
COST Action IC 1402 ArVI:
Runtime Verification Beyond Monitoring

Activity Report of Working Group 1
-

Core Aspects of Monitoring

Wolfgang Ahrendt1, Cyrille Artho2, Christian Colombo3, Yliès Falcone4,
Srdan Krstic5, Martin Leucker6, Florian Lorber7, Joao Lourenço8, Leonardo Mariani9,

César Sánchez10, Gerardo Schneider11, and Volker Stolz12

1 Chalmers University of Technology, Gothenburg, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

3 University of Malta, Msida, Malta
4 Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000 Grenoble, France

5 Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland
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Abstract. This report presents the activities of the first working group of the
COST Action ArVI, Runtime Verification beyond Monitoring. The report aims
to provide an overview of some of the major core aspects involved in Runtime
Verification. Runtime Verification is the field of research dedicated to the analysis
of system executions. It is often seen as a discipline that studies how a system run
satisfies or violates correctness properties.
The report exposes a taxonomy of Runtime Verification (RV) presenting the ter-
minology involved with the main concepts of the field. The report also devel-
ops the concept of instrumentation, the various ways to instrument systems, and
the fundamental role of instrumentation in designing an RV framework. We also
discuss how RV interplays with other verification techniques such as model-
checking, deductive verification, model learning, testing, and runtime assertion
checking. Finally, we propose challenges in monitoring quantitative and statisti-
cal data beyond detecting property violation.

1 Introduction
Runtime Verification (RV), as a field of research, is referred to by many names

such as runtime monitoring, trace analysis, dynamic analysis, passive testing, runtime
enforcement etc. (see [40,55,33,14,29,35] for tutorials). The term verification implies a
notion of correctness with respect to some property. This is somewhat different from the
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term monitoring (the other popular term) which only suggests that there is some form
of behaviour being observed. Some view the notion of monitoring as being more spe-
cific than that of verification as they take it to imply some interaction with the system,
whereas verification is passive in nature.

RV is a lightweight, yet rigorous, formal method that complements classical ex-
haustive verification techniques (such as model checking and theorem proving) with
a more practical approach that analyses a single execution trace of a system. At the
expense of a limited execution coverage, RV can give very precise information on the
runtime behaviour of the monitored system. The system considered can be a software
system, hardware or cyber-physical system, a sensor network, or any system in general
whose dynamic behaviour can be observed. The archetypal analysis that can be per-
formed on runtime behaviour is to check for correctness of that behaviour. However,
there are many other analyses (e.g., falsification analysis) or activities (e.g., runtime
enforcement) that can be performed, as it will be discussed elsewhere in this report.
RV is now widely employed in both academia and industry both before system deploy-
ment, for testing, verification, and debugging purposes, and after deployment to ensure
reliability, safety, robustness and security.

The RV field as a self-named community grew out of the RV workshop established
in 2001, which became a conference in 2010 and occurs each year since then. In 2014,
we have initiated the international Competition on (Software for) Runtime Verification
(CRV) [11,36,65,13] with the aim to foster the comparison and evaluation of software
runtime verification tools. In 2016 and 2018, together with other partners of ARVI, we
have also started to organize the two first of a series of Schools on RV [21,30].

2 A Taxonomy of Runtime Verification
Runtime Verification (RV) has grown into a diverse and active field during the last

15 years and has stimulated the development of numerous theoretical frameworks and
tools. The paper in [34] presents a high-level taxonomy of RV concepts and use it to
classify RV tools. The classification and discussion related to RV tools is beyond the
scope of this report. We instead briefly recall the main points of the classification and
refer to [34] for further details. We also do not discuss the application area part of
the taxonomy, as applications of runtime verification is the object of study of another
working group. The taxonomy provides a hierarchical organization of the six major
concepts used in the field and serves to classify several of the existing tools. In this
report, we report only on the first two levels for readability and brevity reasons:
Specification.A specification indicates the intended system behavior (property), that is
what one wants to check on the system behavior. It is generally one of the main inputs of
a runtime verification framework designed before running the system. A specification
exists within the context of a general system model i.e., the abstraction of the system
being specified. A specification itself can be either implicit or explicit. An implicit
specification is used in a runtime verification framework when there is a general under-
standing of the particular desired behavior. An explicit specification is one provided by
the user of the runtime verification framework.
Monitor.A monitor is a main component of a runtime verification framework. By mon-
itor, we refer to a component executed along the system for the purposes of the runtime
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Fig. 1. Mindmap overviewing the taxonomy of Runtime Verification [34].

