Enforcer — Efficient Failure Injection

Cyrille Artho!, Armin Biere?, and Shinichi Honideh

1 National Institute of Informatics, Tokyo, Japan
2 Johannes Kepler University, Linz, Austria

Abstract. Non-determinism of the thread schedule is a well-known jerob
in concurrent programming. However, other sources of natesthinism exist
which cannot be controlled by an application, such as nétawaailability. Test-
ing a program with its communication resources being uthalvi@ is difficult, as
it requires a change on the host system, which has to be cabedi with the test
suite. Essentially, each interaction of the applicatiothvtihe environment can
result in a failure. Only some of these failures can be te<den work identifies
such potential failures and develops a strategy for testihgelevant outcomes
of such actions. Our tool, Enforcer, combines the struabfirenit tests, coverage
information, and fault injection. By taking advantage ofrét tiest infrastructure,
performance can be improved by orders of magnitude comgarprevious ap-
proaches. Our tool has been tested on several real-wordglgoms, where it found
faults without requiring extra test code.

1 Introduction

Testing is a scalable, economic, and effective way to undawits in software [19,21].
Even though it is limited to a finite set of example scenaribis very flexible and
by far the most widespread quality assurance method todssing is often carried
out without formal rigor. However, coverage measuremeuistprovide a quantitative
measure of the quality of a test suite [7,21]. Uncovered tand untested) code may
still contain faults.

In practice, the most severe limitation of testing is noted®inism, given by both
the thread schedule and the actions of the environment. yt caase a program to
produce different results under different schedules, evitin the same input. Non-
determinism has been used in model checking to model chtlie¢fave several pos-
sible outcomes [25]. Usually, three kinds of non-detersrmiare distinguished [20]:
non-determinism arising from different thread schedulesn choices made by the
environment, and from abstractions within an applicatibime latter is an artifact of
abstraction in static analysis and not of concern here. digterminism arising from
different thread schedules has been tackled by previouk imaun-time verification
and is subject to ongoing study [1,23]. This paper focusesamndeterminism arising
from unexpected failures by the environment, such as sytieany calls.

For system calls, there are usually two basic outcomesessar failure. Typically
the successful case is easy to test, while the failure casbeaearly impossible to
trigger. For instance, simulating network outage is naviak. If a mechanism exists,
though, testing both outcomes will be very efficient, onlguiging a duplication of a

particular test case. Existing ad-hoc approaches incladerfing out small blocks of
code in order to manually test error handlers, or addingadidgs to conditionals that
could trigger outcomes that are normally not reachable bgatiing test data alone.
Figure 1 illustrates this. In the first example, any excaptiandling is performed by
a special method, which can be tested separately, but ddesame access to local
variables used by the caller. In the second example, whistirtspired our work, the
unit test has to set a special flag which causes the erroringratide to run artificially.

try {
try { if (testShouldFail) {
socket = new Server Socket (); t hrow new | CException();
} catch (1 OException e) { }
handl el OExcepti on(); socket = new Server Socket ();
/'l error handling code } catch (1 OException e) {
} /1 error handling code
}
Factoring out error handling. Extra conditional for tegtin

Fig. 1. Two manual approaches for exception handler coverage.

The Java programming language uses exceptions to sighakfaf a library or sys-
tem call [12]. The ideas in this paper are applicable to ahgioprogramming language
supporting exceptions, such as C++ [24], Eiffel [17], or @8][When an exception is
thrown, the current stack frame is cleared, and its conggiiced with a single instance
of typeExcept i on. This mechanism helps our goal in two ways:

— Detection of potentially failed system calls is reducedi®analysis of exceptions.
— No special context data is needed except for informationasoed in the method
signature and the exception.

Our tool is built on these observations. It systematicallglgzes a program for untested
exceptional outcomes of library method calls by using fanj#ction [13]. Automati-
cally instrumented code measures coverage of unit tests exceptions, utilizing the
Java reflection API to extract information about the curtest case. After execution
of the test suite, a number of tests is re-executed with fajttion enabled, triggering
previously untested exceptions. Our tool wraps invocatibrepeated tests automati-
cally, i.e., only one launch of the test suite is requiredtzyuser.

Similar tools have analyzed exception handling in Java @akimproved cover-
age by fault injection [4,11]. Previous tools have not belgle & connect information
about unit tests with exception coverage. Our tool gatherthad signature informa-
tion statically and the remaining data at run-time. Beirtggnated with unit testing, it
avoids re-executing the entire program many times, anétber can scale to test suites
of large programs. It also supports tuples of failures whealyering test outcomes at
run-time. Our tool is fully automated and can test the outeoffrsignificant failure sce-
narios in real software. By doing so, it finds faults in presty untested code, without
requiring a single extra line in the test setup or test code.

The contribution of our work is as follows:

— We present a fully automated, high-performance approaghthering specialized
coverage information which is integrated with JUnit.

— Fault injection is based on a combined static and dynamilysisa

— Tuples of faults are supported based on dynamically gatlieata.

Section 2 gives the necessary background about sourcedwé$aconsidered here,
and possible implementation approaches. Section 3 desavilr implementation used
for experiments, of which the results are given in SectioBektion 5 describes related
work. Section 6 concludes and outlines future work.

