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Abstract

Despite the availability of a variety of program analy-
sis tools, evaluation of these tools is difficult, as only few
benchmark suites exist. Existing benchmark suites lack the
uniformity needed for automation of experiments. We in-
troduce the design of a uniform build/installation platform,
which constitutes an important part of the solution.

This platform is used to manage the build and test pro-
cess, which is enhanced by a tool that analyzes the structure
of unit tests. Benchmark applications lack detailed informa-
tion about unit tests. Such knowledge is useful: For analysis
algorithms that target specific program features, it is desir-
able to analyze only relevant tests. Using aspect-oriented
programming, we wrap test execution and implement a tool
providing coverage data of individual unit tests. Further-
more, the wrapper provides a front-end for the selection of
subsets of a test suite. We successfully applied our tool to
several large programs. This evaluation also gave us inter-
esting insights about the quality of different test suites.

1. Introduction

There is a consensus in the run-time analysis commu-
nity that the lack of common benchmarks makes evaluation
and comparison of tools difficult [6, 7, 19]. One reason for
this is the fragmentation of tools into different programming
languages. It also is hard to obtain commercial programs for
benchmarking, as even older software still has commercial
value. Another major problem is the fact that tools cover a
variety of purposes, such as analysis of data races [5, 17],
general concurrency problems [8], contracts [13], fault in-
jection [2], incorrect memory or resource usage [14, 15], or
logic specifications [4], just to name a few.

Researchers would like to evaluate their tools on a large
set of realistic applications. Existing benchmark suites
contain small programs, of less than 1000 lines of code,

which were produced by students in class room assign-
ments. [6, 7]. We believe these examples are very useful
to show the classification of failures, and for initial testing.
Nonetheless, for a more serious evaluation of tools, larger
programs are needed.

The Internet is a great resource of openly available appli-
cations [2]. However, such applications come with no docu-
mentation that relates them to the features investigated bya
particular program analysis tool. Hence, many applications
are not interesting for particular analysis: For instance,se-
quential programs (or test cases involving only one thread)
will never exhibit data races. As information about the us-
age of particular programming constructs is primarily use-
ful for tool developers only, one cannot expect applications
to be documented in this way. Therefore, such informa-
tion has to be reverse engineered. We propose a tool, which
gathers information about all unit tests, and filters out tests
of interest. Other analysis tools can then be applied to a sub-
set of applications and unit tests, yielding interesting results
quickly, even for analysis algorithms that impose a large
overhead when applied to the entire test suite.

Our analysis tool is AOP-based and targets individual
test cases and measures the usage of particular features,
such as threads and I/O, of a programming environment.
This differs significantly from traditional coverage tools,
which measure execution of statements and branches by an
entire run or test suite [9]. Furthermore, our tool uses dy-
namically gathered program information for test case selec-
tion, which differs from previous tools that relied on static
criteria to select tests [3, 10, 16, 18].

This paper is organized as follows: Section 2 describes
adaptation of benchmarks to a standardized file layout and
build process. Wrapping of test execution, and AOP-based
evaluation of per-unit-test coverage, is shown in Section 3.
Section 4 shows results found in example applications. Sec-
tion 5 introduces related work, and Section 6 concludes.



Directory name Contents
proj Top directory
proj/INSTALL Installation instructions
proj/INSTALL.orig Original installation guide, if any
proj/LICENSE License (original file, renamed or

converted to text if necessary)
proj/README New README file
proj/README.orig Original README file, if any

proj/build.properties Specific build configuration
proj/build.xml Genericant build file
proj/docs Documentation of project
proj/lib Required libraries (e.g. jar files)
proj/src Source code
proj/test Source code of unit test classes

Table 1. File layout for application sources.