verification process. A monitor implements a semi-decision procedure which produces
the expected output (either the related information for an implicit specification or the
specification language output for an explicit specification). Note, the monitor may run
forever without producing a verdict. Monitors must be generated from a specification.
Deployment.By deployment, we refer to how the monitor is effectively implemented,
organized, how it retrieves the information from the system, and when it does so.

The notion of stage describes when the monitor operates, with respect to the exe-
cution of the system. The notion of placement describes where the monitor operates,
with respect to the running system. Therefore, this concept only applies when the stage
is online. The architecture of the monitor may be centralized (e.g., in one monolithic
procedure) or decentralized (e.g., by utilising communicating monitors).
Reaction.By reaction, we refer to how the monitor affects the execution of the system.
Reaction is said to be passive when the monitor does not influence or minimally in-
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fluences the initial execution of the program. Reaction is said to be active when the
monitor affects the execution of the monitored system.
Trace.The notion of trace appears in two places in a runtime verification framework and
this distinction is captured by the role concept. A monitor can receive different sorts of
information from a system (e.g., events, states, or signals). The system evaluation of the
system may refer either to specific points in time or refer to intervals of time.
Invasive.In absolute, a non-invasive monitoring framework being impossible, the dis-
tinction between invasive vs non-invasive better corresponds in reality to a spectrum.
There are two sources of interference for a monitoring framework with a system: the
effect of the instrumentation applied to the system and the monitor deployment.

3 Instrumentation
The term instrumentation refers to the mechanism employed to probe and to extract

signals, traces of events and other information of interest from a software or hardware
system during its execution. Instrumentation determines what aspects of the system ex-
ecution are made visible (to the monitor) for analysis, in terms of what elements of the
computation is reported (e.g., computation steps and the data associate with them), and
the relationships between the recorded events (e.g. provide a partial or total ordering, or
guaranteeing that the reported event order corresponds to the order in which the respec-
tive computational step occurred). Instrumentation also dictates how the system and the
monitor execute in relation to one another in a monitoring setup. It may either require
the system to terminate executing before the monitor starts running (offline), interleave
the respective executions of the system and the monitor within a common execution
thread (online), or allocate the monitor and the system separate execution threads (in-
line vs outline); instrumentation may dictates how tightly coupled these executions need
to be (synchronous vs asynchronous).

The choice of instrumentation techniques depends on the type of system to be mon-
itored. For example, monitoring hardware system may require probing mixed-analog
signals using physical wires, while for software the instrumentation method is strictly
related to the programming language in which the software is implemented or to the
low-level language in which it is compiled (i.e., bytecode, assembly, etc.).

The following instrumentation mechanisms exist:

Logging or manual instrumentation Most systems already log important actions.
Typically, the level of detail of these logs is configurable. When a system is configured
to log data a high level of detail, the log may contain enough information to derive a
verification verdict from its data [49,58,42]. If this is not the case, additional data has to
be obtained by manual instrumentation (manually inserting logging code). Furthermore,
the format of the data is typically unstructured or semi-structured, and typically have
to be pre-processed before they can be used for monitoring [72,69]. The advantages of
this approach are that the data is typically already available, and no special tools have
to be set up.

Code instrumentation (transpilation/weaving) With code instrumentation, the code
of the program is modified such that the necessary statements to capture the informa-
tion for runtime monitoring are inserted. This modification is usually automatic and
supported by a tool. This has the advantage that it is possible to cover similar properties



COST Action IC 1402 ArVI - Activity Report 5

in a uniform way across a large program, as the code is modified in a systematic and
automatic way. Furthermore, this technique is almost unlimited w. r. t. the amount and
type of data it can access, as code instrumentation can be very fine-grained.

