
Hiding Backtracking Operations in Software Model Checking from the
Environment

Cyrille Artho, Yoshinori Tanabe, Etsuya Shibayama
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Watcharin Leungwattanakit, Masami Hagiya
University of Tokyo, Tokyo, Japan

Most non-trivial applications use some form of
input/output (I/O), such as network communication.
When model checking such an application, a simple
state space exploration scheme is not applicable: Back-
tracking during the state space search causes states to
be revisited, and I/O operations to be repeated. Be-
cause I/O operations are visible by the environment,
software model checking needs to encapsulate such op-
erations in a caching layer that hides such actions. In
order to mediate between the model checker and the
environment, the cache layer has to pair request and
response messages correctly. It also has to distinguish
between complete and partial messages. Finally, oper-
ations that open or close communication channels re-
quire special treatment as well. —

Software model checkers [3] cannot handle net-
worked programs, which limits their applicability.
Program transformations allow networked applica-
tions to be model checked on a single-process model
checker [1]. However, the large number of thread inter-
leavings limits scalability. A different approach con-
sists of mediating between backtracking state space ex-
ploration of the model checker, and the linear time line
of its environment [2]. This approach caches any oper-
ations that have an externally visible impact, in partic-
ular, network communication.

Previous work has assigned a mapping of each com-
munication state to a previously seen communication
trace. Each operation is mapped to a history of known
operations, extending that history (“cache”) if new
states are explored. Whenever a mismatch between
states is encountered after backtracking, network com-
munication inside the program depends on its thread
schedule. Such programs cannot be verified with our
approach; they are also often faulty.

Our approach is applicable to any program where
the result of a client request does not depend on ac-
tions of other client processes. This includes most In-
ternet services, such as time servers, echo servers, FTP,
and HTTP servers. Compared to other approaches [1],
our caching approach is orders of magnitudes faster,
because communication serialization inherently com-
prises an efficient partial-order reduction.

Recent work has shown that mapping states to
traces is not sufficient. For more complex interactive
protocols, requests also have to be mapped to their re-
sponse. Our implementation achieves this, and also al-
lows for requests and responses to span several mes-
sages. Furthermore, we also cache actions that manip-
ulate communication channels themselves (opening or
closing them). This hides backtracking of externally
visible actions effectively from programs running out-
side the model checker, and makes model checking of
programs that interact with their environment feasible
in a scalable way.

References

[1] C. Artho and P. Garoche. Accurate centralization
for applying model checking on networked appli-
cations. InProc. ASE 2006, Tokyo, Japan, 2006.

[2] C. Artho, B. Zweimüller, A. Biere, E. Shibayama,
and S. Honiden. Efficient model checking of ap-
plications with input/output.Post-proceedings of
Eurocast 2007, 2007. To be published.

[3] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs.Auto-
mated Software Engineering Journal, 10(2):203–
232, 2003.


