
Model-based Network Fault Injection for IoT Protocols

Jun Yoneyama1, Cyrille Artho2, Yoshinori Tanabe3, Masami Hagiya1

1Dept. of Computer Science, The University of Tokyo, Tokyo, Japan
2School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

3Dept. of Library, Archival, and Information Studies, Tsurumi University, Yokohama, Japan
jyoneyama@lyon.is.s.u-tokyo.ac.jp, artho@kth.se, tanabe-y@tsurumi-u.ac.jp, hagiya@is.s.u-tokyo.ac.jp

Keywords: Software Testing, Model-based Testing, Model-based Simulation, Fault Injection, Internet of Things, MQTT

Abstract: IoT devices operate in environments where networks may be unstable. They rely on transport protocols to
deliver data with given quality-of-service settings. To test an implementation of the popular MQTT protocol
thoroughly, we extend the model-based test framework “Modbat” to simulate unstable networks by taking
into account delays and transmission failures. Our proxy-based technology requires no changes to the IoT
software, while the model allows the user to define stateless or stateful types or fault patterns. We evaluate our
methods on a client-server library for MQTT, a transport protocol designed for IoT.

1 Introduction

In this paper, we extend methods of model-based
testing for testing Internet of Things (IoT) protocols
in an unreliable network environment. Model-based
testing is suitable to generate many different test sce-
narios, and may cover many execution paths. How-
ever, while it is easy to describe the behavior of each
device in model-based testing, it is difficult to de-
scribe the behavior of the whole system.

To this end, we use models to control a simulation
environment that injects network faults. Our work
is integrated in the open-source model-based testing
tool Modbat (Artho et al., 2013) and combines two
approaches:

1. We enhance Modbat with three extensions, which
add a notion of time, facilitate modeling variable
error rates, and simplify error handling.

2. We simulate unstable networks during test execu-
tion. Our mechanism simulates instability using a
software layer that enables easy fault injection.

Compared to existing work, we apply the simula-
tion directly to implementations of IoT protocols, and
inject faults entirely in a software environment, with-
out modifying the system under test. Our approach
thus allows us to evaluate the robustness of the MQTT
implementation.

This paper is structured as follows. Section 2 de-
scribes the background of this research and related
work. Section 3 describes the definitions and imple-

mentations of our extensions. The methods and the
results of the experiments are described in Section 4.
Section 5 concludes and discusses future work.

2 Background and Related Work

This section gives background and describes re-
lated work on model-based testing and simulation,
fault injection, IoT, and the MQTT protocol.

2.1 Model-based Testing

Software testing is a method to find defects in soft-
ware by executing parts of the software. The target
software for the test is called system under test (SUT).
A test case consists of an input and an expected out-
put, which is compared with the actual output.

Model-based testing uses abstract models to gen-
erate test cases automatically (Utting et al., 2012).
Typically, many concrete test cases can be derived
from a given test model. There exist many tools for
model-based testing, such as QuickCheck (Claessen
and Hughes, 2000), ScalaCheck (Nilsson, 2015),
SpecExplorer (Veanes et al., 2008), and Mod-
bat (Artho et al., 2013).

2.2 Model-based Simulation

Model-based simulation derives a simulation from an
abstract model, typically using graph transformation

techniques (Kosiuczenko and Lajios, 2007; Torrini
et al., 2010). This technique has been applied to
simulate networks (Khan et al., 2009) or mobile sys-
tems (Heckel and Torrini, 2010), among many oth-
ers. The differences to model-based testing are that
the stimuli to the SUT are indirect, via a simulated
environment rather than a direct input, and that the
exact output is usually not known.

Models have also been used to directly analyze the
correctness or performance of IoT protocols, for ex-
ample MQTT (Houimli et al., 2017) and related pro-
tocols (Alvi et al., 2015; De Rubertis et al., 2013).
Our work differs in that we analyze the performance
of a running system rather than an abstract model.

2.3 Fault Injection

Fault injection introduces errors into the system ar-
tificially in order to test the robustness of the sys-
tem (Ziade et al., 2004), (Hsueh et al., 1997). Con-
ceptually, fault injection is related to mutation test-
ing (Jia and Harman, 2011) or fuzz testing (Oehlert,
2005) in that mutations or changes to inputs are ap-
plied at the protocol layer, to simulate faults in the
behavior of the network or some of the nodes send-
ing data on it (Dadeau et al., 2011; Jing et al., 2008;
Zhang et al., 2012).