The tools that modify the code are often called transpilers (if the source code is
modified) or weavers (if source or compiled code is modified). Transpilation occurs
right before compilation, whereas compiled code can be modified after compilation,
or at load time. In all of these cases, the interplay of various stages of building and
deployment of software may not readily accept a code instrumentation stage without
adaptation, due to actions such as code generation, dynamic loading of libraries, other
code rewriting frameworks such as Spring [47], etc. While the result of source-to-source
transformed can be readily inspected, weavers for compiled code are more flexible and
also work without the source. However, it can be difficult to ensure that all information
is captured fully and correctly, without altering the original behavior of the program.

Popular transpilers can be implemented as libraries [62], term rewriting systems
[7,70], compiler extensions [52,38], domain-specific languages [50], or even trans-
formation generators [51]. Weavers include domain-specific languages such as As-
pectJ [48] or AspectC++[68], but also libraries such as ASM [17]. Code instrumen-
tation is also often provided by custom tools that have been designed with the given
verification task in mind [66,59,67].

Call interception When analyzing activity such as input/output, which is accessed
via existing libraries, the easiest way to observe these actions is by overloading the
libraries with a wrapper. The wrapper then intercepts the call and updates the runtime
monitor before or after calling the original library code. This approach differs from
code instrumentation in that code is not modified throughout the system, but instead,
the modification is made by intercepting calls systematically, and providing additional
functionality before or after each function call.

Typical mechanisms to achieve this are the usage of the linker to replace a library
call with a wrapper [18], kernel modifications [6], the boot-classpath in Java (up to
Java 8) [60] or Java’s module system [10]. This approach is less flexible than other
approaches, in that it can only modify the behavior of code at function call boundaries,
but it is easy to confine the modifications to small parts of the system. However, not
all platforms have a straightforward mechanism of keeping the unmodified version and
delegating a call to the original code inside the wrapper; for instance, older versions
of Java completely replaced the overloaded library without any way of accessing the
old code. Furthermore, the mechanisms to overload libraries are very specific to each
platform, so tools using this technique are not portable.

Execution environment Many execution environments have interfaces with events
from program execution can be obtained. These interfaces include the Java Virtual Ma-
chine Tool Interface (JVMTI [61]) and the LTTng interface for the Linux kernel [25].
Typically, the use of these mechanisms requires access to the data structures of the ex-
ecution environment itself. Monitoring code is therefore not written at the level of the
“guest” language (such as Java in the case of JVMTI), but at the level of the “host”
language, the language in which the virtual machine is written in. This makes such
monitoring approaches harder to use and less portable. Finally, execution events may
even be generated by custom hardware.
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Table 1. Advantages and disadvantages of different approaches

Approach Advantages and disadvantages
Logging + Much data already available; no special tooling needed.

− Data format is unstructured; available data may be limited; ad hoc.
Code instrumentation + Systematic, flexible approach.

− Difficult to use and test; may interfere with original program.
Call interception + Limited modifications; good performance.

− Not portable; limited to the interfaces of libraries.
Execution environment + Fast; no modification of the program needed.

− Difficult; not portable; limited to given data.

This technique has the advantage that it works in an unmodified execution environ-
ment, and typically offers the least amount of overhead of all approaches. However,
even though modern environments offer a large range of data through these tool inter-
faces, they are still restricted to a predefined set of data.

Therefore, the option to use a special or modified execution environment is some-
times used. A modified execution environment may change parts of the kernel [6] or use
a specific virtual machine that generates a wider range of events [71], or a debugger that
can inspect (and even modify) data at a finer level of detail than otherwise possible [46].
Unlike standard environments, performance and stability of runtime monitoring in these
special environments depend on the modifications needed to obtain the data.

Finally, a non-standard execution environment may even involve special hardware
access ports designed for monitoring [44]. In this case, there is often no overhead, and
at the software layer, the execution environment is indistinguishable from a standard
environment.

Table 1 gives an overview of the different types of approaches, and their pros and
cons. In [14], we further explain these concepts in two dedicated sections for hardware
and software instrumentation.

4 Interplay between Runtime Verification and other Verification
Techniques

4.1 Static Techniques and Runtime Verification
As opposed to runtime verification, static verification techniques are used to analyse

and prove properties of all possible executions of programs. Two prominent families of
static verification techniques are model checking and deductive verification. In the fol-
lowing, we will discuss both of them, together with their respective relation to runtime
verification.

