
Testing I/O Failures with Enforcer

Cyrille Artho

National Institute of Informatics, Tokyo, Japan

Abstract. Testing application behavior in the presence of I/O failures is ex-

tremely difficult. The resources used for testing usually work without failure.

Failures typically cannot be initiated on the test suite level and are usually not

tested sufficiently. Essentially, each interaction of the application with the envi-

ronment can result in a failure, making failures hard to test. The Enforcer tool

identifies such potential failures and automatically tests all relevant outcomes of

such actions. It combines the structure of unit tests, coverage information, and

fault injection. By taking advantage of a unit test infrastructure, performance can

be improved by orders of magnitude compared to previous approaches. This pa-

per introduces the usage of the Enforcer tool.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in software [4].

Coverage measurement tools provide a quantitative measure of the quality of a test

suite [4]. Uncovered (and thus untested) code may still contain faults. A severe limita-

tion of testing is non-determinism, given by both the thread schedule and the actions

of the environment. The Enforcer tool targets non-determinism given by potential I/O

failures of the underlying system [1]. Typically the successful case is easy to test, while

the failure case can be nearly impossible to trigger. For instance, simulating network

outage is non-trivial. Enforcer does not try to cause underlying system calls to fail, but

instead it injects a failure into the program at run-time to create the same behavior that

would have resulted from a system failure.

Similar tools exist that inject faults into the program and thus improve coverage of

exception handlers [2,3]. However, previous tools have not taken the structure of unit

tests into account and thus required re-running the entire test suite for each uncovered

exception. Therefore, for m unit tests and n uncovered exceptions, previous approaches

had a run-time of O(m ·n). Enforcer only repeats one unit test per uncovered exception,

yielding a run-time of O(m + n), improving performance by several orders of magni-

tude [1]. The tool operates in three stages, which are described in detail in previous

work [1]:

1. Code instrumentation, at compile time or at class load time. This includes injecting

code for coverage measurement and for execution of the repeated test suite.

2. Execution of unit tests. Coverage information is now gathered.

3. Re-execution of certain tests, forcing execution to take new paths. This has to be

taken into account by coverage measurement code, in order to require only a single

instrumentation step.

2 Usage of the Enforcer tool

Fundamentally, the three steps described above can be broken down into two categories:

Static code analysis, which instruments method calls that may throw exceptions, and

run-time analysis. Run-time analysis includes coverage measurement and re-execution

of certain unit tests.

Code instrumentation is entirely static, and can be executed at compile-time, after

compilation of the application source code, or at class load time. Enforcer supports

both modes of operation. Static instrumentation takes a set of class files as input and

produces a set of instrumented files as output. Class files requiring no changes are not

copied to the target directory, because the Java classpath mechanism can be used to

load the original version if no new version is present. Static instrumentation is invoked

as follows:

java -jar enforcer.jar [-d <outdir>] [--options...] class [class...]

The output directory is where the instrumented class files are written. Alterna-

tively, Enforcer can be invoked at load-time. In this mode, the new Java instrumentation

agent mechanism is used [5]. Instrumentation is invoked by appending the argument

“-javaagent:enforcer.jar” to the java command. Load-time instrumentation is

very elegant in the sense that it does not entail the creation of temporary files and

reduces the entire usage of the enforcer tool to just adding one extra command line

option. There is no need to specify a set of input class files because each class file is

instrumented automatically when needed, i. e., when it is loaded at run-time. Unfortu-

nately, the new agent instrumentation interface of Java 1.5 is not yet very mature and

sometimes produces incorrect results when dynamic class loading is used.

Execution of the original and repeated tests is performed automatically. If the in-

strumentation agent mechanism cannot be used, the command to run the JUnit test suite

has to be executed as a second step after instrumentation. This does not require any ad-

ditional arguments, since the extra behavior is inserted as program code. However, it

requires a correct CLASSPATH setting, which contains the output directory of the prior

instrumentation step. It is assumed that the test suite is started via main through a call

to junit.textui.TestRunner.run(TestSuite suite) or a similar call, e. g. using

the GUI test runner. Tests are automatically wrapped such that coverage information

can be gathered.

For execution of repeated tests, no special reset mechanism is necessary. In JUnit,

each test is self-contained; test data is initialized from scratch each time prior to execu-

tion of a test. Therefore re-execution of a test just recreates the original data set. After

execution of the original and repeated tests, a report is printed which shows the num-

ber of executed methods calls that can throw an exception, and the number of executed

catch clauses which were triggered by said method calls. If instrumentation occurs at

load time, then the number of instrumented method calls is also shown. The Enforcer

output is shown once the JUnit test runner has finished (see Figure 1).

