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Abstract. Testing application behavior in the presence of I/O failures
is extremely difficult. The resources used for testing usually work without
failure. Failures typically cannot be initiated on the test suite level and
are usually not tested sufficiently. Essentially, each interaction of the
application with the environment can result in a failure. The Enforcer
tool identifies such potential failures and automatically tests all relevant
outcomes of such actions. It combines the structure of unit tests with
coverage information and fault injection. By taking advantage of a unit
test infrastructure, performance can be improved by orders of magnitude
compared to previous approaches. This paper introduces the usage of the
Enforcer tool.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in soft-
ware [28,29]. Even though it is limited to a finite set of example scenarios, it
is very flexible and by far the most widespread quality assurance method today.
Testing is often carried out without formal rigor. However, coverage measurement
tools provide a quantitative measure of the quality of a test suite [14,29]. Un-
covered (and thus untested) code may still contain faults. Tested code is known
to have executed successfully under at least one occasion. For this reason, it is
desirable to test each block of code at least once.

A severe limitation of testing is non-determinism, given by both the thread
schedule and the actions of the environment. The Enforcer tool targets non-
determinism given by potential I/O failures of the underlying system [2]. For
system calls, there are usually two basic outcomes: success or failure. Typically
the successful case is easy to test, while the failure case can be nearly impossible
to trigger. For instance, simulating network outage is non-trivial. Enforcer does
not try to cause underlying system calls to fail, but instead it injects a failure into
the program at run-time to create the same behavior that would have resulted
from a system failure.

Assume that a mechanism exists to identify a test case that executes a par-
ticular call. In that case, testing both outcomes of that call will be very efficient,



only requiring a duplication of a particular test case. Existing ad-hoc approaches
include factoring out small blocks of code in order to manually test exception
handlers, or adding extra flags to conditionals that could trigger outcomes that
are normally not reachable by modeling test data alone. Figure 1 illustrates this.
In the first example, any exception handling is performed by a special method,
which can be tested separately, but does not have access to local variables used
by the caller. In the second example, which has inspired our work, the unit test
has to set a special flag which causes the exception handling code to run artifi-
cially. Enforcer automates the tasks of fault injection and controlling the fault
for the selected test cases.

try {
    socket = new ServerSocket();
} catch (IOException e) {
    handleIOException();
    // error handling code
}

try {
    if (testShouldFail) {
        throw new IOException();
    }
    socket = new ServerSocket();
} catch (IOException e) {
    // error handling code
}

Factoring out exception handling. Extra conditional for testing.

Fig. 1. Two manual approaches for exception handler coverage.

Similar tools exist that inject faults into the program and thus improve cov-
erage of exception handlers [7,17]. However, previous tools have not taken the
structure of unit tests into account and thus required re-running the entire test
suite for each uncovered exception. Therefore, for m unit tests and n uncovered
exceptions, previous approaches had a run-time of O(m · n). Enforcer repeats
only one unit test per uncovered exception, yielding a run-time of O(m + n),
improving performance by several orders of magnitude [2]. The tool operates in
three stages, which are described in detail in previous work [2]:

1. Code instrumentation, at compile time or at class load time. This includes
injecting code for coverage measurement and for execution of the repeated
test suite.

2. Execution of unit tests. Coverage information is now gathered.

3. Re-execution of certain tests, using selective fault injection. This has to be
taken into account by coverage measurement code, in order to require only
a single instrumentation step.

This document as organized as follows: Section 2 gives the necessary back-
ground about sources of failures considered here, and possible implementation
approaches. Section 3 gives an overview of the implementation of the tool, while
Section 4 introduces its usage. Section 5 describes related work. Section 6 con-
cludes, and Section 7 outlines future work.



2 Background

This section introduces the necessary terminology used in the rest of this ar-
ticle, covering exceptions, fault injection, and various technologies used by our
approach.

2.1 Exceptions

An exception as commonly used in many programming languages [19,26,27,33]
indicates an extraordinary condition in the program, such as the unavailability of
a resource. Exceptions are used instead of error codes to return information about
the reason why a method call failed. Java also supports errors, which indicate
“serious problems that a reasonable application should not try to catch” [19]. A
method call that fails may “throw” an exception by constructing a new instance
of java.lang.Exception or a subtype thereof, and using a throw statement to
“return” this exception to the caller. At the call site, the exception will over-
ride normal control flow. The caller may install an exception handler by using
the try/catch statement. A try block includes a sequence of operations that
may fail. Upon failure, remaining instructions of the try block are skipped, the
current method stack frame is replaced by a stack frame containing only the
new exception, and control is transferred to the exception handler, indicated in
Java by the corresponding catch block. This process will also be referred to as
exception handling.

The usage and semantics of exceptions covers a wide range of behaviors. In
Java, exceptions are used to signal the unavailability of a resource (e.g., when a
file is not found or cannot be written), failure of a communication (e.g., when
a socket connection is closed), when data does not have the expected format,
or simply for programming errors such as accessing an array at an illegal index.
Two fundamentally different types of exceptions can be distinguished: Unchecked
exceptions and checked exceptions. Unchecked exceptions are of type Runtime-

Exception and do not have to be declared in a method. They typically concern
programming errors, such as array bounds overflows, and can be tested through
conventional means. On the other hand, checked exceptions have to be declared
by a method which may throw them. Failure of external operations results in
such checked exceptions [7,16]. This work therefore focuses on checked excep-
tions. For the remainder of this paper, a checked method call refers to a call to
a method which declared checked exceptions.