2. File layout and build process

In order to be useful, benchmarks have to be easy to eval-
uate. For a benchmark suite of non-trivial programs, man-
agement of the compilation, installation and test process
becomes a challenge, because of dependencies on dozens
of third-party libraries, and the different steps required
for compilation and execution. A standardized file layout
solves this problem and allows for automation of the build
process across benchmarks. Our standardization has been
applied successfully to eight benchmark programs, which
were mostly taken from previous cases studies [2]. The size
of these programs ranges from 1,100 to 77,000 LOC; five
programs require between 23 and 33 external libraries.

2.1. Standardization

We use a generic build file, which is based onant and
easily customized for a project using a configuration file
calledbuild.properties.1 Besides the benefit of having
a uniform build and test process, this adaptation makes it
easy to use our AOP-based analysis tool. We chose the lay-
out described in Table 1, as it corresponds to the structure of
many existing projects. Indeed, many benchmark programs
from previous case studies [2] required only few changes.

Because the build and test process should also be evident
to people who have not read this paper, two descriptive files
are added to each archive, providing an overview:

1. README – project overview
This file contains the project title, a short description of
the project, information about the author(s), version,
data, and home page (if available). A list of known

1Other programming languages have similar de-facto standard build
tools, such asmake. While we usedant for Java, our concepts can be
easily applied to other platforms.

bugs (that could affect running the tests or evaluation
by verification tools) closes the document.

2. INSTALL – installation guide, covering the following
issues:

(a) Unpacking the sources.

(b) Additional libraries required for compiling the
sources (build dependencies).

(c) How to build the program (standardized build
process).

(d) Additional libraries required for running the pro-
gram (run-time dependencies).

(e) How to execute the program and its tests.

Both text files are completely standardized across all
projects. We also provide a working version of all third-
party libraries with our set of benchmarks. Duplication of
libraries is avoided through symbolic links pointing to a
shared library used across all benchmarks. Thus, installa-
tion of third-party libraries is not necessary.

Adaptation of the build process is necessary for our eval-
uation tool, but could be done without using our generic
build file. As our tool is AOP-based, compilation has to be
changed (fromjavac to acj). Furthermore, command-line
options control test filtering and evaluation. These adapta-
tions could be performed manually for each project, without
using our generic file. Alternatively, a build file manipula-
tion tool, such as Makao [1], could be used to update all
build files automatically.

2.2. Comparison to package managers

Our build file automates compilation, installation, and
execution of benchmark programs. Existing package man-
agers also fulfill these tasks (except for the execution of
the unit test suite), so the question arises whether the ant-
based solution for Java is ideal. We believe that our solu-
tion makes sense, because package managers have funda-
mentally different goals:

• Package managers typically install and update applica-
tions system-wide. Benchmark programs are not used
outside the purpose of testing and should not interfere
with the rest of the system.2

• Package managers have sophisticated mechanisms for
maintaining dependencies of libraries, and to update
these to the latest version when necessary and desired.
However, benchmark programs should never be up-
dated (their bugs serve as measures of the quality of
analysis tools).

2This point could be addressed by creating a second repository of in-
stalled packages, which only holds benchmark programs.
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Test suite construction → Test suite exec. (JUnit)

Figure 1. Standard flow of running tests in
JUnit.

• Package managers are typically only well supported on
platform, while build tools are much more portable.

• The adaptation of a uniform file layout has many ad-
vantages besides eliminating the need for complex
configuration management. Analysis of source and ob-
ject code are greatly simplified as well.

3. Test execution and evaluation

Some run-time analysis tools impose a considerable
overhead. Memory analysis tool “valgrind” has an aver-
age run-time overhead of roughly a factor of 20 [15]. This
is acceptable for small tests that run within milliseconds.
Large tests may be many orders of magnitudes slower [3]
– too slow to be executed on a frequent basis with such an
expensive analysis tool. Automated analysis of unit tests
w. r. t. run-time and features relevant to program analysis
lets the developer quickly identify a small subset of tests.
Execution of that subset may be sufficient to detect failures,
at a fraction of the time required to execute all unit tests.
For instance, tests which do not allocate certain data struc-
tures, or which do not use locking, can be excluded from
certain types of analysis because the cannot produce the
types of faults investigated. Alternatively, slow tests may be
excluded because their run-time becomes prohibitive when
factoring in the slowdown of a program analysis tool.