Closely related to our work is an evaluation of
the effect of network errors on a Myrinet network
interface hardware by using simulated and software-
implemented fault injection (Stott et al., 1998). Both
methods modify the system under test (SUT) to inject
faults. Our work differs in that we inject faults in an
intermediary component, without modifying the SUT.
This is similar to jepsen (Kingsbury, 2018), which
injects faults at the level of system virtualization by
parametrizing various aspects of system reliability for
the duration of testing.

2.4 IoT and Testing

IoT devices are expected to operate in a potentially
unstable network environment; hence, much work ex-
ists on testing IoT-related transport protocols and their
impact on systems. Transport protocols designed for
IoT devices include MQTT (Banks and Gupta, 2014)
and CoAP (Bormann, 2016).

MQTT uses publish/subscribe protocol in which
multiple clients exchange messages via a server,
called “broker”. Each message has a payload, a topic
name and a value named Quality of Service (QoS).
Our work focuses on QoS. MQTT protocol can guar-
antee message arrival even if devices are working in

an unstable network environment where TCP connec-
tions may be lost.

MQTT defines three types of QoS, 0 to 2, as fol-
lows:

QoS 0 Each message is delivered at most once. The
message may be lost during delivery.

QoS 1 Each message is delivered at least once. The
message may be delivered multiple times.

QoS 2 Each message is delivered exactly once.
No message loss or redundant delivery is al-
lowed. (Banks and Gupta, 2014)

Past work has described the MQTT protocol for-
mally (Mladenov et al., 2017) in a test description
language, TTCN-3 (Grabowski et al., 2003). In this
study, and MQTT servers are tested according to a set
of fixed test cases that are derived the specification.
Existing work tested three MQTT server implemen-
tations and found that all of them produced responses
violating the protocol specification. Other protocols
and features are covered by ongoing work (Testware,
2018). In contrast to this work, our models generate
variable test outcomes.

Model-based testing has also been applied to
MQTT (Tappler et al., 2017) and other protocols (Hsu
et al., 2008), with the result of uncovering incon-
sistencies between various implementations. Other
studies evaluate the correlation between message size,
network instability, and performance, by varying net-
work delay and packet loss rate (Thangavel et al.,
2014; Lee et al., 2013). Our approach differs in that
no extra equipment is required, as the network envi-
ronment is entirely controlled by software.

2.5 Extended Finite State Machines

An extended finite state machine (Cheng and Kr-
ishnakumar, 1993) is defined as a 7-tuple M =
(I,O,S,D,F,U,T), where S is a set of states, I is a set
of input symbols, O is a set of output symbols, D is an
n-dimensional vector space D1× . . .×Dn, F is a set of
enabling functions fi s. t. fi : D→{0,1}, U is a set of
update functions ui s. t. ui : D→ D, and T is a transi-
tion relation s. t. T ⊆ (S×F×I)×(S×U×O) (Cheng
and Krishnakumar, 1993). Past work describes details
on EFSMs as used by the model-based tester Mod-
bat (Artho et al., 2013), which we use here.

We propose several extensions to EFSMs for
modeling an IoT simulation environment. The
time extension of EFSMs results in a notation that
is conceptually similar to probabilistic timed au-
tomata (Beauquier, 2003). The differences are that
with our notation, the time interval for a transi-
tion can be a random value between two boundaries

rather than a fixed amount, and that our model al-
lows probabilities to change at run time. Further-
more, our modeling notation is optimized for testing
network software (Artho et al., 2013; Artho et al.,
2017), rather than model checking algorithms (Buly-
chev et al., 2012) or protocols (Kwiatkowska et al.,
2002; Kwiatkowska et al., 2011).

Compared to similar probabilistic extensions of
EFSMs proposed in the past (Park and Miller, 1997;
Paz, 1971), our notion includes changes of transition
probabilities at run-time and has a different notion of
parallelism, by interleaving multiple state machines
instead of having “fork” states in a single state ma-
chine. Our notation of parallelism is inspired by the
one used in parallel statecharts (Mikk et al., 1997),
which has influenced the current generation of model-
based testing tools (Veanes et al., 2008).