2 Background

An exceptionas commonly used in many programming languages [12,1 4] B\@i-
cates an extraordinary condition in the program, such agrtbeailability of a resource.
Exceptions are used instead of error codes to return infimmabout the reason why
a method call failed. Java also suppagteors, which indicate “serious problems that
a reasonable application should not try to catch” [12]. Almet call that fails may
“throw” an exception by constructing a new instancg afa. | ang. Exception or a
subtype thereof, and using ar ow statement to “return” this exception to the caller. At
the call site, the exception will override normal controlflarhe caller may install an
exceptiorhandlerby using the ry/cat ch statement. Ary block includes a sequence
of operations that may fail. Upon failure, remaining instrans of thetry block are
skipped, the current method stack frame is replaced by k& Btame containing only the
new exception, and control is transferred to the exceptérdter, indicated in Java by
the correspondingat ch block. This process will also be referred toaasor handling.

The usage and semantics of exceptions covers a wide rangshavibrs. In Java,
exceptions are used to signal the unavailability of a reso(e.g., when a file is not
found or cannot be written), failure of a communication (evghen a socket connec-
tion is closed), when data does not have the expected foonatmply for program-
ming errors such as accessing an array at an illegal index flliadamentally different
types of exceptions can be distinguishébhcheckedexceptions anadheckedexcep-
tions. Unchecked exceptions are of typumt i meExcept i on and do not have to be de-
clared in a method. They typically concern programmingmsirsuch as array bounds
overflows, and can be tested through conventional meansh®ather hand, checked
exceptions have to be declared by a method which may thraw.tReilure of external
operations results in such checked exceptions [4,10]. Wbik therefore focuses on
checked exceptions. For the remainder of this papenegked method caléfers to a
call to a method which declared checked exceptions.

Code instrumentatiooonsists of injecting additional code into an applicatioror-
der to augment its behavior while not affecting the origioethavior, or only changing
it in a very limited way. It corresponds to a generic form gb@st-oriented program-
ming [14], which organizes code instrumentation into a ¢t of operations. Anit
testis a procedure to verify individual modules of codetest harnesgxecutes unit
tests.Test suitecombine multiple unit tests into a single set. Execution diregle

unit test is defined atest executionrunning all unit tests atest suite executionin
this paper, aepeated test suitdenotes an automatically generated test suite that will
re-execute certain unit tests, which will be referred toegeated tests.

Program steering [15] allows overriding normal executiawflProgram steering
typically refers to altering program behavior using apgiicn-specific properties [15],
or as schedule perturbation [23], which covers non-detd@emi in thread schedules.
Fault injection [13] refers to influencing program behavigrsimulations failures in
hardware or software.

Coveragenformation describes whether a certain piece of code has brecuted
or not. In this paper, only coverage of checked method callglevant. The goal of
our work was to test program behavior at each location wheremions are handled,
for each possible occurrence of an exception. This corretpto theall-e-deactscri-
terion [22]. Treating each checked method call individpallows distinction between
error handling before and after a resource, or several ressphave been allocated.

The first source of potential failures considered here gretioutput (1/0) failures,
particularly on networks. The problem is that a test envinent is typically set up to
test the normal behavior of a program. While it is possibléstoporarily disable the
required resources by software, such as shell scripts,atiiins often affect the entire
system running, not just the current application. Furtheemit is difficult and error-
prone to coordinate such system-wide changes with a tesébsrThe same applies to
certain other types of 1/O failures, such as running out skdipace, packet loss on a
UDP connection, or communication timeout. While the presesf key actions such as
resource deallocations can be checked statically [6,28fcsanalysis is imprecise in
the presence of complex data structures. Testing can antlgzxact behavior.

The second goal is to cover potential failures of externabpams. It is always
possible that a system call fails due to insufficient resesioy for other reasons. Testing
such failures when interacting with a program through hpt&rcess communication
such as pipes is difficult and results in much testing-specdde.

Our tool, Enforcer, is written in Java and geared towardsifes which are sig-
naled by Java exceptions. There exist other hard-to-tesatipns that are not available
in Java: In C programs, pointer arithmetic can be used. Thetexddress returned by
memory allocation cannot be predicted by the applicatiansing portability and test-
ing problems for low-level operations such as sorting datahleir physical address.
Other low-level operations such as floating point calcat&imay also have different
outcomes on different platforms.

The idea of using program steering to simulate rare outconagven be expanded
further. Previous work has made initial steps towards y&nf the contract required by
hashing and comparison functions, which states that ecatal must result in equal
hash codes, but equal hash codes do not necessarily im@yedatlity [2,12]. The
latter case is known as a hash code collision, where two tsh{mtaining different
data have the same hash code. This case cannot be testdivaifexince hash keys
may vary on different platforms and test cases to provoké suollision are hard to
write for non-trivial hash functions, and practically ingsible for hash functions that
are cryptographically secure. Other mathematical algonit have similar properties,
and are subject of future work.

