation scheme for programmers to map the expected synchronization in a
Java program to a SyncTask program. We establish that the synchronization
is correct w. r. t. the above-mentioned property iff the corresponding Sync-
Task terminates. As a proof-of-concept, to check termination we define a
translation from SyncTask programs into Colored Petri Nets such that the
program terminates iff the net invariably reaches a special configuration.
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The extraction of SyncTask from annotated Java programs, and the transla-
tion to CPNs, is implemented as the STaVe tool. We validate our technique
on some test-cases using CPN Tools. Experiments show that our approach
scales well to programs with many threads, at the expense of requiring de-
tailed annotations of the original Java program.

Our current results hold for a number of restrictions on the analyzed
programs. In future work we plan to address and relax these restrictions,
integrate special-purpose static analyzers for the separate types of required
annotations, incorporate more sophisticated model checkers for checking ter-
mination of SyncTask programs, and perform a more diverse experimental
evaluation and comparison with other verification techniques.
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