2.6 Modbat

We use Modbat (Artho et al., 2013; Artho and
Biere, 2018) in our work. Modbat models use ex-
tended finite state machines that are described in
embedded domain-specific language (DSL) based on
Scala (Odersky et al., 2008). This has the advantage
that the transition functions are seamlessly integrated
with the run-time environment, and that complex data
structures and callback functions can be directly em-
bedded in the model (Artho et al., 2015; Artho et al.,
2013). Furthermore, due to Modbat being based on
Scala, it is very easy to extend the platform with new
features or annotations, because embedded DSLs use
the parser of the host language, Scala.

Test generation in Modbat is done online, and
starts with the initial state of the initial model in-
stance, which implements an EFSM. From the cur-
rent state of that model instance, a transition is cho-
sen at random from all enabled outgoing transitions.
Transitions are enabled or disabled by their precon-
ditions. Whenever a transition is executed, the tran-
sition function may call the SUT, and also check the
result of the call. A transition may carry an optional
label, which allows the model to refer a transition
by name. Finally, transitions may create and launch
new model instances, which start at their own initial
state. If multiple model instances are active, one tran-
sition from all models is chosen at random at each
test step. Modbat therefore implements an interleav-
ing semantics when deriving tests from concurrently
active models (Artho et al., 2013; Artho et al., 2017).

In this work, we use Modbat both for model-based
testing (to execute MQTT implementations), and for
model based-simulation, to control fault injection in
the network simulation environment.

3 Methods

This section describes our extensions for model-
based testing and simulation in Modbat. Section 3.1
gives an informal description of our extensions and
their implementation, and Section 3.2 shows an ex-
ample. Section 3.3 describes a new way of injection
faults into the network environment.

3.1 Modbat Model Extensions

We introduce extensions to model transitions depen-
dent on time intervals, transitions whose probabilities
may change over time, and another extension to han-
dle callbacks more flexibly.

3.1.1 Time

Standard EFSMs (Cheng and Krishnakumar, 1993)
are not affected by time. To model temporary faults
in a system, we want to be able to temporarily sus-
pend a transition, for a random amount of time within
a bounded interval.

We implement this feature with a new annotation
stay(x,y). The annotation applies to a given transi-
tion t and affects all future transitions of that model
instance. The annotation takes two arguments, which
specify the time interval within which the model in-
stance is suspended after t has been executed. If all
active model instances are suspended for a certain
amount of time, test execution resumes after the first
timer has expired.

This extension facilitates modeling temporary
faults but also covers the case where all model in-
stances are temporarily suspended. In the original
version of Modbat (Artho et al., 2013), preconditions
can disable a transition temporarily. However, if no
precondition is satisfied, test execution terminates at
that point. This was because preconditions were as-
sumed to be state-based and not time-based (Artho
et al., 2013). Our new annotation prevents the prob-
lem of terminating tests prematurely in such cases.

3.1.2 Dynamic Weight Change

An EFSM in Modbat behaves probabilistically in ac-
tual test executions according to the weights of the
transitions. The probability of a transition being cho-
sen is proportional to its weight. Fixed transition
weights are useful in generating the desired distribu-
tion of test cases, but only variable transition weights
can reflect temporary changes in the test setting.

In Modbat, weights are expressed by annotation
weight, which takes a double as an argument. Our
extension updates the weight of all functions with

matching labels. It is implemented by a method
setWeight(l,w), which takes a string l and a double
value w, and sets the weights of the transitions whose
labels correspond to l, to w.

In the original version of Modbat, this feature
would have to be expressed using extra preconditions
that use random choices to simulate the same effect.
Our extension allows the simulation of variable error
rates in a very clear way.

3.1.3 Transition Invocation

Extended finite-state machines can describe inputs
and expected (synchronous) outputs well, but call-
back functions have to be modeled outside the transi-
tion functions themselves (Artho et al., 2017). When
describing side effects of a callback, extra variables
have to be used to model its effect on the model state,
and some actions may even affect the global program
state (i. e., the state of another model). In order to
model callback functions in a more straightforward
way that does not require auxiliary variables to record
the mere occurrence of a callback, we introduce an
extension that invokes transition functions directly.