3 Implementation

Java-based applications using JUnit [16] for unit testiagehbeen chosen as the tar-
get for this study. Java bytecode is easy to understand aldie@mented. JUnit is
widely used for unit testing. In terms of programming cousts, the target consists
of any unthrown exceptions, i.e., checked method calls e/herorrespondingat ch
statement exists and theat ch statement was not reached from an exception origi-
nating from said method call. Only checked exceptions wersicered because other
exceptions can be triggered through conventional testit]. Artificially generated
exceptions are initialized with a special string denothnag this exception was triggered
by Enforcer.

A key goal of the tool is not to have to re-execute the entisegaite after coverage
measurement. Therefore the project executes in threesstage

1. Code instrumentation, at compile time or at class loaéd tifis includes injecting
code for coverage measurement and for execution of the texpsst suite.

2. Execution of unit tests. Coverage information is now gegi.

3. Re-execution of certain tests, forcing execution to taéw paths. This has to be
taken into account by coverage measurement code, in ordegtire only a single
instrumentation step.

As a consequence of treating each checked method call thtrejust each unit test
individually, a more fine-grained behavior is achieved.eawit test may execute sev-
eral checked method calls. Our approach allows for re-di@gindividual unit tests
several times within the repeated test suite, injectingffergint exception each time.
This achieves better control of application behavior, &rédmaining execution path
after an exception is thrown likely no longer coincides itk original test execution.
Furthermore, it simplifies debugging, since the behavighefapplication is generally
changed in only one location for each repeated test execudiot tests themselves are
excluded from coverage measurement and fault injectioaxesption handlers within
unit tests serve for diagnostics and are not part of the hapication. We did not
consider random fault injection [8], as our goal is to achikigh coverage in a reli-
able way, and to take advantage of the structure of unit testaaking fault injection
scalable. Simply injecting exceptions at random would inexp@-running the entire test
suite, and does not necessarily guarantee high coverage.

The intent behind the creation of the Enforcer tool is to esdmologies that can be
combined with other approaches, such that the system uesiefSUT) can be tested
in a way that is as close to the original test setup as possiliide still allowing for
full automation of the process. Code instrumentation falthis requirement perfectly,
since the code generated can be executed on the same plagdim original SUT.
Instrumentation is performed directly on Java bytecodé. [Efiis has the advantage
that the source code of libraries is not required.

3.1 Re-execution of test cases

After execution of the original test suite, coverage infation is evaluated. For each
exception that was not thrown, the test case that covereddiresponding checked

method call is added to the repeated test suite. Executidgheofepeated test suite
follows directly after coverage evaluation. Instrumentede handling test execution
re-executes the repeated test suite as long as uncoveregtiexs exist, and progress
is being made w.r.t. coverage (for nesteg/cat ch blocks, see below). Each time, a
new repeated test suite is constructed on the fly by the Eeffoun-time library, and
then executed.

3.2 Injecting exceptions

The final change to the application by instrumentation vatce tests to go through a
different path when re-executing. Two points have to bertéki® consideration: Where
the exception should be thrown, and how.

In our implementation, exceptions are triggered just kefdrecked method calls.
A try block may include several checked method calls. By gemgyath exception
before each corresponding checked method call, steeninglaies actions that were
successful up to the last critical operation. If the progtiardeterministic, it can be
assumed that thier y block will not fail before that point in repeated test exéont as
all inputs leading up to that point are equal.

try {

curr_id = __ID _; /* to register exception coverage */

/* fault injection code */

if (enforcer.rt.Eval.reRunID == __ID) { // __ID_ = static
throw new ... Exception()
/1 Exception type depends on catch bl ock argunent

}

/* checked method call in the original code */

cal | _nmet hod_t hat _decl ares_checked_excepti ons()

/* coverage code */
enforcer.rt. Coverage. recor dMvet hodCoverage(__ID)

/1 sanme instrunentation for each checked nethod cal
} catch(...Exception e) {
enforcer.rt. Coverage. recordCat chCoverage[curr_id] = true

/1 one instrunentation for each catch bl ock

/* original catch block follows */

Fig. 2. Instrumented code itry/fi nal | y blocks.

Generating exceptions when running the repeated testisa@itdhieved by inserting
code before and after checked method calls. It is possiblethie same test case calls
several such methods, but only a single exception shouldtiiially triggered for

each test execution. Achieving this is difficult becausedhecked method call ID is
not known by the test suite or the test case at run time. Duggpé test wrapper is used
to wrap each test and set the necessary steering informmtarto each individual test
execution. Figure 2 shows the resulting code to be addeddioteg/cat ch block,
which records coverage in the initial test execution andiapjprogram steering when
executing the repeated test suite. At each checked methipdaide is inserted before
and after that method call. Note that the value ofD__ is determined statically and
replaced by a unique constant each time when instrumentaties place.

The inserted code before each checked method call injegls fdt compares its
static ID to the index of the exception to be generated. Tdex,r eRunl D, is set by
the test wrapper. Due to the uniqueness of the ID, it is tloeegiossible to instrument
many checked method calls, but still only inject a fault inregke such method call. If
the IDs match, an exception of the appropriate type is cootd and thrown. A num-
ber of possible constructors for exception instances gppated, covering all com-
monly used exception constructors where reasonable defguiments can be applied.
Sometimes the signature of a called method cannot be detednait compile time. In
such cases it is conservatively assumed that the methodmray &n exception of the
type declared in theat ch clause?