The output can be interpreted as follows: 37 method calls that declare exceptions

were present in the code executed. Out of these, 32 were actually executed, and five

belong to untested or dead code. Two uncovered paths from an executed method call

to their corresponding exception handler exist. Therefore two tests are run again; the

2

Time: 0.402

OK (29 tests)

*** Total number of instrumented method calls: 37

*** Total number of executed method calls: 32

*** Total number of executed catch blocks: 30

*** Tests with uncovered catch blocks to execute: 2

..

Time: 0.001

OK (2 tests)

*** Total number of executed method calls: 32

*** Total number of executed catch blocks: 32

*** Tests with uncovered catch blocks to execute: 0

Fig. 1. Enforcer output when running the wrapped JUnit test suite.

second run covers the remaining paths. Note that the second run may have covered

additional method calls in nested try/catch blocks. This would have allowed increased

coverage by launching another test run to cover nested exceptions [1].

Table 1 shows the condensed results of experiments performed [1]. For each case,

the number of tests, the time to run the tests, and the time to run them under Enforcer

(where the outcome of exceptions are tested in addition to normal testing) are shown.

Note that out of a certain number of calls to I/O methods, typically only a small frac-

tion are covered by original tests. Enforcer can cover most of the missing calls, at an

acceptable run-time overhead of factor 1.5 – 5. With previous tools [2,3], re-execution

of the entire test suite would have lead to an overhead proportional to the number of test

cases, which is orders of magnitudes higher even for small projects. For instance, the

Informa test suite comprises 119 tests taking about 33 seconds to run. When analyzing

that test suite with a previous-generation fault injection tool, the entire test suite would

have had to be run another 136 times (once for each unexecuted exception), taking at

about an hour and a half, rather than three minutes when using Enforcer.

Table 1. Results of unit tests and injected exception coverage.

Application # Time Time, # exec. # unex. Cov. Cov.

or library tests [s] Enforcer [s] calls catch (orig.) (Enforcer)

Echomine 170 6.3 8.0 61 54 8 % 100 %

Informa 119 33.2 166.6 139 136 2 % 80 %

jZonic-cache 16 0.4 0.7 8 6 25 % 100 %

SFUtils 11 76.3 81.6 6 2 67 % 100 %

SixBS 30 34.6 94.3 31 28 10 % 94 %

STUN 14 0.06 0.7 0 0 0 % 0 %

XTC 294 28.8 35.5 112 112 0 % 92 %

3

3 Conclusions and Future work

Enforcer covers potential I/O failures of an application. Coverage measurement de-

termines which method calls may fail, but did not fail under a given test run. After

execution of the default test suite, a new test suite containing candidates for improved

coverage is automatically constructed and executed. Exceptions are simulated through

fault injection. Future work includes precision and performance improvements.

Currently a potential for false positives exists because the exact type of a method is

not always known at instrumentation time. Instrumentation then conservatively assumes

that I/O failures are possible in such methods. This precision could be improved by

adding a run-time check that verifies the signature of the actual method called. Of course

this would incur some extra overhead.

While the performance of the tool is very satisfactory, and coverage measurement

incurs little overhead, one improvement is still possible. In the existing version, the

unit test currently running is determined via reflection techniques. This is somewhat

expensive and uses functions that are only available in JDK 1.5 or newer. Moving this

functionality into the test wrapper is both conceptually more elegant, slightly faster, and

will enable Enforcer to run on older versions of Java.

References

1. C. Artho, A. Biere, and S. Honiden. Enforcer – efficient failure injection. In Proc. Intl.

Conference on Formal Methods (FM 2006), Canada, 2006.

2. G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic failure-path inference: A generic

introspection technique for Internet applications. In Proc. 3rd IEEE Workshop on Internet

Applications (WIAPP 2003), page 132, Washington, USA, 2003. IEEE Computer Society.

3. C. Fu, B. Ryder, A. Milanova, and D. Wonnacott. Testing of Java web services for robustness.

In Proc. ACM/SIGSOFT Intl. Symposium on Software Testing and Analysis (ISSTA 2004),

pages 23–34, Boston, USA, 2004.

4. D. Peled. Software Reliability Methods. Springer, 2001.

5. Sun Microsystems, Santa Clara, USA. Java 2 Platform Standard Edition (J2SE) 1.5, 2004.

http://java.sun.com/j2se/1.5.0/.

4

	Testing I/O Failures with Enforcer
	Cyrille Artho