In this extension, we identify transitions by their
labels. As callbacks are typically asynchronous, their
effect on the EFSM is not immediate, but regis-
tered in a queue q of pending transitions. A method
invokeTransition(l) adds a label l to q. When
called from inside a callback function, that method
is typically executed in a separate (callback) thread,
while test case generation is controlled by Modbat in
the main thread (Artho et al., 2017). Pending transi-
tions in q have priority over regular transitions, so the
effect of a callback is processed as soon as the cur-
rently executing transition has finished. This priori-
tization would be difficult to implement with multi-
ple model instances without our extension in Modbat.
Capturing this feature in the model itself would re-
quire an extra precondition in each transition, to check
whether any transition invocation is pending.

3.2 Example

Figure 1 shows an example of models of the environ-
ment and a device. Here, skip is defined in Modbat
as a method doing nothing. At the time the device is
launched, it goes to state “running”. There is a small
chance of the device breaking, indicated by weight 0.1
in that transition (the default weight is 1.0). When the
model of the environment goes to state “unstable”, the
weights of the transitions in the device model are up-
dated, and the model stays in state “running” or goes
to state “broken” with equal probability.

class Environment extends Model {

var device: Device = _

"init" -> "stable" := {

device = new Device

launch(device)

}

"stable" -> "unstable" := {

device.setWeight("break", 1.0)

}

"unstable" -> "stable" := {

device.setWeight("break", 0.1)

}

}

class Device extends Model {

"running" -> "running" :=

skip label "run"

"running" -> "broken" := {

// some actions

} label "break" weight 0.1 stay 5000

"broken" -> "running" :=

skip label "fix" stay 0

def callbackOnReset(): Unit = {

invokeTransition("fix")

}

}

(a) Source code

init

stable

unstable

running run

broken

 break fx

 break

(b) Diagrams

Figure 1: Example Modbat models of the environment and
a device

Once the device is broken, it stays broken for 5000
milliseconds. In addition to recovering after some de-
lay, the device may also be reset, at which point call-
back function callbackOnReset is called. At this
point, the label “fix” is pushed to the queue. When
that transition is executed, it resets the state to “run-
ning” and clears the pending timer.

3.3 Packet Forwarder

In order to test a program under unstable network
environments, we propose a fault injection (Hsueh
et al., 1997) method to simulate network errors and
delays. That method is applicable to software in
which servers and clients communicate one another
via TCP/IP, and requires no modification of the soft-
ware under test.

We simulate an unstable network by inserting a
mechanism named packet forwarder between a server
and a client as shown in Figure 2a. The packet for-
warder forwards packets to both directions, from the
server to the client and the client from the server. Net-
work errors and delays can be injected by controlling
the forwarder. The order of the packets is not modi-
fied in this method, because packet ordering is guar-
anteed by TCP. Because the SUT is not modified, our
method preserves its original behavior: Each injected
network fault could also happen in a real environment.

Client

Server

Client

ForwarderForwarder

(a) Usage of packet forwarders

F
o
rw

a
rd

e
r

TCP

Socket

ServerSocket

BufferBuffer

Server

Client

TCP

(b) Internals of a forwarder

Figure 2: Packet forwarders

Figure 2b shows the implementation of our
packet forwarder. Socket and ServerSocket
are instances of classes java.net.Socket and
java.net.ServerSocket, respectively. The
Socket acts like the client to the server, and the
ServerSocket acts like the server to the client.
The forwarder has two buffers, corresponding to
bidirectional communication. Each buffer stores the
contents of the packet from one socket and sends
them to the other socket.

When a connection loss is simulated, we close
each TCP connection and port by calling close on
Socket and ServerSocket. When a network delay
is simulated, the threads forwarding data between the
sockets sleep for a particular time duration. There-
fore, network delays in each direction can be con-
trolled independently.

We associate a model instance in Modbat with
each packet forwarder; the configuration of the packet
forwarder is controlled by the model. Thus, in addi-
tion to providing inputs to the SUT, the models also
manage the state (configuration) of the simulation.
They switch between modes where nominal behav-
ior is tested, and modes where faulty components and
network problems are simulated. A model can also
observe the state or output of the SUT, and abort a
test if a property violation is detected.