When an exception is thrown at run-time, the current stack frame is cleared,
and its content is replaced with a single instance of type Exception (or a subtype
thereof). This mechanism helps our goal in two ways:

– Detection of potentially failed system calls is reduced to the analysis of ex-
ceptions.

– No special context data is needed except for information contained in the
method signature and the exception.



2.2 Fault injection

Fault injection [21] refers to influencing program behavior by simulation of fail-
ures in hardware or software. In hardware and software, fault injection is most
useful when applied to prototypes or implementations. This allows for accu-
rate evaluation of fault handling mechanisms. Fault injection thus also serves to
study and measure the quality of exception handling and dependability mecha-
nisms [21].

On a hardware level, fault injection can simulate various kinds of hardware
corruption, such as bit flips or stuck-at faults (where the output of a gate is stuck
at a particular value). These types of fault injection are important for producing
highly reliable hardware, where redundancy can compensate for physical com-
ponent failures caused by power surges, radiation, or other influences. Certain
types of software fault injection have the same target, e. g. simulation of storage
data corruption or other machine-level defects [21]. The specific notion of faults
in hardware as just described is slightly different from the more common one
used in the context of automatic test pattern generation (ATPG). ATPG aims
at finding test patterns that verify a chip against faults that are induced during
the physical production process [6].

This article targets higher-level problems, arising from failures of system calls.
An unexpected result of a system call is typically caused by incorrect parameters
or by an underlying network communication problem. Because such failures are
difficult to produce, they are often poorly tested. Testing a failure of a system call
may take a large amount of effort (during the test process) to set up. In the case
of network communications, shutting down network resources will affect other
processes on the same host and is therefore not practical in a real-life situation.

Because of these problems, faults are typically injected into an application
by an automated tool, which relieves the tester from the burden of injecting
faults and capturing their effect. In modern programming languages, such faults
manifest themselves on the application level as exceptions [7,16,17]. They can
be simulated by modifying the application or library code.

Code instrumentation consists of modifying existing application code or in-
jecting additional code into an application, in order to augment its behavior.
The goal is typically to leave the original behavior unchanged, or to change
it in a very limited way. It corresponds to a generic form of aspect-oriented
programming [22], which organizes code instrumentation into a finite set of op-
erations. Program steering [23] allows overriding normal execution flow. Program
steering typically refers to altering program behavior using application-specific
properties [23], or as schedule perturbation [32], which covers non-determinism
in thread schedules. This technique is very similar to fault injection. Instead of
faults, either cross-cutting code or randomized delays are injected.

2.3 Problem scope

A unit test is a procedure to verify individual modules of code. A test harness
executes unit tests. Test suites combine multiple unit tests (also called test cases)



into a single set. Execution of a single unit test is defined as test execution,
running all unit tests as test suite execution. In this paper, a repeated test suite
denotes an automatically generated test suite that will re-execute certain unit
tests, which will be referred to as repeated tests.

Coverage information describes whether a certain piece of code has been ex-
ecuted or not. In this paper, only coverage of checked method calls is relevant.
The goal of our work was to test program behavior at each location where excep-
tions are handled, for each possible occurrence of an exception. This corresponds
to the all-e-deacts criterion [31]. Treating each checked method call individually
allows distinction between exception handling before and after a resource, or
several resources, have been allocated. Figure 2 illustrates the purpose of this
coverage criterion: In the given try/catch block, two operations may fail. Both
the read and the close operation may throw an IOException. The applica-
tion is likely going to be in a very different state before and after reading from
the resource, and again after having closed the stream. Therefore, it is desirable
to test three possible scenarios: Successful execution of statements (1) and (2),
success of statement (1) but failure of statement (2), and failure of statement
(1), whereupon statement (2) is never executed. This corresponds to full branch
coverage if the same semantics are encoded using if statements.

try {
    /* (1) */ input = stream.read();
    /* (2) */ stream.close();
} catch (IOException e) {
    // exception handling
}

Fig. 2. Illustration of the all-e-deacts coverage criterion.

The first source of potential failures considered by our fault injection tool
are input/output (I/O) failures, particularly on networks. The problem is that
a test environment is typically set up to test the normal behavior of a program.
While it is possible to temporarily disable the required resources by software,
such as shell scripts, such actions often affect the entire system running, not
just the current application. Furthermore, it is difficult and error-prone to co-
ordinate such system-wide changes with a test harness. The same applies to
certain other types of I/O failures, such as running out of disk space, packet loss
on a User Datagram Protocol (UDP) connection, or communication timeout.
While the presence of key actions such as resource deallocations can be checked
statically [12,36], static analysis is imprecise in the presence of complex data
structures. Testing can analyze the exact behavior.