3.3 Coverage measurement

Coverage of exceptions thrown is recorded by instrumerddd mside eactr y block,
and at the beginning of eaafat ch block. Coverage withiri ry blocks is recorded
as follows: Whenever a checked method call that may throwxaepion returned
successfully, the test case further up in the calling chahe¢orded, such that this test
case can be re-run later. This is performed by a call to thereaf run-time library
with the static ID of the checked method call as argumentEsgare 2). The run-time
library evaluates the stack trace in order to find the cladswathod name of the current
unit test.

Coverage information about executed exception handlaecisrded by inserting
code at the beginning of eacht ch block. Before each checked method call, the ID of
that method is stored in local varialder r _i d. This allows the coverage measurement
code within the exception handler to know which checked m@ttaused an exception.
A try block may contain several checked method calls, each onériggjinstrumen-
tation; the correspondingat ch block, however, only requires a single instrumenta-
tion, because the usageafrr _i d allows for registering coverage of several checked
method calls.

3.4 Extension to nested exception handlers

Nested exceptions can be responsible for program behdwibronly occurs in ex-
tremely rare circumstances, such as when both a disk andvankdtilure are present.

3 This assumption has to be made if the type of the method cérendétermined due to incom-
pleteness of alias analysis, or usage of dynamic classrigaliimay introduce false positives.

A graceful recovery from such failures is difficult to implent, and therefore we found
it very important to support combined failures by injectmfrtuples of faults.

Nestedt ry statements cause no additional problems for the algoritbscribed
above. Figure 3 shows an example with two nestadblocks. There are three possi-
ble final values foi in this program: 2, when no exception occurs; 3, when therinne
exceptione; occurs; and 4, if the outer exceptienis thrown. Botht ry statements are
reachable when exceptions are absent. Therefore, if edth@re, are not covered by
the normal test suite, our algorithm either foregsfteri has been setto 1, @ when
i equals 2.

int i =0;
try { /Il try 1
cal | _nethod_t hrowi ng_exceptions();
i =1;
try { /Il try 2
cal | _nethod_t hrowi ng_exceptions();

i = 2;
} catch (Exception e2) { // catch 2
i =3
}
} catch (Exception el) { /1 catch 1

i = 4
}

Fig. 3. Nested ry statements.

However, the design described so far is limited ty blocks which do not occur
inside other exception handlers. Fortunately, even thse od nesting can be covered
quite elegantly. In nesteid y blocks, execution of the innéry block may depend on
the outercat ch block being executed. Suppose the outarch block is not executed
by initial tests, but only by the repeated test suite. Theatgd test suite may again not
cover the innecat ch block. Figure 4 illustrates such difficulties arising witested
trylcat ch statements. The compiler generates two exception harfdlettss code.

When no exceptions occur in this example, the final valué eduals 1. Let us
call that scenario run 0, the default test execution witlstekring. Subsequent re-runs
of this test will try to force execution through eacht ch block. The outercat ch
blocks can be triggered with the algorithm described soRapeated test execution 1
thus forces correspondirgt ch clause 1 to be executed, settintp 2. Furthermore,
coverage measurement will now register the repeated testaadidate for covering
cat ch block 2. This will constitute the new repeated test suitet@imimg run 2, which
has the goal of forcingat ch block 2 to be reached. However, injecting exception
e requires reachingat ch block 1. This is only the case in run 1; run 2 therefore
would never reach the fault injection code if ordy was injected. In order to solve
this problem, one has to injesetsof faults, not just single faults. In the example of
Figure 4,e; has to be injected for both runs 1 and 2. Coverage measurément 1
registers that run 1 has executad block 2; therefore botle; ande, are injected in

int i =0;
try { /Il try 1
cal | _nmet hod_t hr owi ng_exceptions();
i =1,
} catch (Exception el) { /1 catch 1
try { Il try 2
cal | _nmet hod_t hr owi ng_exceptions();
i = 2;
} catch (Exception e2) { // catch 2
i =3
}

Fig. 4. A try block inside an exception handler.

run 2. In our implementation, we restricted the nesting kdetexception handlers to
one, as this does not require nested dynamic data strudturdse run-time library. In
practice, a nesting depth greater than two is rare, and canfgorted by using vectors
of sets.

Because of such initially uncoverédy blocks, coverage of nested exceptions may
require the construction of several repeated test suites.fifst one includes a unit
test for each uncovered checked method call. Execution®fépeated test suite may
cover other previously unreachédy blocks, which are target of the next iteration.
The iteration of repeated test suites terminates when ngr@ss is made for coverage.
Hence, certain unit tests may be executed several timeinwith same iteration (for
different exceptions) and across iterations.

3.5 Complexity

The complexity incurred by our approach can be divided wm parts: Coverage mea-
surement, and construction and execution of repeateduiéss sCoverage is measured
for each checked method call. The code which updates rumdata structures runs in
constant time. This overhead is of coverage measuremergpegional to the number
checked method calls executed at run-time.