4 Evaluation

In order to show the validity and effectiveness of
the methods described in Section 3, we test MQTT
client/server combinations under unstable network
environments. In particular, we evaluate the follow-
ing question: Can the packet forwarder uncover the
effects of missed packets in the SUT?

Experiments were done on a machine running
Ubuntu 16.04 with Intel Core i7-3770 and 16 GB

memory. We use Java 1.8.0 161, Scala 2.11.8,
Mosquitto 1.4.14 (Light, 2017), and Eclipse Paho
1.2.0 (Eclipse Paho Team, 2018), and an extended
version Modbat 3.2 as shown in Section 3.

4.1 Method

In each experiment in this section, the modeled sys-
tem has an MQTT server and two MQTT clients. The
two clients are named “sender” and “receiver” respec-
tively, and both of them are connected to the server via
packet forwarders.

A test case is executed in the following way.

1. The server is started.

2. The sender and the receiver connect to the server.

3. The receiver subscribes to particular topics.

4. The sender publishes several messages to the
server; the server forwards them to the receiver.

5. The sender and the receiver shut down.

6. The number of the published and received mes-
sages are compared.

To simulate unstable network environments in our
MQTT tests, packet forwarders are inserted between
each client and the server, so that all network con-
nections are virtualized. We conducted nine experi-
ments, combining three types of QoS and three types
of settings for the packet forwarders. In each experi-
ment, messages are published with QoS 0, 1 or 2. The
packet forwarder of the stable client is always alive,
while the forwarder of the unstable client sometimes
cuts the connection between the client and the server.

In these experiments, each of the sender and the
receiver runs an instance of class MqttAsyncClient
in Paho. The Mosquitto server executes outside the
test tool. Because we cannot easily determine which
of the server and the clients has bugs from the result,
we consider both Mosquitto and Paho as SUTs for
these experiments.

4.2 Models

Main Model A model for this experiment consists
of four types of model instances. The main model
(see Figure 3a) creates model instances of sender and
receiver, and launches them.

Forwarder The packet forwarder model (see Fig-
ure 3b) has two main states, enabled and disabled.
These two states simulate network environments of
variable reliability. The two skip transitions have
no effect, while transition disable stops forwarding
packets and closes the connections between the server

init

run

 start

(a) Main

enabled skip_e

disabled

 disable

end

 end enable

 skip_d

(b) Forwarder

connected publish

lost

 (publish) lose

stop

 stop reconnect

 (reconnect)

end

 end

(c) Sender

connected

lost

 lose

stop

 stop reconnect

 (reconnect)

end

 end

(d) Receiver

Figure 3: EFSMs in the model for testing MQTT implementations

and the forwarder, and the client and the forwarder.
Executing transition enable reconnects the forwarder
with the server, and the client and forwards data again.
The end transition terminates operations. Its weight is
set to 0.0; therefore, this transition is never executed
unless it is explicitly invoked by invokeTransition.

Sender The sender model (see Figure 3c) creates
a forwarder instance and launches it. After that,
sender connects to the server via the forwarder. As
shown in the figure, the sender repeats publishing
messages when in state connected. Method publish
in MqttAsyncClient returns a token, which stores
the progress of the message delivery. The model
stores all the tokens in a list. If the sender tries to
publish a message while the forwarder is disabled,
publish in Paho throws an exception, and the model
goes to state lost. (The dashed arrow indicates a
non-deterministic outcome of an operation that usu-
ally but not always succeeds.) Transition lose with
weight 0.0 records a connection loss and is invoked by
a callback function in MqttAsyncClient. When the
model is in state lost, the sender tries to reconnect to
the server. If the reconnection succeeds, the receiver
is connected again, otherwise it stays in state lost.

The model also randomly goes from state
connected to state stop. In this transition, the
sender prepares to disconnect. Concretely, the tran-
sition weights of its forwarder are set to be remain
in state enabled, and transition enable is invoked.
After the forwarder is in state enabled, the end tran-
sition is executed, and the stored published tokens are
processed by method waitForCompletion in Paho.
That method blocks until the message delivery of the
corresponding token finishes, or a timeout occurs. Af-
ter processing all the stored tokens, the sender discon-
nects from the server, and terminates the forwarder by
invoking transition end in it.