Model Checking and Runtime Verification A popular verification technique besides
runtime verification is model checking [19]. While runtime verification checks a single
execution of the underlying system, model checking considers all possible executions
of the underlying system. As such, both techniques share a common goal, i.e., the ver-
ification of an underlying system, but they have different features. In general, the two
techniques may be combined. Let us briefly discuss the methodological combinations
of the two techniques as well as their formal relationship.
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At a first sight, model checking seems to provide stronger correctness guarantees
than runtime verification as model checking considers all possible executions of a sys-
tem. However, model checking still greatly suffers from the so-called state-space explo-
sion problem limiting its application only to parts of or abstractions of an underlying
system. As such, it makes perfectly sense to combine both verification techniques. In
[56], several combinations are discussed, which we briefly summarize here.

– The verification result obtained by model checking is often referring to a model of
the real system under analysis but not to the actual byte code, CPU etc.

– However, the implementation might behave slightly different than predicted by the
model. Runtime verification may then be used to easily check the actual execution
of the system, to make sure that the implementation really meets its correctness
properties. Thus, runtime verification may act as a partner to model checking.

– Often, some information is available only at runtime or is conveniently checked at
runtime. For example, whenever library code with no accompanying source code
is part of the system to build, only a vague description of the behavior of the code
might be available. In such cases, runtime verification is an alternative to model
checking.

– The behavior of an application may depend heavily on the environment of the target
system, for which certain assumptions have been taken at model checking time.
Runtime verification allows to check such assumptions at runtime and may raise an
alarm if one of the assumptions does not hold. Here, runtime verification completes
the overall verification.

– In the case of systems where security is important or in the case of safety-critical
systems, it is useful also to monitor behavior or properties that have been statically
proved or tested, mainly to have a double check that everything goes well: Here
again, runtime verification acts as a partner of model checking.

However, besides the methodological combination of runtime verification and model
checking, there is a formal combination possible, as described in [53]. Let us recall the
main idea here while we refer to the previously mentioned reference for formal details.

Especially in online runtime verification, an execution of the underlying system
is checked against a correctness property letter by letter. To reuse for example linear-
time temporal logic (LTL) defined over infinite traces [63], the verdict for the finite
execution is obtained by considering all possible infinite continuations of the execution.
If with all such extensions the LTL formula yield either only true or only false, the
corresponding verdict is that for the finite execution seen so far. Otherwise, the verdict is
don’t know? to signal that the current excution does not allow a precise verdict anymore.
This approach yields the so-called anticipatory semantics introduced in [15].

In [53], the idea was pursued that rather considering all possible infinite extensions
of the current execution, only those are taken into account that yield runs of the overall
system. Of course, a system model has to be at hand to understand which extension are
possible at all. However, let us consider this idea for the empty execution, i.e., when
the system has not even started: Then, we have to check whether all runs of the under-
lying system either satisfy or falsify the property at hand. The first question is actually
the model-checking problem, and of course, if we have answered the model checking
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problem before we even start the execution of the system, the need for runtime verifica-
tion vanishes. Now, assume that we consider an over-approximation of the underlying
system, that is, a system having more runs/behavior, but smaller/less states. We still im-
plicitly solve the model checking problem, indeed after every partial execution, yet for
an abstract system. Thus, if the answer is that there is no violation possible any more
(true), one can stop monitoring. If, however, the model checking answer is false, there
might be a bug in the system, which may be found by further monitoring. Hence, by
considering an over-approximation of the underlying system, we get best out of both
worlds: we combine efficient runtime verification techniques with taking part of the
system into account, hereby sharpening the verdict obtained by runtime verification. By
tuning the abstraction, we can adjust whether the focus is on model checking or rather
on runtime verification. In other words, by controlling the abstraction, we are able to
slide between model checking and runtime verification. See [53] for further details.