Execution of repeated test suites may incur a larger ovdrhea each uncovered
exception, a unit test has to be re-executed. However, eaabvared exception incurs
at most one repeated test. Nested exceptions may requitipl@irhjected faults for a
repeated test. The key to a good performance is that only wibéest, which is known
to execute the checked method call in question, is repeladege projects contain hun-
dreds or thousands of unit tests; previous approaches,j41@ould re-execute them
all for each possible failure, while our tool only re-exezgibne unit test for each fail-
ure. This improves performance by several orders of madeiand allows our tool
to scale up to large test suites. Moreover, the situatiorvés enore favorable when
comparing repeated tests with an ideal test suite featfuthgoverage of exceptions
in checked method calls. Automatic repeated executionsifaases does not require
significantly more time than such an ideal test suite, bexéues only minor overhead
that could be eliminated lies in the instrumented code. Gaegbto manual approaches,

our approach finds faults without incurring a significantinvad, with the additional
capability of covering outcomes that are not directly telgta

4 Experiments

To ensure solid quality of the implementation, 30 test @assere written to test dif-
ferent aspects and problem cases for code instrumentatvarage measurement, and
test execution. Due to rigorous testing, the tool is matur@ugh to be applicable to
large and complex programs. Therefore, several real-wapfdications and libraries
were used to demonstrate the usefulness of the approacbrtimdtely, realistic Java
programs using both network I/0 and JUnit-based test saitebard to come by. A web
search for Java applications and JUnit returns tools amdrlés enhancing JUnit, but
not applications using it. Therefore a different approaels shosen: Based on the list-
ing of all Java program on freshmeat.net[9], 1647 direédito downloadable archives
could be extracted. These resulted in 926 successful atibdwvnloads, where no
registration or manual redirection was used. Out of thepéiggtions, 100 used JUnit
test suites and also employed at least some networkingidunadity. Further criteria,
such as the use of multiple threads and the absence of a Gt# used to narrow down
the selection to 29 applications. Out of these, nine coulddrepiled and run on Java
1.5 with no or minor modifications, and no installations dfdkparty libraries or tools
that were not shipped with the original archives.

Application |Description #| Size #test Testcode
or library classegLOC]|classessize [LOC]
Echomine |Communication services API 144 14331 46 355(
Informa News channel API 150 20687 48 6855
jConfig Configuration library 77 9611 39 2974
jZonic-cachgCaching library 26| 2142 14 737
SFUtils Sourceforge utilities 21 6222 9 1041
SixBS Java beans persistency 34| 4666 9 1072
Slimdog Web application testing framewqrk 30| 1959 11 616
STUN Extensible programming system 27 1704 3 229
XTC Napster search tool 455 7711 57| 8070

Table 1. Applications of which the unit tests were used in the experits.

The main reason for this low number is the fact that the epii@ of applications
included many projects that have been abandoned or not getdmmpleted. Table 1
shows an overview of the applications used. The first two rook! briefly describe
each application, while the other columns give an indicatibthe size of each project,
showing the number of classes and the lines of code usedédnr. thhis information is
shown separately for unit test code. The presence of helgesas was responsible for
a rather large number of test classes in some cases.

10

Enforcer was then used on these example applications. Patplees an overview
of the test results. Tests were executed on a dual-proc2ss@Hz PowerPC G5 with
8 GB of RAM and 512 KB of L2 cache per CPU running Mac OS 10.4ke Ta-
ble is divided into three parts. The first part shows the testilts when running the
given test suite. A test failure in JUnit corresponds to awirect value of a property,
while uncaught exceptions are shown as errors. Note tHatdaior errors can either
be caused due to incorrect code or missing components imskedlation. Although it
was attempted to fix any installation-related errors, niatades could be covered.

Application #| #| #| Time| Time, Time,||# instr{# exec|# unex| Cov.#unr{ Cov.
orlibrary [testsfail.|err| [s]|inst. [s]re-ex. [s]| call§ call§ catch(orig.)| catch (inst.)
Echomine | 170 2| 0O 6.3 6.3 1.7 165 61 54 8% 0[100 %
Informa 119 15/ 32| 33.2 34.4 1323 306 139 136 2% 28 80%
jConfig 97, 3| 0| 2.3 4.7 nfal 299 169 162 3% 65 61 %
jZonic-c. 16 2| 0|| 0.4 0.7 0.02 22 8 6| 25 % 0[100 %
SFUtils 110 1) 3|| 76.3 81.4 0.001 112 6 2| 67 % 0[100 %
SixBS 300 O] O|| 34.6 55.6 38.7 56 31 28 10 % 2| 94 %
Slimdog 10 4| 0)|228.6 233.§ n/a 41 15 14 7% n/a n/a
STUN 14 0| 0|| 0.0§ 0.7 0 2 0 0 0% 0| 0%
XTC 294 0| 0O|| 28.3 30.§ 49| 16 112 1121 0% 9| 92 %

Table 2. Results of unit tests and injected exception coverage.

Part two of the table shows the overhead of the instrumematde for measuring
test coverage. Original and instrumented execution timthefnormal test suite are
shown first! The final execution time measurement shows the time needexttte
repeated test suites. This figure depends much on the cevefége test suite and the
nature of exception handlers, and is given for completeritesannot be used to draw
conclusions about the quality of the test suite or the Ermfiotool. A better measure
is actual coverage of exceptions in checked method callshawn by part three of
Table 2.