The retain flag of each message is set to true so
that the message is delivered to the receiver even if the
server receives the message while the receiver is not

Table 1: QoS of messages and message arrival

Message QoS Message arrival
QoS 0 P≥ R
QoS 1 P≤ R
QoS 2 P = R

connected (Banks and Gupta, 2014). As an MQTT
server stores only one message for each topic, every
message in this experiment is assigned a unique topic.

Receiver Similarly to the model of sender, the re-
ceiver model (see Figure 3d) creates and launches an
instance of forwarder. The receiver then subscribes to
the sender’s topics. In order not to miss any messages
after the receiver disconnects from the server, transi-
tion stop can be executed only after the sender has
disconnected. This dependency is managed by pre-
conditions. The remaining transitions work the same
as those of the sender, except that the receiver neither
publishes messages nor waits for their completion.

The test oracle is embedded at the end of the end
transition in the receiver, as an assert statement. The
actual condition of the assertion varies depending on
the QoS of the messages in the experiment as shown
in Table 1. In this table, P,R denote the number of the
messages published from the sender and the number
of the messages the receiver received, respectively. A
test case is regarded as failed if this condition is vio-
lated, or uncaught exceptions are raised.

4.3 Results

We performed 50 tests for each setting. Each test case
took about a hundred milliseconds.

Table 2 shows the summary of the results of these
experiments for three types of QoS and three types
of stability of the clients. In this table, “Success”
or “Timeout” shows the result of each experiment,
where “Success” means all the test cases finished sat-
isfying the assertion without uncaught exceptions and

Table 2: Results of the experiments testing Paho

Sender Receiver QoS 0 QoS 1 QoS 2
Stable Unstable Success Success Success

Unstable Stable Timeout Success Success
Unstable Unstable Timeout Success Success

“Timeout” means a timeout occurred when the sender
disconnected from the server in some test cases.

We describe the timeout in detail. The timeout
happens in the method waitForCompletion in Paho,
called in transition end of the sender. This timeout
means that the message delivery corresponding to the
token has not been completed. The timeout only hap-
pened with QoS 0 and an unstable sender. This seems
to the be correct behavior, because the message deliv-
ery is never completed if the message is lost because
of a network error. This result shows that network dis-
connection was correctly simulated, and it interrupted
message delivery.

Moreover, there were some test cases in which the
inequalities in Table 1 hold strictly. Namely, P > R
and P < R held in some test cases with messages
with QoS 0 and QoS 1, respectively. This result im-
plies message loss actually occurred in the experi-
ments with QoS 0, and message re-delivery was ac-
tually performed in the experiments with QoS 1.

5 Conclusions and Future Work

We show an approach that applies model-based
testing to model-based simulation, in the context of
the IoT protocol “MQTT”. This was achieved by
extending Modbat, a model-based tester based on
extended finite-state machines, with capabilities to
model features needed in such scenarios succinctly:
(1) Time, to simulate physical time, (2) dynamic
weight changes, to simulate transient errors, (3) tran-
sition invocation, to handle callbacks. We have also
introduced packet forwarders, in order to simulate un-
stable TCP network environments during test execu-
tion entirely in software, without modifying the SUT.
With packet forwarders, we are able to observe the ef-
fect of lost packets in MQTT, and confirm that under
higher quality settings, the protocol repeats transmis-
sions until data is delivered.

In the future, we think our framework can serve as
a testbed for evaluating the robustness of controllers
under adverse conditions ,testing how delays and re-
transmissions affect real-time behavior.

Acknowledgments

This work was supported by JSPS kakenhi grant
17H01719.

REFERENCES

Alvi, S. A., Shah, G. A., and Mahmood, W. (2015). En-
ergy efficient green routing protocol for Internet of
Multimedia Things. In Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 2015
IEEE Tenth Int. Conf. on, pages 1–6. IEEE.

Artho, C. and Biere, A. (2018). Modbat. https://people.
kth.se/˜artho/modbat/.

Artho, C., Gros, Q., Rousset, G., Banzai, K., Ma, L., Ki-
tamura, T., Hagiya, M., Tanabe, Y., and Yamamoto,
M. (2017). Model-based API testing of Apache
ZooKeeper. In 2017 IEEE Int. Conf. on Software Test-
ing, Verification and Validation, pages 288–298. IEEE
Computer Society.

