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Abstract—Many applications are concurrent and
communicate over a network. The non-determinism
in the thread and communication schedules makes it
desirable to model check such systems. However, a
simple state space exploration scheme is not applicable,
as backtracking results in repeated communication op-
erations. A cache-based approach solves this problem
by hiding redundant communication operations from
the environment.

I. Introduction

Most of the software written today communicates with
other software. Networked software is complex. It is of-
ten implemented using threads [18] to handle multiple
active communication channels. This introduces two di-
mensions of non-determinism: Both the thread schedule
of the software, and the order in which incoming messages
arrive, cannot be controlled by the application. In software
testing, a given test execution only covers one particular
instance of all possible schedules. To ensure that no sched-
ules cause a failure, it is desirable to model check software.

Model checking explores, as far as computational re-
sources allow, the entire behavior of a system under
test by investigating each reachable system state [10],
accounting for non-determinism in external inputs, such
as thread schedules. Recently, model checking has been
applied directly to software [5], [6], [8], [11], [13], [14], [19].
However, conventional software model checking techniques
are not applicable to networked programs. The problem is
that state space exploration involves backtracking. After
backtracking, the model checker will again execute certain
parts of the program (and thus certain input/output
operations). However, external processes, which are not
under the control of the model checking engine, cannot be
kept in synchronization with backtracking. Backtracking
would result in repeated communication operations, caus-
ing direct communication between the application being
model checked and external processes to fail.

We propose a model-checking-aware cache that manages
communication between the model checker and its environ-
ment [4]. Our approach covers all input/output operations
on streams. Our initial work using linear-time cache was
applicable to applications that produce a deterministic
data stream [3]. Our more recent work introduces new
branching-time communication model, which allows for
diverging communication traces between different sched-

ules [4]. In cases where the linear-time cache is applicable,
our new approach delivers comparable performance. At the
same time, we are capable of handling a wider range of
protocols and applications.

II. Related Work

Besides caching input/output data, two other major
alternative approaches exist [1]:

1) Stubs. Stubs summarize the behavior of the envi-
ronment, replacing it with a simpler model. The
model may be written manually, or recorded from
a previous execution to represent the behavior of
the environment for a given test case [7]. A stub
that over-simplifies the environment may cause false
positives or false negatives.

2) Multi-process analysis. The execution environment
may be augmented in order to keep the state of mul-
tiple processes in sync, for example, by backtracking
multiple processes simultaneously [9], [14]. Alterna-
tively, multiple processes may be transformed into a
stand-alone system, requiring several program trans-
formations to retain the original semantics [2], [17].
This type of analysis can be very expensive.

III. I/O Caching Algorithm

During the state space exploration, a software model
checker backtracks the system under test (SUT). If the
SUT communicates with its environment, the problem
arises that the SUT is backtracked by the model checker,
while the environment is not. This discrepancy between
the SUT and its environment can be overcome by caching
communication data. A special I/O cache hides backtrack-
ing operations, and subsequent repeated communication,
from external processes (see Figure 1). Communication
with external processes is physically executed on the host
until backtracking occurs. After backtracking, previously
observed communication data is fetched from the cache [3].
This idea requires an execution environment that is capa-
ble of enumerating, storing, and restoring program states;
software model checkers that virtualize the execution en-
vironment provide this functionality [19].

The I/O cache keeps track of data that has already
been sent to or received from the network. It determines
if an I/O operation occurs for the first time; if so, data is
physically transmitted; otherwise, data is simply read from
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Figure 1. Verification using I/O caching.
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New state: I/O data is stored
globally. The program state is
mapped to the positions of each
stream. The size of each message
is also stored in a persistent data
structure.
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Backtracking: The read/write
positions in each stream are re-
stored in accordance to the pro-
gram state. Stream data is kept
persistently. This can be re-
garded as rewinding the position
of the stream without erasing it.

1

3

2
321

Continued exploration:
Cached data of previous I/O
operations is replayed. Whenever
communication data differs from
cached data, a new instance of
the peer process is created (not
shown in this figure).

Figure 2. Mapping program states to communication data.

the cache. Figure 2 illustrates the principle of the caching
approach. Communication data is kept persistent by the
cache, in conjunction with a mapping of (1) program states
to stream positions, and (2) requests to responses [3]. The
first mapping allows a reconstruction of the exact stream
state upon backtracking; the second mapping determines
the size of a response that corresponds to a particular
request. After backtracking, the cache replays duplicate
responses from memory. It also verifies that duplicate re-
quests are consistent. If a different request is sent, because
a different interleaving of threads generates a different
output, cached data is no longer valid for the diverging
communication trace. To obtain a valid communication
trace, a new peer process is launched, and the request is
sent to the new instance [4].

IV. Future Work

In future work we will apply cache-based model checking
to recent programming models for dealing with concur-
rency. The generalization of multi-core processors and dis-
tributed environments such as “clouds” drive the software
industry to build novel abstraction libraries and middle-
ware [12]. These abstraction layers hide low-level detail in
concurrency management to simplify development work.
These layers usually introduce new semantics, such as
a divide-and-conquer approach [12], or domain-specific

language constructs [16]. The verification of applications
based on such abstraction layers benefits from custom
models [15]. We think that such frameworks can also
benefit from a cache-based model checking approach.
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