The second source of potential failures are external programs. It is always
possible that a system call fails due to insufficient resources or for other reasons.
Testing such failures when interacting with a program through inter-process
communication such as pipes is difficult and results in much test-specific code.



Our tool, Enforcer, is written in Java and geared towards failures which are
signaled by Java exceptions. Certain operations, such as hash code collisions, are
also very difficult to test, but do not throw an exception if they occur. A hash
code collision occurs when two distinct data objects have the same hash code.
Exhaustive testing of such a collision could be addressed by similar means, but
is not covered by our tool that deals with exceptions only.

Finally, there exist hard-to-test operations that are not available in Java: In C
programs, pointer arithmetic can be used. The exact address returned by memory
allocation cannot be predicted by the application, causing portability and testing
problems for low-level operations such as sorting data by their physical address.
Other low-level operations such as floating point calculations may also have
different outcomes on different platforms.

3 Implementation

Exceptions can be tested manually. This approach guarantees optimal perfor-
mance but is not practical when many exceptions have to be tested. Therefore,
testing should be automated. Automation is possible for unit test suites hav-
ing idempotent tests. These are tests that can be executed independently many
times, producing the same result each time. For such tests, Enforcer automates
testing of exceptional outcomes while still maintaining optimal performance.

3.1 Manual testing of exceptions

The use of unit tests for fault injection has been inspired by unit testing in
the JNuke project. JNuke contains a Java model checker implemented in C.
Exceptions or failed system calls are handled using conventional control flow
constructs. JNuke heavily uses unit testing to ensure its quality [3]. Test coverage
of exceptional outcomes is achieved by manual instantiations of a given test.

Figure 3 illustrates manual fault injection in JNuke. Function unpack takes a
32-bit integer value containing a floating point number encoded according to the
IEEE standard, and returns its floating point value (lines 6 – 20). Internal func-
tions convert this value to a floating point value of the desired precision. This
precision can be configured prior to compilation. For performance reasons, float-
ing point values with a precision of 32 bits are usually represented with the same
number of bits on the target machine. However, the way floating point numbers
are represented may differ, even for the same size. Therefore, it is possible that
an underflow occurs for small values: a small number is truncated to zero. This
is very rare, but occurred on some less common hardware architectures in our
tests. When an underflow is detected, a brief message is printed to the screen
(lines 12 – 18).

Most processors will never generate an underflow for 32-bit floating point
numbers because an identical representation is used internally. This makes it
impossible to test the “exception handler” (in lines 15 – 17) that is triggered for
an underflow.



 1 /* convert constant pool representation (IEEE 754) to C float */
   /* endian conversion performed by caller */
   
   static int force_insufficient_precision = 0;
 5 
   JFloat unpack (unsigned int bytes) {
       JFloat result;
   
       result = convert_bytes(bytes);
10 
       /* check against underflow */
       if (underflow_detected(result, bytes)
           /* manual fault injection */
           || force_insufficient_precision) {
15         fprintf (stderr, "unpack: Cannot represent float value"
                    " due to insufficient precision.\n");
           return 0;
       }
       return result;
20 }
   
   /* test cases */
   int testSuccess (JNukeTestEnv * env) {
       int res;
25     res = !JFloat_compare (unpack(FLOAT_1_0), 1.0);
       return res;
   }
   
   int testFailure (JNukeTestEnv * env) {
30     int res;
       /* activate fault injection */
       force_insufficient_precision = 1;
   
       res = !JFloat_compare (unpack(SMALL_FLOAT), 0.0);
35     /* return value always == 0 due to fault injection */
   
       /* disable fault injection */
       force_insufficient_precision = 0;
       return res;
40 }

Fig. 3. Manual testing of a library call that can generate an exception.



In order to avoid a gap in test coverage, fault injection was implemented
manually. An extra test executes the “exception handler”. The test code is im-
plemented in lines 22 – 40. The first test case, testSuccess, succeeds on any
platform. The second test case, testFailure, is designed to execute the “excep-
tion handler”that is triggered on underflow. On some architectures, this happens
if a small value known to cause an underflow is used. However, this is not suffi-
cient to test the function in question on most platforms. Therefore, fault injection
is used to simulate an underflow (flag force_insufficient_precision on lines
14, 32, and 38). This manual approach works fairly well when used sparsely, but
carries many intrinsic problems:

– Fault injection code is added inside the application and test code. This re-
duces readability, and may even interfere with normal code. Non-interference
of fault injection code can only be checked through inspection (or the use of
preprocessor directives in C).

– Not necessarily the same test case is used to test the success and failure
cases.

– Fault injection has to be done manually: Fault injection has to be enabled
(and disabled!) at the right points in the test code.