Artho, C., Havelund, K., Kumar, R., and Yamagata, Y.
(2015). Domain-specific languages with Scala. In
Proc. 17th Int. Conf. on Formal Engineering Methods
(ICFEM 2015), volume 9407 of LNCS, pages 1–16,
Paris, France. Springer.

Artho, C. V., Biere, A., Hagiya, M., Platon, E., Seidl, M.,
Tanabe, Y., and Yamamoto, M. (2013). Modbat: A
model-based API tester for event-driven systems. In
Proc. 9th Int. Haifa Verification Conf., volume 8244
of LNCS, pages 112–128. Springer.

Banks, A. and Gupta, R. (2014). MQTT version
3.1.1. http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt-v3.1.1-os.html.

Beauquier, D. (2003). On probabilistic timed automata.
Theoretical Computer Science, 292(1):65–84.

Bormann, C. (2014–2016). CoAP — constrained ap-
plication protocol — overview. http://coap.
technology/.

Bulychev, P., David, A., Larsen, K. G., Mikučionis, M.,
Poulsen, D. B., Legay, A., and Wang, Z. (2012).
UPPAAL-SMC: Statistical model checking for priced
timed automata. arXiv preprint arXiv:1207.1272.

Cheng, K. and Krishnakumar, A. S. (1993). Automatic
functional test generation using the extended finite
state machine model. In Proc. of the 30th Design
Automation Conf. . Dallas, Texas, USA, June 14-18,
1993., pages 86–91. ACM Press.

Claessen, K. and Hughes, J. (2000). QuickCheck: a
lightweight tool for random testing of Haskell pro-
grams. In Proc. 5th ACM SIGPLAN Int. Conf. on
Functional Programming, pages 268–279. ACM.

Dadeau, F., Héam, P.-C., and Kheddam, R. (2011).
Mutation-based test generation from security proto-
cols in HLPSL. In Software Testing, Verification and
Validation, 2011 IEEE Fourth Int. Conf. on, pages
240–248. IEEE.

De Rubertis, A., Mainetti, L., Mighali, V., Patrono, L.,
Sergi, I., Stefanizzi, M. L., and Pascali, S. (2013). Per-
formance evaluation of end-to-end security protocols
in an Internet of Things. In Software, Telecommunica-
tions and Computer Networks (SoftCOM), 2013 21st
Int. Conf. on, pages 1–6. IEEE.

Eclipse Paho Team (2018). Eclipse Paho—MQTT and
MQTT-SN software. http://www.eclipse.org/
paho/.

Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I.,
Wiles, A., and Willcock, C. (2003). An introduction to
the testing and test control notation (TTCN-3). Com-
puter Networks, 42(3):375–403.

Heckel, R. and Torrini, P. (2010). Stochastic modelling and
simulation of mobile systems. In Graph transforma-
tions and model-driven engineering, pages 87–101.
Springer.

Houimli, M., Kahloul, L., and Benaoun, S. (2017). Formal
specification, verification and evaluation of the MQTT
protocol in the internet of things. In Mathematics and
Information Technology (ICMIT), 2017 Int. Conf. on,
pages 214–221. IEEE.

Hsu, Y., Shu, G., and Lee, D. (2008). A model-based ap-
proach to security flaw detection of network protocol
implementations. In Network Protocols, 2008. ICNP
2008. IEEE Int. Conf. on, pages 114–123. IEEE.

Hsueh, M., Tsai, T. K., and Iyer, R. K. (1997). Fault injec-
tion techniques and tools. IEEE Computer, 30(4):75–
82.

Jia, Y. and Harman, M. (2011). An analysis and survey of
the development of mutation testing. IEEE transac-
tions on software engineering, 37(5):649–678.

Jing, C., Wang, Z., Shi, X., Yin, X., and Wu, J. (2008).
Mutation testing of protocol messages based on ex-
tended TTCN-3. In Advanced Information Network-
ing and Applications, 22nd Int. Conf. on, pages 667–
674. IEEE.

Khan, A., Torrini, P., and Heckel, R. (2009). Model-
based simulation of voip network reconfigurations us-
ing graph transformation systems. Electronic Commu-
nications of the EASST, 16.