Deductive Verification and Runtime Verification Deductive verification techniques
are used to verify data-oriented, functional properties of code units (such as meth-
ods/procedures or classes), specified often in languages tailored to the programming
language at hand (like, for instance, the Java Modeling Language —JML). Verifica-
tion is typically done by reasoning directly about the source code, using a program
logic like for instance Hoare logic or dynamic logic. Deductive program verification
has been around for about 40 years, however, a number of developments during the last
decade brought dramatic changes to how deductive verification is being perceived and
used. Among the state of the art efforts is the KeY tool for Java source code verifica-
tion [2]. Deductive Verification has been extensively used to verify properties focusing
on the system’s data at specific points of the execution (like method entries and ex-
its). Runtime verification, on the other hand, has been extensively used to verify trace
properties with reasonable overheads (e.g., automata based or temporal). As both ap-
proaches work on the concrete system level, without abstraction, there is great potential
for combining them. Ideally, (sub)properties which are a bottleneck for static verifica-
tion shall be addressed by runtime verification, whereas properties which require high
overhead for runtime checking shall be addressed by static verification. For that, how-
ever, we need specification languages allowing the expression of combined data- and
control-flow properties in such a manner that they can be effectively decomposed for
the application of different verification techniques. This has been exemplified in the
StaRVOOrS approach [3], which provides a specification language combining data-
and control-oriented aspects, and combines a deductive and a runtime verification tool
to optimise runtime verification by (partial) results from (static) deductive verification.

4.2 Model Learning and Runtime Verification
Many verification techniques rely on the presence of a formal specification or a

model of the system under verification. In many cases, such a model is not available.
Model learning is an approach to automatically infer the model, by observing traces
of the system. This can either be done passively, by purely observing the system, or
actively, by steering the system execution into interesting areas.

Bertolino et al. [16] have suggested a combination of active learning and monitor-
ing, where the produced system traces are continuously checked for conformance with
the currently learned model. In case of non-conformance, the model will be updated to
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reflect the newly observed behaviour. Isberner et al. [45] proposed the TTT algorithm,
which attempts to reduce the length of the observed counter example, to optimize the
learning from long traces, as observed by runtime verification.

Both these approaches consider a continuous learning approach, where the learned
model can be updated at any point of the execution. Thus, if a bug is observed, it will be
incorporated into the model. Contrary to this, one could propose a two-step approach
combining model learning and monitoring: in the first step the model is learned, using
any of the existing algorithms. In the second step, this learnt model is considered to be
correct and used as a basis for the monitoring. If, at any point during the runtime exe-
cution, an incorrect behaviour is encountered, it is reported as an anomalous behavior,
rather than incorporated into the model. The main goal of such an approach would be
the detection of transient errors, i.e., errors that only occur sporadically or errors which
only occur under certain conditions in the environment.

Several techniques investigated how to learn different kinds of models that can en-
able the analysis of various classes of behaviors. For instance, Mariani et al. investigated
how to learn finite state models and likely program invariants to analyze executions
in component-based systems [57]. Similarly, Pradel and Gross used learnt finite state
models to analyze API misuses [64]. Recently, Grant et al. investigated how to infer and
check assertions in distributed systems [39].

4.3 Testing and Runtime Verification
To date, testing is by far the most commonly used technique to check software

correctness. In essence, testing attempts to generate a number of test cases and checks
that the outcome of each test case is as expected. While this technique is highly effective
in uncovering bugs, it cannot guarantee that the tested system will behave correctly
under all circumstances.

Typically, testing is only employed during software development; meaning that soft-
ware has no safety nets during runtime. Conversely, runtime verification techniques are
typically used during runtime to provide extra correctness checks but little effort has
been done to integrate it with the software development life cycle. For this reason little
or no use of it is made in contemporary industry.

At a closer look, the two techniques — testing and runtime verification — are inti-
mately linked: runtime verification enables the checking of a system’s behaviour during
runtime by listening to system events, while testing is concerned with generating an
adequate number of test cases whose behaviour is verified against an oracle. Thus, in
summary one could loosely define runtime verification as event elicitation behaviour
checking, and testing to be test case creation behaviour checking.

Through this brief introduction of testing and runtime verification one can quickly
note that behaviour checking is common to both. Given this overlap between two veri-
fication techniques, one is surprised to find that in the literature the two have not been
well studied in each other’s context, even though there were a few isolated attempts
where RV and testing principles were jointly used [4,5,31,32].