For the remainder of this paper, we will again use Java to illustrate exception
handling. Typical code tested by Enforcer uses I/O operations that can throw
an exception in Java. Figure 4, which is an extended version of the example
in Fig. 1, shows how two unit tests can execute the successful and the failure
scenario of a given operation. The application code of this example (lines 1–15)
contains a try block because the I/O operation in line 10 might fail. Usually, it
is successful, so a normal unit test will never execute the corresponding catch

block.
In order to address this problem, the test code (lines 17 – 27) contains two

test cases: The first test case is a conventional unit test, which executes the
method in question. Because it is assumed that the I/O operation will return
successfully, another test case is added. This test case covers the failure scenario
by setting a flag socketShouldFail prior to execution of the application code.
The artificially induced failure results in an exception being thrown. Again, care
has to be taken to reset that flag after test execution. Since that flag is static
(global), it would affect all subsequent test cases if it was not reset.

In the example in Fig. 4, manual fault injection results in about nine addi-
tional lines of code (when not counting whitespace). This 60 % increase is of
course an extreme figure that is much lower in average real-world scenarios. In
the JNuke project where similar code was used [3], only about 0.25 % of the total
code contributes to such testing of I/O failures or similar operations. This figure
is rather low because JNuke does not use a lot of I/O operations, and I/O code
is limited to 7 out of about 165 classes. Nonetheless, in one class, the extra code
needed for a manual approach already affects the readability of the application
code, due to various flags and conditionals being introduced. Three methods of
the application code of that class have an overhead of over 30 % of extra test



 1 class ApplicationCode {
       static boolean socketShouldFail = false;
   
       public void operationUsingIO() {
 5         ServerSocket socket;
           try {
               if (socketShouldFail) {
                   throw new IOException();
               }
10             socket = new ServerSocket();
           } catch (IOException e) {
               // exception handling code
           }
       }
15 }
   
   class TestApplicationCode extends TestCase {
       public void testOperationUsingIO_success() {
           operationUsingIO();
20     }
   
       public void testOperationUsingIO_failure() {
           ApplicationCode.socketShouldFail = true;
           operationUsingIO();
25         ApplicationCode.socketShouldFail = false;
       }
   }

Fig. 4. Manual testing of a library call that can generate an exception.



code covering I/O failures. This hampers readability and maintainability of that
code, and clearly calls for automation of testing I/O failures.

3.2 Automation

Java-based applications using JUnit [25] for unit testing have been chosen as the
target for this study. Java bytecode is easy to understand and well-documented.
JUnit is widely used for unit testing. In terms of programming constructs, the
target consists of any unthrown exceptions, i.e., checked method calls where a
corresponding catch statement exists and that catch statement was not reached
from an exception originating from said method call. Only checked exceptions
were considered because other exceptions can be triggered through conventional
testing [7,16]. Artificially generated exceptions are initialized with a special string
denoting that this exception was triggered by Enforcer.

A key goal of the tool is to avoid re-execution of the entire test suite after
coverage measurement. In order to achieve this, the test process executes in three
stages:

1. Code instrumentation, at compile time or at class load time.
2. Execution of unit tests. Coverage information is now gathered.
3. Re-execution of certain tests, with selective fault injection.

Coverage information gathered during test execution serves to identify a unit test
u that executes a checked method call, which could trigger a particular exception
e. For each such exception that has not been triggered during normal unit testing,
Enforcer then chooses to re-run one unit test (such as u) with exception e being
injected. This systematically covers all exceptions by re-running one unit test of
choice for each exception.

This approach assumes that unit tests are independent of each other and
idempotent. What this means is that a unit test should not depend on data
structures that have been set up by a previous unit test. Instead, standardized
set-up methods such as setUp (in JUnit) must be used. Furthermore, a unit test
should not alter persistent data structures permanently, i. e., the global system
state after a test has been run should be equal to the system state prior to that
test. This behavior is specified in the JUnit contract [25] and usually adhered to
in practice, although it is not directly enforced by JUnit. JUnit does not check
against global state changes and executes all unit tests in a pre-determined order.
Therefore, it is possible to write JUnit test suites that violate this requirement,
and it is up to the test engineer to specify correct unit tests. Tools such as
DbUnit [11] can ensure that external data, such as tables in a data base, also
fulfill the requirement of idempotency, allowing for repeated test execution.

As a consequence of treating each checked method call rather than just each
unit test individually, a more fine-grained behavior is achieved. Each unit test
may execute several checked method calls. Our approach allows for re-executing
individual unit tests several times within the repeated test suite, injecting a dif-
ferent exception each time. This achieves better control of application behavior,



as the remaining execution path after an exception is thrown likely no longer
coincides with the original test execution. Furthermore, it simplifies debugging,
since the behavior of the application is generally changed in only one location for
each repeated test execution. Unit tests themselves are excluded from coverage
measurement and fault injection, as exception handlers within unit tests serve
for diagnostics and are not part of the actual application.

The intent behind the creation of the Enforcer tool is to use technologies
that can be combined with other approaches, such that the system under test
can be tested in a way that is as close to the original test setup as possible, while
still allowing for full automation of the process. Instrumentation is performed
directly on Java bytecode [37]. Injected code has to be designed carefully for the
two dynamic stages to work together. Details about the architecture of the tool
are described in previous work [2].