Our work is based on JUnit as the test framework [12].
The concepts generalize to other unit test frameworks and
have been inspired by the unit test framework of JNuke [3].
In any modern unit test framework, a test suite consisting
of individual test cases is constructed before it is executed.
Construction may entail manual registration of test cases,or
it may be automated through reflection or annotations. After
a test suite is constructed, a test driver then runs the test suite
(see Figure 1). We extend this process to gather coverage
data and filter tests before they are executed. The remainder
of this paper describes the architecture and implementation
of a tool that automates this task.

Our tool fulfills two goals: Test filtering, and test eval-
uation (gathering of coverage data). Both goals can be
achieved by one design, as both tasks involve wrapping each
test. JUnit offers an extension calledTestDecorator for
this purpose [12]. Figure 2 shows how the test process is ex-
tended by a middle stage, which wraps and filters tests. The
wrapper also maintains coverage data, which is displayed
after completion of a test suite.

Category Instrumentation with AOP

Thread usage Calls to Thread.start()
Client socket Calls to Socket.connect()
Server socket Calls to ServerSocket.accept()
File, read-only Instantiation of FileInputStream
File, (read-)write Instantiation of FileOutputStream
File, random-access Instantiation of RandomAccessFile
Console, out/error Usage of System.out, System.err
Other I/O Creation of PipedIn/OutputStream

Table 2. Point cuts for accumulating test data.

We implemented test wrapping by using our own test
runner. The custom test runner wraps all incoming tests
on the fly before passing the resulting test suite to the orig-
inal JUnit test runner. After test execution, coverage data
is shown. Wrapping incoming tests requires only a single
change in the caller of the test suite, so AOP is not needed
for this part. However, accumulation of test data cannot be
done without extensive code instrumentation. We chose to
use the AspectJ compiler [11] to insert coverage measure-
ment code. The type of coverage that was interesting for
our particular case study was the usage of threads and I/O
operations per unit test.

Coverage measurement is not very complex, but differs
from conventional coverage measurement. Because we are
interested in dataper unit test,this requires differentiation
between each test. Our code uses an elegant design to avoid
the need of a reference to coverage data inside application
code: Coverage data of the current test is stored in a single-
ton instance. Before each unit test is run, that data is reset
to zero. At the end of each test, the singleton instance is
cloned and added to the database of coverage data. During
test runs, the advice instrumented by AOP modifies the sin-
gleton instance by calling static methods that access it. This
keeps the coverage measurement code simple and fast.3

Coverage analysis captures crucial operations involving
I/O and concurrency (see Table 2). AspectJ allowed for an
elegant implementation. Coverage of other features can be
measured by adding a new declaration about coverage in-
formation, and by creating a new point cut for the AspectJ
specification. The coverage framework is generic enough
such that other steps are already taken care of. Figure 3 il-
lustrates how the number of threads activated by a unit test
is measured. Any other work (maintenance and display of
coverage data) is taken care of by our coverage framework.

3Coverage data can be updated anywhere within an application. If a
non-static reference to coverage data were used, it would have to be carried
along each method call, creating a major overhead for instrumentation and
at run-time. A static reference hides that singleton instance and is globally
available.
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Filtering
Test suite construction → Wrapped test → Test suite execution (JUnit) → Show coverage

Figure 2. Extended test runner, adding filtering and coverag e evaluation.

pointcut thread_start():
call(* Thread.start(..))

after(): thread_start() {
Coverage.incCounter(Coverage.Cov_Thread);

}

Figure 3. Aspect for measuring thread usage.