Part three shows details about code instrumentation anetrage. The number of
instrumented checked method calls is given first, followgdHe number of checked
method calls executed by unit tests. Usually a large numbehecked method calls
never triggered an exception, as shown by the next colummexec. catch”. The fol-
lowing column indicates the percentage of executed chetlettod calls that did gen-
erate an exception. As can be seen, that percentage isltypiesy low. These untested
exception cases may each cause previously undiscovehaafaand were targeted by
the Enforcer tool. In most cases, Enforcer could succdgdfuice inject exceptions;
in some cases, deeply nested exceptions or the lack of adetBrministic test setup
prevented full coverage. The rightmost two columns showntlnaber of such uncov-
ered checked method calls, and the final exception covefftgreEnforcer was used.

4 The time required for code instrumentation itself was rgile.

11

As can be easily seen, Enforcer could often change a neankyxigient coverage to a
nearly full coverage. However, it depends on a test suiteishable to execute checked
method calls in the first place. This criterion is fulfilledfifll statement coverage is
achieved, which is often the case for larger projects [1]veas not the case for the
given programs.

In some cases, injected exceptions affected backgrouaddkrthat were assumed
to be running throughout multiple test cases. When thesattw failed to terminate
properly, or to restart, the test suite would wait indefigiteor them. This was the
case for applications jConfig and Slimdog. In jConfig, suabbems prevented higher
coverage. For Slimdog, two tests had to be disabled even wimgring without instru-
mentation, because the multi-threaded test code was tgibefta execute reliably. In
test setup, the background thread may allocate a port batfdiletco complete initial-
ization, throwing an exception. JUnit does not release aspurces allocated in such
a failed setup. This problem has been discussed in the mdisinand is going to be
addressed in the future. Stopping and restarting the bauokgrthread before each test
run is expected to fix this problem, at the cost of slowing déosgt execution.

The overhead caused by coverage measurement was usudilyibiegas can be
seen by comparing columns one and two of part two of TablexBSis an exception,
where coverage measurement caused a resulting overhesdarftivo. The reason for
this is that instrumentation significantly increased thetime of the thread controlling
the XML parser. This thread contains several exception leasdut relatively little
other code, hence amplifying the usual effect of instrurto on run-time. Reducing
the overhead is going to entail the use of additional datactres in order to avoid
expensive calls to the Java reflection API at run time.

Our tool generated a total number of 352 exceptions for ambckethod calls in
all applications. The majority of these exceptions (20@&nses) concerned I/O, either
on a network or a file. 56 exceptions were generated as pacsptions, while 69 ex-
ceptions were of generic typava. | ang. Except i on and could not be classified more
closely. Finally, 27 exceptions were of other types, sudH &sgal AccessExcepti on.
Exceptions that do not concern I/O were not originally thhgeaof our tool. Nonethe-
less, the fact that these were also triggered frequentlysitwat our tool may partially
replace test case generation when no tests exist for cesta@ptional scenarios.

In most of the 352 cases where an exception was injectedpfilieation ultimately
rethrows the exception in question, usually in a slightffedent form. It was not possi-
ble for us to tell whether this simple behavior was adequBgeause these exceptions
were encountered within unit tests, it is possible that tlennapplication front end
performs some kind of cleanup before shutting down. Howemegeneral, a call to a
low-level library should take exceptions into account. @thise, an I/O exception can
lead to the termination of the entire thread, and usuall\etiteée program. If untested
parts of the application catch such exceptions where usi$ tdo not, then the unit
tests are incomplete since they do not reflect the behavitbrecépplication, failing to
account for exceptional behavior. However, considerirggféttt that some benchmark
programs were libraries to be used by an application, refimgpexceptions may be ac-
ceptable in some cases. Therefore we did not analyze th@sea36s in detail. Many of
them were redundant, as triggering the same exceptioné&afdbm different places in

12

the same ry block often produces equivalent results. Some cases wseegdasitives
arising from incomplete type information at instrumerdattime.

Much more interesting than rethrown exceptions were exzepthat were trig-
gered by failed error handling. These exceptions were ritrgthrown, but caused
by another part of the program that tried to deal with thdahixceptions. A few of
these cases resulted in rethrown exceptions, which weremotted for the reasons
stated above. Table 3 shows the failures resulting fromrieco error handlers. Each
unique program location was only counted once. We found @sféan the nine given
applications this way. As can be seen, the lack of testingrior édandlers caused typ-
ical programming errors to appear (null pointers, illeggluements, failed class casts).
In applications jConfig and Slimdog, the error handling ctéd to re-open a socket
that was already in use, which resulted in termination ofahtire test suite. That de-
fect therefore masked other potential failures. Informataimed various problems in
its fallback code concerning I/O (file not found, generic B&ception, feed manager
failure). These problems could perhaps be solved by a diftaronfiguration; we used
the configuration that came with the default installatioert&inly, it is clear that for
some of the given applications, our tool did not only siguifity improve coverage of
exceptions, but also found several defects in the code.

App./lib. ||FiIeNotFoun INullPointer 1O [FeedManagellegalArgumentBind|ClassCagfTotal
Echomin 1 1 2
Informa 1 4 2 1 1 9
jConfig 1 1
Slimdog 1 1
[Total || 1] 5 2] 1] 1 1 1 12

Table 3. Failures resulting from incorrect error handling.