3.3 Comparison to stub-based fault injection

Faults can also be injected at library level. By using a stub that calls the regular
code for the successful case and throws an exception for the failure case, code
instrumentation would not be necessary. The only change in the code would
consist of the “redirection”of the original method call to the stub method. Code
modification could therefore be done at the callee rather than at each call site.
This way, only library code would be affected, and the application could be run
without modification.4

A stub-based approach is indeed a much simpler way to achieve fault in-
jection. However, it cannot be used to achieve selective fault injection, which
is dependent on coverage information. Coverage of exception handlers (catch
blocks) concerns method calls and their exception handlers. As there are usu-
ally several method calls for a given method, coverage of checked method calls
can only be measured at the call site, not inside the callee. The same argument
holds for code that performs selective fault injection, using run-time information
to activate injected exceptions when necessary.

Therefore, most of the functionality heavily depends on the caller context and
concerns the call site. While it is conceivable to push such code into method call
(into the library code), this would require code that evaluates the caller context
for coverage measurement. Such code requires run-time reflection capabilities and
would be more complex than the architecture that is actually implemented [2].
Therefore, it does not make sense to implement unit test coverage inside the
library.

For this reason, the application code is modified for coverage measurement.
By also implementing fault injection at the caller, modification of the callee (the
library) is avoided. Avoiding modification of the library makes it possible to use

4 This idealizing proposition assumes that the application itself does not provide any
library-like functionality, i. e., the application does not interface directly with any
system calls or produce other types of exceptions that cannot be tested convention-
ally.



native and signed (tamper-proof) library code for testing. A stub-base approach
cannot modify such code.

Coverage data in Enforcer is context-sensitive. It is not only important which
blocks of code (which checked method calls and which exception handlers) are
executed, but also by which unit test. This requires more information than a
typical coverage measurement tool provides. After all, the test to cover previously
uncovered exceptions is chosen based on this coverage information. Such a test,
if deterministic, is known to execute the checked method call in question. As
coverage information includes a reference to a test case, that test case can be
used for fault injection.

3.4 Complexity

The complexity incurred by our approach can be divided into two parts: Coverage
measurement, and construction and execution of repeated test suites. Coverage
is measured for each checked method call. The code which updates run-time data
structures runs in constant time. Therefore, the overhead of coverage measure-
ment is proportional to the number of checked method calls that are executed
at run-time. This figure is negligible in practice.

Execution of repeated test suites may incur a larger overhead. For each un-
covered exception, a unit test has to be re-executed. However, each uncovered
exception incurs at most one repeated test. Nested exceptions may require multi-
ple injected faults for a repeated test, but still only one repeated test per distinct
fault is required [2]. The key to a good performance is that only one unit test,
which is known to execute the checked method call in question, is repeated. If a
test suite contains m unit tests and n uncovered exceptions, then our approach
will therefore execute m + n unit tests. This number is usually not much larger
than m, which makes the tool scalable to large test suites.

Large projects contain thousands of unit tests; previous approaches [7,16,17]
would re-execute them all for each possible failure, repeating m tests n times,
for a total number of m · (n + 1) unit test executions.5 Our tool only re-executes
one unit test for each failure. This improves performance by several orders of
magnitude and allows Enforcer to scale up to large test suites. Moreover, the sit-
uation is even more favorable when comparing repeated tests with an ideal test
suite featuring full coverage of exceptions in checked method calls. Automatic re-
peated execution of test cases does not require significantly more time than such
an ideal test suite, because the only minor overhead that could be eliminated lies
in the instrumented code. Compared to manual approaches, our approach finds
faults without incurring a significant overhead, with the additional capability of
covering outcomes that are not directly testable.

3.5 Nested control structures

Enforcer treats nested exceptions by repeating the same unit test that covered
the initial exception. Using an iterative approach, incomplete coverage inside an

5 This includes the original test run where no faults are injected.



exception handler can be improved for exception handlers containing checked
method calls inside nested try/catch statements [2].

However, an exception handler may contain nested control structures other
than try/catch, such as an if/else statement, or more complex control struc-
tures. When encountering an if/else statement inside an exception handler,
Enforcer works as follows: After the initial test run, a chosen unit test is re-
peated to cover the exception handler in question. This way, the if condition is
evaluated to one of the two possible outcomes. Unfortunately, the other outcome
cannot be tested by repeating the same test case, as a deterministic test always
results in the same outcome of the predicate. Program steering cannot be used
to force execution of the other half of the if/else block: A bit flip in the if

condition would evaluate its predicate to a value that is inconsistent with the
program state.6

Therefore, a different unit test would have to be chosen, one where the pred-
icate evaluates to a different value. A priori, it cannot be guaranteed that such a
unit test exists in the first place, as this would imply a solution to the reachabil-
ity problem. A search for a solution would therefore have to be exhaustive. An
exhaustive search executes all unit tests that could possibly trigger a given ex-
ception, hoping that one of the tests (by chance) covers the alternative outcome.
This is undesirable, because it negates the performance advantage of Enforcer,
which is based on the premise of only choosing one test per exception. Other
possible solutions are:

– Manual specification of which unit test to choose for those special cases.
– Refactoring the exception handler in question so it can be tested manually.
– Finally, possible values for which a given if condition evaluates to a different

value could be generated by perturbing an existing unit test case. Such a
guided randomization would be similar to “concolic testing”, which combines
concrete and symbolic techniques to generate test cases based on a previous
test run [18,30].