4. Experimental results

In our case studies, we used five applications that were
part of a larger benchmark suite [2]. It could be confirmed
statically that applications as a whole use multiple threads
as well as network I/O. We were interested in which unit
tests use this particular functionality. In order to extract this
information, we applied our analysis tools to the five largest
benchmarks that used JUnit version 3.8.1, which was the
most current version when the tool was written. Table 3
summarizes the results, providing aggregated information
from individual tables. It firsts lists the applications with
their size, then shows the number of tests. The last three
columns show how many unit tests use multiple threads,
network I/O, and file I/O.

Table 3 has been derived from the output of our tool.
Our tool provides much more detailed information, consist-
ing of data per unit test. For each test, execution time and
coverage information w. r. t. usage of certain features is pro-
vided. For brevity, we only show an excerpt of one of these
tables generated. Table 4 lists all unit tests from jConfig
which use threads, sockets, or files, and shows the number
of these items used. Unit test names have been abbrevi-
ated where necessary. Note that this list allows someone to
quickly identify and selected potentially useful unit tests for
detailed analysis. For instance, for deadlock analysis, only
unit tests with at least one extra thread (16 tests out of 97)
are interesting.

Our coverage tool itself had no measurable overhead, as
only minimal code instrumentation is required. The experi-
ments managed to filter out a small subset of interesting test
cases, and lead to interesting observations:

• Socket usage implies thread usage. This is because a
socket cannot be tested without its counterpart; there-
fore, socket usage requires creation of another thread
to act as a client or server.

• Thread usage often implies socket or file usage: Test
threads were usually used in conjunction with I/O.

• Printing to the screen in unit tests is rare, as such output
is not validated by the JUnit test harness.

• The Enforcer fault injection tool could not use the test
suite of STUN, because it provided no coverage of any
interesting features [2]. However, the tool found bugs
in Echomine and jConfig. The low feature usage met-
rics in some of the other test suites hint that they do not
test the program properly. Thus, the absence of bugs
found in those cases is likely a result of low coverage.
It is difficult to write unit tests for network I/O, as such
tests have to be concurrent. This partially explains the
absence of such unit tests, even though the programs
as a whole heavily use these features.

5. Related work

Conventional coverage measurement tools work on a set
of hard-coded low-level program features, such as state-
ments and branches. Such tools do not allow for custom-
specified coverage criteria.

Few tools that can measure custom-specified criteria ex-
ist, such as COMET, which provides first-order tempo-
ral logic predicates to specify coverage of hardware de-
signs [10]. For software verification, AspectCov for C# [16]
uses an AspectJ-like point cut language for specification of
coverage criteria. Its goal is to provide custom-tailored cov-
erage for an entire test suite. Unlike our tool, AspectCov
does not provide per unit-test coverage. The custom point
cut language of AspectCov encompasses lower-level prop-
erties, such as branches. Conventional AOP languages, e. g.
AspectJ [11], hide such features.

Selection of a subset of all test cases for testing has
been implemented in different ways before. The JNuke test
framework uses static annotation about the performance of
unit tests [3]. The FEAT tool allows for construction of con-
cerns that select a set of test cases [18]. Our tool differs in
that it selects test cases based on quantitative criteria (such
as the number of threads used) rather than just qualitative
criteria (e. g., whether any threads are used). The key differ-
ence lies in the fact that our tool uses dynamically measured
information (provided by an initial test run) to select a sub-
set of test cases for more extensive analysis. Previous tools
relied on compile-time information alone. Our approach is
therefore more flexible but requires an initial execution step
of the entire test suite, making our approach suitable for
complementing heavy-weight run-time analysis tools.
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Application Description Size # unit # threads # sockets # files
or library [LOC] tests

Echomine Communication services API 14331 170 12 12 0
jConfig Configuration library 9611 97 16 1 28
jZonic Caching library 2142 16 0 0 1
SixBS Java beans persistency 4666 30 20 0 0
STUN Extensible programming system 1706 14 0 0 0

Table 3. Functionality used by all unit tests combined.