The paper [20], outlines three ways in which this can be done: (i) one where testing
can be used to support runtime verification in the creation of more reliable tools, (ii)
another where the two techniques can be used together in a single tool such that the same
set of properties can be tested and runtime verified, and (iii) a third approach where
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Table 2. Comparison of Verification Techniques (simplified)

Runtime Verification Static Verification Properties Specifications

Runtime
Trace

Checking

Model
Checking

valid traces
(+ some data)

temporal logics,
automata,

regular languages
(+ extensions)

Runtime
Assertion
Checking

Deductive
Verification

valid data
in specific

code locations
(+ some trace info)

first-order
assertion languages

(+ extensions)

runtime verification can be used to support testing in gathering information regarding
areas of the code which are observed executing at runtime.

4.4 Runtime Assertion Checking and Runtime Verification
Another area strongly connected to runtime verification (RV) is runtime assertion

checking (RAC). Strictly speaking, RAC is a special case of RV. Nonetheless, the char-
acteristics are so different from most approaches to RV that RAC is sometimes seen as a
field of its own. In any case, we here take the approach which classifies RAC as an RV
technique, whereas the other, mainstream approaches to RV are identified as runtime
trace checking (RTC). We give an overview of this classification in Fig. 2, also relating
it to the major areas of static verification, model checking and deductive verification.
Note that we are deliberately simplifying the presentation. Doing full justice to all veri-
fication approaches is not in scope of this section. Rather we want to exhibit some basic
characteristics.

RV mostly focuses on properties of execution traces of some system, so most of
RV fall under runtime trace checking (RTC). These properties may be specified using
different formalisms, of which temporal logics, automata, and regular languages are
prominent examples. In what concerns properties and specification approaches, RTC
has therefore similarities with Model Checking. Most of this entire document is about
RTC.

On the other hand, properties which are typically addressed by runtime assertion
checking (RAC) focus on conditions on the data, in specific code locations. RAC comes
with assertion languages, to formulate assertions to be ‘placed’ at source code locations.
These assertions often use concepts from first-order logic to constrain which data is
valid in the respective code locations. RAC is therefore richer than RTC when it comes
to properties of the data, but less expressive when it comes trace related properties.

A prominent example of a runtime assertion checker is OpenJML13, which supports
the checking of JML [43] assertions while executing (instrumented) Java applications.
Other examples of RAC tools are SPARK [8], and SPEC# [9], supporting variants of
Ada and C#, respectively.

One has to say that RAC techniques, because of the expressiveness of the used
specification languages, are often too slow to be used for post-deployment RV, and are

13 www.openjml.org

www.openjml.org
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therefore better suited for the debugging phase. This may be another reason why RAC
is not always counted as an RV technique. However, recent developments show that
RAC can be very much optimized by combining static and runtime verification [3].

5 Challenges in Monitoring Quantitative and Statistical Data,
beyond Property Violation

Since runtime verification has traditionally borrowed techniques, and in particular
specification languages, from static verification the specifications from which moni-
tors are extracted are typically temporal logics and similar formalisms. In turn, the
outcome of a monitoring process is typically a Boolean verdict (or sometimes an en-
riched Boolean verdict to convey non-definite answers). At the same time, decision
problems on specifications (like equivalence vacuity, entailment, etc.) are decidable as
these problems have been studied in static verification. However, if one is willing to
sacrifice the decidability of the these decision procedures, there is the possibility of de-
signing “richer” logics. One can perform runtime verification activities as long as there
is a formal procedure to generate monitors from specifications, and an associated eval-
uation method for evaluating the generated monitors against an input trace. Taking this
abstract viewpoint on monitoring allows to consider languages that process rich data
and generate richer outcomes.

Consequently, we suggest here two directions in which runtime verification can be
extended in terms of how rich the data that the monitors handle is. The first direction
is about the data the monitor processes and manipulates. The second direction is about
richer outcomes from the monitoring process.