The problem of efficiently treating complex control structures inside exception
handlers is therefore still open.

4 Usage of the Enforcer tool

The Enforcer tool is fully automated. The functionality of the tool is embedded
into the application by code instrumentation. Code instrumentation can occur
after compilation or at load time. After execution of the normal unit test suite,
exception coverage is shown, and repeated tests are executed as necessary. To
facilitate debugging, an additional feature exists to reduce the log file output that
an application may generate. As experiments show, the Enforcer tool successfully
finds faults in real applications.

6 Because of this, the elegant approach to nested exceptions is defeated for the purpose
of treating conventional control structures.



4.1 Running the tool

Fundamentally, the three steps required to run the tool (instrumentation, cov-
erage measurement, repeated test execution) can be broken down into two cat-
egories: Static code analysis, which instruments method calls that may throw
exceptions, and run-time analysis. Run-time analysis includes coverage measure-
ment and re-execution of certain unit tests.

Code instrumentation is entirely static, and can be performed after compila-
tion of the application source code, or at class load time. Enforcer supports both
modes of operation. Static instrumentation takes a set of class files as input and
produces a set of instrumented files as output. Class files requiring no changes
are not copied to the target directory, because the Java classpath mechanism
can be used to load the original version if no new version is present.

Alternatively, Enforcer can be invoked at load-time. In this mode, the new
Java instrumentation agent mechanism is used [34]. Load-time instrumentation
is very elegant in the sense that it does not entail the creation of temporary
files and reduces the entire usage of the enforcer tool to just adding one extra
command line option. There is no need to specify a set of input class files because
each class file is instrumented automatically when loaded at run-time.

For execution of repeated tests, no special reset mechanism is necessary. In
JUnit, each test is self-contained; test data is initialized from scratch each time
prior to execution of a test. Therefore re-execution of a test just recreates the
original data set. After execution of the original and repeated tests, a report is
printed which shows the number of executed methods calls that can throw an
exception, and the number of executed catch clauses which were triggered by
said method calls. If instrumentation occurs at load time, then the number of
instrumented method calls is also shown. The Enforcer output is shown once the
JUnit test runner has finished (see Fig. 5).

4.2 Evaluation of results

Figure 5 shows a typical output of the Enforcer tool. First, the initial test suite
is run. If it is deterministic, it produces the exact same output as when run by
the normal JUnit test runner. This output, resulting in a dot for each successful
test, is not shown in the figure. After the JUnit test suite has concluded, JUnit
reports the total run time and the test result (the number of successful and failed
tests). After the completed JUnit test run, Enforcer reports exception coverage.

If coverage reported is less than 100 %, a new test suite is created, which
improves coverage of exceptions. This repeated test suite is then executed in
the same way the original test suite was run, with the same type of coverage
measurements reported thereafter.

The output can be interpreted as follows: 37 method calls that declare excep-
tions were present in the code executed. Out of these, 32 were actually executed,
while five belong to untested or dead code. 12 uncovered paths from an executed
method call to their corresponding exception handler exist. Therefore, 12 tests



Time: 0.402

OK (29 tests)

*** Total number of instrumented method calls: 37

*** Total number of executed method calls: 32

*** Total number of executed catch blocks: 20

*** Tests with uncovered catch blocks to execute: 12

............

Time: 0.301

OK (12 tests)

*** Total number of executed method calls: 32

*** Total number of executed catch blocks: 32

*** Tests with uncovered catch blocks to execute: 0

Fig. 5. Enforcer output when running the wrapped JUnit test suite.

are run again; the second run covers the remaining paths. Note that the sec-
ond run may have covered additional checked method calls in nested try/catch
blocks. This would have allowed increased coverage by launching another test
run to cover nested exceptions [2].

4.3 Suppression of stack traces

Exception handlers often handle an exception locally before escalating that ex-
ception to its caller. The latter aspect of this practice is sometimes referred to as
re-throwing an exception, and is quite common [2]. In software that is still under
development, such exception handlers often include some auxiliary output such
as a dump of the stack trace. The reasoning is that such handlers are normally
not triggered in a production environment, and if triggered, the stack trace will
give the developer some immediate feedback about how the exception occurred.
Several projects investigated in a previous case study used this development ap-
proach [2]. If no fault injection tool is used, then this output will never appear
during testing and therefore does not constitute a problem in production usage.

Unfortunately, this methodology also entails that a fault injection tool will
generate a lot of output on the screen if it is used on such an application. While it
is desirable to test the behavior of all exception handlers, the output containing
the origin of an exception typically does not add any useful information. If an
uncaught exception occurs during unit testing, the test in which it occurs is
already reported by the JUnit test runner. Conversely, exceptions which are
caught and then re-thrown do not have to be reported unless the goal is to get
some immediate visual information about when the exception is handled (as
debugging output).