To summarize, our tool was very successful in improving tteeption coverage of
realistic test suites in a variety of projects. Coveragesusamnent usually only caused
a minor overhead. Without writing any additional code, axXaults were found, where
error handlers for exceptions contained defects. With ttoegtion of certain multi-
threading problems, normal operation of the applicatiststeras not affected by steer-
ing. Some of the triggered exceptions should be tested byetional means. It can
be expected that a higher-quality test suite will not hawesarth uncovered exceptions
left, so our tool would likely produce even better resultstfmroughly tested code.

5 Related work

Test cases are typically written as additional program dod¢he system under test.
White-box testing tries to execute as much program code ssile [19]. In traditional

5 Distinguishing these “secondary” exceptions was trivialtlae injected exceptions were all
marked as such by having a special message string.

13

software testingcoveragemetrics such as statement coverage [7,21] have been used to
determine the effectiveness of a test suite. The key problginsoftware testing is that

it cannot guarantee execution of parts of the system wheredtcome of a decision

is non-deterministic. In multi-threading, the thread stile affects determinism. For
external operations, the small possibility of failure makesting that case extremely
difficult. Traditional testing and test case generationhrods are ineffective to solve
this problem.

Static analysis investigates properties “at compile timéthout executing the ac-
tual program. Non-deterministic decisions are exploretbestively by verifying all
possible outcomes. For analyzing whether resources #dideaie deallocated correctly,
there exist static analysis tools which consider each plessixception location [26].
However, static analysis can only cover a part of the progoatmavior, such as re-
source handling. For a more detailed analysis of prograra\beh code execution (by
testing) is often unavoidable.

Model Checking explores the entire behavior of a system kgstigating each
reachable state. Model checkers treat non-determinisawusstively. Results of system-
level operations have been successfully modeled this wdgtict failures in applica-
tions [5] and device drivers [3]. However, model checkinffens from the state space
explosion problem: The size of the state space is exponhantlze size of the system.

Therefore approaches that directly tackle testing are peoynising, as potential
failures of library calls are independent of non-deterstinithread scheduling. Such
failures can be simulated by fault injection [13]. Randomlffénjection is a black-box
technique and useful on an application level [8]. Our goas wmachieve a high test
coverage, and therefore we target white-box testing teches.

Java is a popular target for measuring and improving errodlivag, as error han-
dling locations are relatively well defined [4,10,11]. Oppaoach of measuring excep-
tion handler coverage corresponds to dilee-deactscriterion [22]. The static analysis
used to determine whether checked method calls may gerexegptions have some
similarity with a previous implementation of such a coveraugtric [11]. However, our
implementation does not aim at a precise instrumentatiothfocoverage metric. We
only target checked exceptions, within the method whenrg tioeur. As the generated
exceptions are created at the caller site, not in the libnagyhod, an interprocedural
analysis is not required. Unreachable statements will perted as instrumented, but
uncovered checked method calls. Such uncovered calls mmegran unnecessary test
run and are therefore benign, but hint at poor coverage ofetstesuite. Furthermore,
unlike some previous work [11], our tool has a run-time congat that registers which
unit test may cause an exception. This allows us to re-egexy a particular unit test,
which is orders of magnitude more efficient than running thigre test suite for each
exception site. Furthermore, our tool can dynamically aliec the need for combined
occurrences of failures when error handling code shouldebelred. Such a dynamic
analysis is comparable to another fault injection apprgéf;tbut the aim of that project
is totally different: It analyzes failure dependenciesile/bur project targets code exe-
cution and improves coverage of error handling code.

Similar code injection techniques are involved in prograeesng [15], which al-
lows overriding the normal execution flow. However, suclestey is usually very prob-

14

lematic because correct execution of certain basic bloel®uds on a semantically
consistent program state. Thus program steering has safarbeen applied using
application-specific properties [15], or as schedule pkéition [23], which only covers
non-determinism in thread schedules. Our work is appbicatndependent and targeted
to fault injection.

6 Conclusions and future work

In software, non-deterministic decisions are not only telig the thread scheduler, but
also by the environment. Calls to system libraries may &ikh failures can be nearly
impossible to test. Our work uses fault injection to achieseerage of such untestable
properties. During test execution, coverage informatsgathered. This information
is used in a repeated test execution to execute previoughpian exception handlers.
The process can be fully automated and still leads to meariagecution of excep-
tion handlers. Unlike previous approaches, we take adgaméthe structure of unit
tests in order to avoid re-execution an entire applicafidris makes our approach or-
ders of magnitude faster for large test suites. The Enfdomdwhich implements this
approach has been successfully applied to several compleapplications. It has exe-
cuted previously untested error handlers and uncoveredadaults. Furthermore, our
approach may even partially replace test case generation.

The area of such generic program steering likely has fudpglications that have
not yet been covered. Future work includes elimination tsefgositives by including
run-time information for method calls whose signature iknown. Another improve-
ment is analysis of test case execution time, in order tacséte fastest test case for
re-execution. The treatment of difficult-to-test outcoroas be expanded to other prop-
erties mentioned in this paper. Finally, we are very intiexé g applying our Enforcer
tool to high-quality commercial test suites. It can be expécthat exception coverage
will be incomplete but already quite high, unlike in casested so far. This will make
evaluation of test results more interesting.