Kingsbury, K. (2018). Distributed systems safety research.
http://jepsen.io.

Kosiuczenko, P. and Lajios, G. (2007). Simulation of gen-
eralised semi-markov processes based on graph trans-
formation systems. Electronic Notes in Theoretical
Computer Science, 175(4):73–86.

Kwiatkowska, M., Norman, G., and Parker, D. (2011).
PRISM 4.0: Verification of probabilistic real-time sys-
tems. In Int. Conf. on Computer Aided Verification,
pages 585–591. Springer.

Kwiatkowska, M., Norman, G., and Sproston, J. (2002).
Probabilistic model checking of the IEEE 802.11
wireless local area network protocol. In Process Al-
gebra and Probabilistic Methods: Performance Mod-
eling and Verification, pages 169–187. Springer.

Lee, S., Kim, H., Hong, D., and Ju, H. (2013). Correlation
analysis of MQTT loss and delay according to QoS
level. In The Int. Conf. on Information Networking,
pages 714–717. IEEE Computer Society.

Light, R. A. (2017). Mosquitto: server and client imple-
mentation of the MQTT protocol. Journal of Open
Source Software, 2(13).

Mikk, E., Lakhnech, Y., Petersohn, C., and Siegel, M.
(1997). On formal semantics of statecharts as sup-
ported by STATEMATE. In Workshop, Ilkley, vol-
ume 14, page 15.

Mladenov, K., van Winsen, S., and Mavrakis, C. (2017).
Formal verification of the implementation of the
MQTT protocol in IoT devices. SNE Master Research
Projects 2016–2017.

Nilsson, R. (2015). ScalaCheck. https://www.
scalacheck.org/.

Odersky, M., Spoon, L., and Venners, B. (2008). Program-
ming in Scala. Artima Inc.

Oehlert, P. (2005). Violating assumptions with fuzzing.
IEEE Security & Privacy, 3(2):58–62.

Park, J.-C. and Miller, R. E. (1997). Synthesizing proto-
col specifications from service specifications in timed
extended finite state machines. In Distributed Com-
puting Systems, 1997., Proc. of the 17th Int. Conf. on,
pages 253–260. IEEE.

Paz, A. (1971). Introduction to Probabilistic automata.
Academic Press, 1 edition.

Stott, D. T., Ries, G. L., Hsueh, M., and Iyer, R. K. (1998).
Dependability analysis of a high-speed network using
software-implemented fault injection and simulated
fault injection. IEEE Trans. Computers, 47(1):108–
119.

Tappler, M., Aichernig, B., and Bloem, R. (2017). Model-
based testing IoT communication via active automata
learning. In 10th IEEE Int. Conf. on Software Testing,
Verification and Validation, pages 276–287. IEEE.

Testware (2018). Project IoT. http://www.iot-t.de/en/
testware/.

Thangavel, D., Ma, X., Valera, A. C., Tan, H., and Tan,
C. K. (2014). Performance evaluation of MQTT and
coap via a common middleware. In 2014 IEEE Ninth
Int. Conf. on Intelligent Sensors, Sensor Networks and
Information Processing, pages 1–6. IEEE.

Torrini, P., Heckel, R., and Ráth, I. (2010). Stochastic sim-
ulation of graph transformation systems. In Int. Conf.
on Fundamental Approaches to Software Engineer-
ing, pages 154–157. Springer.

Utting, M., Pretschner, A., and Legeard, B. (2012). A
taxonomy of model-based testing approaches. Softw.
Test., Verif. Reliab., 22(5):297–312.

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W.,
Tillmann, N., and Nachmanson, L. (2008). Model-
based testing of object-oriented reactive systems with
Spec Explorer. In Formal Methods and Testing 2008,
volume 4949 of LNCS, pages 39–76. Springer.

Zhang, Z., Wen, Q.-Y., and Tang, W. (2012). An effi-
cient mutation-based fuzz testing approach for detect-
ing flaws of network protocol. In Computer Science
& Service System, 2012 Int. Conf. on, pages 814–817.
IEEE.

Ziade, H., Ayoubi, R. A., and Velazco, R. (2004). A survey
on fault injection techniques. Int. Arab J. Inf. Technol.,
1(2):171–186.