The stack trace reported by such debugging output may be rather long, and
the presence of many such stack traces can make it difficult to evaluate the
new test log when Enforcer is used. Therefore, it may be desirable to suppress
all exception stack traces that are directly caused by injected faults. The latest
version of the Enforcer tool implements this feature.“Primary”exceptions, which



were injected into the code, are not shown; “secondary” exceptions, which result
as a consequence of an incorrectly handled injected fault, are reported. In most
cases, this allows for a much easier evaluation of the output. Of course it is still
possible to turn this suppression feature off in case a complete report is desired.

4.4 Experiments

Table 1 shows the condensed results of experiments performed [2]. For each case,
the number of tests, the time to run the tests, and the time to run them un-
der Enforcer (where the outcome of exceptions are tested in addition to normal
testing) are shown. Note that out of a certain number of calls to I/O methods,
typically only a small fraction are covered by original tests. Enforcer can cover
most of the missing calls, at an acceptable run-time overhead of factor 1.5 –
5. (The reason why certain calls are not covered is because tests were not al-
ways fully deterministic, due to concurrency problems or unit tests not being
idempotent.)

With previous tools [7,17], re-execution of the entire test suite would have
lead to an overhead proportional to the number of test cases, which is orders of
magnitudes higher even for small projects. For instance, the Informa test suite
comprises 119 tests taking about 33 seconds to run. When analyzing that test
suite with a previous-generation fault injection tool, the entire test suite would
have had to be run another 136 times (once for each unexecuted exception), tak-
ing at about an hour and a half, rather than three minutes when using Enforcer.
Enforcer found 12 faults in the given example applications, using only existing
unit tests and no prior knowledge of the applications [2].

Table 1. Results of unit tests and injected exception coverage.

Application # Time Time, # exec. # unex. Cov. Cov. Faults
or library tests [s] Enforcer [s] calls catch (orig.) (Enforcer) found

Echomine 170 6.3 8.0 61 54 8 % 100 % 9

Informa 119 33.2 166.6 139 136 2 % 80 % 2

jConfig 97 2.3 4.7 169 162 3 % 61 % 1

jZonic-cache 16 0.4 0.7 8 6 25 % 100 % 0

SFUtils 11 76.3 81.6 6 2 67 % 100 % 0

SixBS 30 34.6 94.3 31 28 10 % 94 % 0

Slimdog 10 228.6 n/aa 15 14 7 % n/a 1

STUN 14 0.06 0.7 0 0 0 % 0 % 0

XTC 294 28.8 35.5 112 112 0 % 92 % 0

a Repeated unit tests could not be carried out successfully because the
unit test suite was not idempotent, and not thread-safe. Enforcer found
one fault before the test suite had to be aborted due to a deadlock.



5 Related work

Test cases are typically written as additional program code for the system under
test. White-box testing tries to execute as much program code as possible [28]. In
traditional software testing, coverage metrics such as statement coverage [14,29]
have been used to determine the effectiveness of a test suite. The key problem
with software testing is that it cannot guarantee execution of parts of the sys-
tem where the outcome of a decision is non-deterministic. In multi-threading,
the thread schedule affects determinism. For external operations, the small pos-
sibility of failure makes testing that case extremely difficult. Traditional testing
and test case generation methods are ineffective to solve this problem.

5.1 Static analysis and model checking

Static analysis investigates properties “at compile time”, without executing the
actual program. Non-deterministic decisions are explored exhaustively by veri-
fying all possible outcomes. An over-approximation of all possible program be-
haviors is computed based on the abstract semantics of the program [10]. For
analyzing whether resources allocated are deallocated correctly, there exist static
analysis tools which consider each possible exception location [36].

Model Checking explores the entire behavior of a system by investigating each
reachable state. Model checkers treat non-determinism exhaustively. Results of
system-level operations have been successfully modeled this way to detect failures
in applications [9] and device drivers [5]. Another project whose goal is very close
to that of Enforcer verifies proper resource deallocation in Java programs [24].
It uses the Java PathFinder model checker [35] on an abstract version of the
program, which only contains operations relevant to dealing with resources.

Static analysis (and model checking, if used on an abstract version of the pro-
gram) can only cover a part of the program behavior, such as resource handling.
For a more detailed analysis of program behavior, code execution (by testing) is
often unavoidable. Execution of a concrete program in a model checker is possi-
ble, at least in theory [35]. However, model checking suffers from the state space
explosion problem: The size of the state space is exponential in the size of the
system. In addition to program abstraction, which removes certain low-level or
local operations from a program, non-exhaustive model checking can be applied.
By using heuristics during state space exploration, states where one suspects an
error to be likely are given preference during the search [20]. The intention is to
achieve a high probability of finding faults even if the entire state space is far
larger than what can be covered by a model checker.

Such heuristics-based model checking, also called directed model checking,
shows interesting similarities to our approach. By being able to store a copy of
the program state before each non-deterministic decision, it can also selectively
test for success or failure of an I/O call. Furthermore, model checking covers all
interleavings of thread executions. The difference to fault injection is that model
checking achieves such coverage of non-determinism on a more fine-grained level
(for individual operations rather than unit tests) and includes non-determinism



induced by concurrency. Model checking does not have to re-execute code up
to a point of decision, but can simply use a previously stored program state to
explore an alternative. However, the overhead of the engine required to store
and compare a full program state still makes model checkers much slower than
normal execution environments such as a Java virtual machine [4]. Model check-
ers also lack optimization facilities such as just-in-time compilers, because the
work required to implement such optimizations has so far always been beyond
the available development capacity.