5.1 Richer Data for Monitors

Two research areas related to runtime verification that study how to handle se-
quences of events with rich data, and that can produce rich data as outcome, are Com-
plex Event Processing (CEP) and Data Stream Management Systems (DSMS); see [23]
for a modern survey. Complex Event Processing considers distributed system that pro-
cesses flows of events from different sources, finding correlations and producing de-
rived events as a result. The main difference between CEP and RV (even the vision of
RV with rich data that we advocate in this section) is that CEP does not provide a formal
specification language with formal semantics, but instead an infrastructure to evaluate
event processors. Similarly, DSMS borrow many techniques from Data Bases with the
main difference that queries are supposed to process the flow of events without storing
all events (even though many DSMS do create a storage with a time index). Typically,
DSMS process aggregations over flows of input events where the main concerns are
efficiency in the evaluation process and statistical properties of the output (instead of
logical correctness). One can potentially map the formal specifications that we use to
generate monitors in RV to queries (for DSMS) and to processors (in CEP), these areas
do not provide formal translations nor a formal semantics of the execution platforms
with guarantees on the order of arrival of events.

The book chapter “Monitoring Events that Carry Data” [41] [12] reviews the re-
search landscape on runtime verification techniques for traces that contain rich data,
but we envision that richer and richer extensions will be investigated in years to come.
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5.2 Richer Outcomes from the Monitoring Process

Another important aspect that has not been extensively studied in runtime verifica-
tion is richer verdicts. If one considers monitors as transformers from traces into useful
“summaries” of information about the trace, there are many possibilities. For example,
in the area of signal temporal logics, there is the notion of “robustness”, which is a
quantity that measures “how much” an observed trace matches a given specification (in
specialized logics for the domain of signal processing like STL, MTL, etc.). A value
of 0 can indicate that a full violation is detected, while values close to 0 (like 0.4) can
indicate that a violation is close to occur. This richer outcome allows to determine hot
robustly a trace is satisfied or violated. Potentially, the outcome of a monitor could be a
pruned trace that allows further analysis to be performed, for example to determine the
root of the error. Finally, there are few works that consider the possibility of processing
(statistically) incorrect or missing data. One challenge for the near future is to explore
different rich outcomes that the monitors can generate and the trade-offs involved in the
evaluation of these monitors.

One potential direction to attack this challenge is Stream Runtime Verification (SRV),
which was conceived to trigger richer verdicts beyond YES/NO answers. SRV, pio-
neered by the tool Lola [24], proposes to use streams to separate two concerns: the
algorithms to perform evaluations of temporal properties on input traces, and the data
collected during the evaluation. The key insight is that many algorithms, for example
to check LTL properties (and similar formalisms proposed to express monitors in the
RV community) can be easily generalized to compute richer verdicts. As a simple ex-
ample, one can use the same algorithm that searches for a violating position in the past
to compute the number of offending positions. Similarly, one can compute the longest
response time to a request, or the average response time (and not just the fact that all
requests are answered). Modern extensions of stream runtime verification enrich the
basic setting to parameterized properties [37] so the input stream can be classified ac-
cording to different objects. Applications include network monitoring [37], security
assurance of unmanned aerial vehicles [1] and real-time SRV for the dynamic analysis
of timed-event streams from low-level concurrent software [54]. All these results were
motivated by challenging domains for which the ability of SRV to handle quantitative
data and produce rich verdicts proved to be valuable.

Another potential direction to attack this challenge consists in using decentralised
specifications [26], pioneered by the tool THEMIS [27]. While simple specifications
can be expressed with traditional specification formalisms such as LTL and automata,
accounting for hierarchies quickly becomes a problem. Informally, a decentralized spec-
ification considers the system as a set of components, defines a set of monitors, addi-
tional atomic propositions that represent references to (the verdict of other) monitors,
and attaches each monitor to a component. Each monitor is a Moore automaton where
the transition label is restricted to only atomic propositions related to the component on
which the monitor is attached, and references to other monitors. Decentralized speci-
fications were successfully applied to the monitoring of smart homes [28] where they
proved to allow a better scaling than with traditional specification formalisms.



COST Action IC 1402 ArVI - Activity Report 13

References
1. Adolf, F., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream runtime monitor-

ing on UAS. In: Lahiri, S.K., Reger, G. (eds.) Runtime Verification - 17th International Con-
ference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10548, pp. 33–49. Springer (2017)
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International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland. pp. 288–298. IEEE Computer Society (2012)
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