References

1. C. Artho. Combining Static and Dynamic Analysis to Find Multi-threapFaults Beyond
Data RacesPhD thesis, ETH Zirich, 2005.

2. C. Artho and A. Biere. Applying static analysis to largeie, multithreaded Java programs.
In Proc. 13th Australian Software Engineering ConferenceW/&E 2001) pages 6875,
Canberra, Australia, 2001. IEEE Computer Society Press.

3. T.Ball, A. Podelski, and S. Rajamani. Boolean and Caateabstractions for Model Check-
ing C Programs. IfProc. 7th Intl. Conf. on Tools and Algorithms for the Constion and
Analysis of Systems (TACAS 2Q049lume 2031 ofLNCS pages 268-285, Genova, ltaly,
2001. Springer.

4. G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic faHpath inference: A generic
introspection technique for Internet applications.Pioc. 3rd IEEE Workshop on Internet
Applications (WIAPP 2003page 132, Washington, USA, 2003. IEEE Computer Society.

5. C. Colby, P. Godefroid, and L. Jagadeesan. Automaticilsing open reactive programs. In
Proc. SIGPLAN Conf. on Programming Language Design andeémphtation (PLDI 1998)
pages 345-357, Montreal, Canada, 1998.

15

6.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

D. Engler and M. Musuvathi. Static analysis versus safwaodel checking for bug find-
ing. In Proc. 5th Intl. Conf. on Verification, Model Checking and #ast Interpretation
(VMCAI 2004) volume 2937 o£.NCS pages 191-210, Venice, Italy, 2004. Springer.

. N. Fenton and S. PfleegeBoftware metrics (2nd Ed.): a rigorous and practical appha

PWS Publishing Co., Boston, USA, 1997.

. Justin E. Forrester and Barton P. Miller. An empiricaldgtof the robustness of windows

NT applications using random testing. 4th USENIX Windows System Symposipages
59-68, Seattle, USA, 2000.

. Freshmeat, 2005t t p: // freshmeat . net/ .
. C. Fu, R. Martin, K. Nagaraja, T. Nguyen, B. Ryder, and @nwacott. Compiler-directed

program-fault coverage for highly available Java intesetices. IProc. 2003 Intl. Conf.
on Dependable Systems and Networks (DSN 2q28)es 595-604, San Francisco, USA,
2003.

C. Fu, B. Ryder, A. Milanova, and D. Wonnacott. Testingafa web services for robustness.
In Proc. ACM/SIGSOFT Intl. Symposium on Software Testing araly8is (ISSTA 2004)
pages 23-34, Boston, USA, 2004.

J. Gosling, B. Joy, G. Steele, and G. Brachkéhe Java Language Specification, Second
Edition. Addison-Wesley, 2000.

M. Hsueh, T. Tsai, and R. lyer. Fault injection techngjaad tools. IEEE Computer
30(4):75-82, 1997.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Rand W. Griswold. An overview of
Aspect].LNCS 2072:327-355, 2001.

M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Ntwimg, checking, and steer-
ing of real-time systems. IRroc. 2nd Intl. Workshop on Run-time Verification (RV 2002)
volume 70 ofENTCS Elsevier, 2002.

J. Link and P. FréhlichUnit Testing in Java: How Tests Drive the Codéorgan Kaufmann
Publishers, Inc., 2003.

B. Meyer.Eiffel: the language Prentice-Hall, Inc., Upper Saddle River, USA, 1992.
Microsoft Corporation.Microsoft Visual C# .NET Language Referenddicrosoft Press,
Redmond, USA, 2002.

G. Myers.Art of Software TestingJohn Wiley & Sons, Inc., 1979.

C. Pasareanu, M. Dwyer, and W. Visser. Finding feasilbigtract counter-examples.
Intl. Journal on Software Tools for Technology TransferT3) 5(1):34—-48, 2003.

D. Peled Software Reliability MethodsSpringer, 2001.

S. Sinha and M. Harrold. Criteria for testing excepfiamdling constructs in Java programs.
In Proc. IEEE Intl. Conf. on Software Maintenance (ICSM 1998)ge 265, Washington,
USA, 1999. IEEE Computer Society.

S. Stoller. Testing concurrent Java programs usingoraiméd scheduling. IRroc. 2nd Intl.
Workshop on Run-time Verification (RV 2002plume 70(4) ofENTCS pages 143-158,
Copenhagen, Denmark, 2002. Elsevier.

B. StroustrupThe C++ Programming Language, Third EditioAddison-Wesley Longman
Publishing Co., Inc., Boston, USA, 1997.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. &atiecking program#\utomated
Software Engineering Journal0(2):203-232, 2003.

W. Weimer and G. Necula. Finding and preventing run-temer handling mistakes. In
Proc. 19th ACM SIGPLAN Conf. on Object-Oriented Prograngrfiystems, Languages &
Applications (OOPSLA 2004pages 419-431, Vancouver, Canada, 2004. ACM Press.

A. White. SERP, an Open Source framework for manipujatiava bytecode, 2002.
http://serp.sourceforge. net/.

16