5.2 Fault injection

Even though fault injection cannot cover concurrency and has to re-execute
a program up to a given state, it scales much better in practice than model
checking. Fault injection in software is particularly useful for testing potential
failures of library calls [21]. In this context, random fault injection as a black-box
technique has shown to be useful on an application level [15]. Because our goal
is to achieve a high test coverage, we target white-box testing techniques.

In software, two types of fault injection exist: low-level fault injection and
high-level fault injection. Low-level fault injection targets mechanisms on an op-
erating system level, such as timeouts and processor interrupts. Such fault injec-
tion tools simulate these mechanisms by leveraging corresponding functionality
of the operating system or hardware [8]. Low-level tools are easier to deploy, but
inherently more limited than high-level fault injection tools, which focus on the
application level, where a failure of underlying system code typically manifests
itself as an exception [7,16,17]. High-level tools are more powerful because they
can modify the application code itself. In most cases, the higher-level semantics
of injected faults makes failure analysis easier.

Java is a popular target for measuring and improving exception handling,
as exception handling locations are well defined [19]. Our approach of measur-
ing exception handler coverage corresponds to the all-e-deacts criterion [31]. The
static analysis used to determine whether checked method calls may generate ex-
ceptions have some similarity with a previous implementation of such a coverage
metric [17]. However, our implementation does not aim at a precise instrumen-
tation for the coverage metric. We only target checked exceptions, within the
method where they occur. As the generated exceptions are created at the caller
site, not in the library method, an interprocedural analysis is not required. Un-
reachable statements will be reported as instrumented, but uncovered checked
method calls. Such uncovered calls never incur an unnecessary test run and are
therefore benign, but hint at poor coverage of the test suite. Furthermore, unlike
some previous work [17], our tool has a run-time component that registers which
unit test may cause an exception. This allows us to re-execute only a particular
unit test, which is orders of magnitude more efficient than running the entire
test suite for each exception site. Finally, our tool can dynamically discover the
need for combined occurrences of failures when exception handling code should
be reached. Such a dynamic analysis is comparable to another fault injection
approach [7], but the aim of that project is totally different: It analyzes failure



dependencies, while our project targets code execution and improves coverage of
exception handling code.

Similar code injection techniques are involved in program steering [23], which
allows overriding the normal execution flow. However, such steering is usually
very problematic because correct execution of certain basic blocks depends on
a semantically consistent program state. Thus program steering has so far only
been applied using application-specific properties [23], or as schedule pertur-
bation [13,32], which covers non-determinism in thread schedules. Our work is
application-independent and targets non-determinism induced by library calls
rather than thread scheduling.

6 Conclusions

Calls to system libraries may fail. Such failures are very difficult to test. Our
work uses fault injection to achieve coverage of such failures. During initial test
execution, coverage information is gathered. This information is used in a re-
peated test execution to execute previously untested exception handlers. The
process is fully automated and still leads to meaningful execution of exception
handlers. Unlike previous approaches, we take advantage of the structure of unit
tests in order to avoid re-execution an entire application. This makes our ap-
proach orders of magnitude faster for large test suites. The Enforcer tool, which
implements this approach, has been successfully applied to several complex Java
applications. It has executed previously untested exception handlers and uncov-
ered several faults. Furthermore, our approach may even partially replace test
case generation.

7 Future work

Improvements and extensions to the Enforcer tool are still being made. Cur-
rently, a potential for false positives exists because the exact type of a method
is not always known at instrumentation time. Instrumentation then conserva-
tively assumes that I/O failures are possible in such methods. This precision
could be improved by adding a run-time check that verifies the signature of the
actual method called. Of course this would incur some extra overhead. An im-
provement w. r. t. execution time could be achieved by an analysis of test case
execution time, in order to select the fastest test case for re-execution. Further-
more, an analysis of unit test dependencies could help to eliminate selection of
problematic unit tests, which violate the JUnit contract specifying that a test
should be self-contained and idempotent.

The idea of using program steering to simulate rare outcomes may even be
expanded further. Previous work has made initial steps towards verifying the
contract required by hashing and comparison functions, which states that equal
data must result in equal hash codes, but equal hash codes do not necessarily
imply data equality [1,19]. The latter case is known as a hash code collision, where
two objects containing different data have the same hash code. This case cannot



be tested effectively since hash keys may vary on different platforms and test
cases to provoke such a collision are hard to write for non-trivial hash functions,
and practically impossible for hash functions that are cryptographically secure.
Other mathematical algorithms have similar properties, and are subject of future
work. It is also possible that such ideas can be expanded to coverage of control
structures inside exception handlers, which is still an open problem.

Finally, we are very interested in applying our Enforcer tool to high-quality
commercial test suites. It can be expected that exception coverage will be in-
complete but already quite high, unlike in cases tested so far. This will make
evaluation of test results more interesting.
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