# Test name Thr
ea

d

Soc
ke

t

Srv
Soc

k

File
RO

File
W

File
RA

Sys
Out

Sys
Err

Oth
er

20 >ig.ConfigurationTest.testGetConfigName 2 0 0 5 0 0 0 0 0
21 >nfig.ConfigurationTest.testSetCategory 0 0 0 1 0 0 0 0 0
34 >rationManagerTest.>AddPropertyListener 4 0 0 3 0 0 0 0 0
35 >rationManagerTest.>tInputStreamHandler 4 0 0 3 0 0 0 0 0
38 >andler.InputStreamHandlerTest.testLoad 0 0 0 2 0 0 0 0 0
39 >handler.PropertiesHandlerTest.testLoad 0 0 0 1 0 0 0 0 0
40 >.PropertiesHandlerTest.testFileChanged 4 0 0 2 0 0 0 0 0
41 >ler.XMLFileHandlerTest.testLoadAndSave 0 0 0 4 0 0 0 0 0
45 >config.handler.URLHandlerTest.testLoad 1 0 1 2 0 0 0 0 0
74 >g.jconfig.LoadSaveTest.testGetInstance 4 0 0 4 0 0 0 0 0
75 >nfig.LoadSaveTest.>AndSaveConfigEscape 4 0 0 6 0 0 0 0 0
76 >aConfigParserTest.>estParseCDataConfig 2 0 0 2 0 0 0 0 0
77 >dConfigParserTest.>stParseNestedConfig 2 0 0 3 0 0 0 0 0
80 >dConfigParserTest.>aveLoadNestedConfig 0 0 0 2 0 0 0 0 0
82 >onfig.handler.JDBCHandlerTest.testLoad 0 0 0 2 1 0 0 0 0
83 >andler.JDBCHandlerTest.testLoadAndSave 0 0 0 2 1 0 0 0 0
84 >er.JDBCHandlerTest.testReplaceVariable 0 0 0 2 1 0 0 0 0
85 >.handler.JDBCHandlerTest.testVariables 0 0 0 2 1 0 0 0 0
86 >r.JDBCHandlerTest.>eAndReplaceVariable 0 0 0 4 1 0 0 0 0
87 >ler.JDBCHandlerTest.testRemoveProperty 0 0 0 4 1 0 0 0 0
88 >andler.JDBCHandlerTest.testAddProperty 0 0 0 4 1 0 0 0 0
89 >g.IncludePropertiesTest.testGetInclude 2 0 0 3 0 0 0 0 0
90 >.InheritanceParserTest.testParseConfig 2 0 0 2 0 0 0 0 0
91 >ritanceParserTest.>eCircularDependency 4 0 0 4 0 0 1 0 0
92 >onfigCategoryTest.>estGetCategoryNames 2 0 0 3 0 0 0 0 0
93 >stedConfigCategoryTest.testGetCategory 2 0 0 3 0 0 0 0 0
94 >g.InheritanceTest.>GetAllCategoryNames 2 0 0 3 0 0 0 0 0
97 >jconfig.InheritanceTest.testSaveConfig 2 0 0 1 0 0 0 0 0

Table 4. Per-unit-test coverage for jConfig (where non-zero ).
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6. Conclusion and future work

Creation of a large benchmark suite provides many chal-
lenges, despite the abundance of open source programs. We
think that a standardized file layout is necessary to create
an easy-to-use collection of large benchmark programs. We
have successfully applied this approach to several realistic
benchmark programs.

For verification tools that impose a major overhead, it is
desirable to select interesting and fast test cases before us-
ing a heavy-weight tool. We propose an AOP-based tool
that gathers this information at run-time, at no significant
overhead. AOP provided very elegant and easy-to-use ways
of adding the necessary coverage measurement code. To-
gether with a run-time library, the entire framework is very
flexible and extensible. The results gathered by our tool can
be used to select test cases of choice, and also give useful
insights into the quality and scope of a test suite.

Future work consists of making the benchmark suite
available for public download, and enhancements of the
analysis tool with more features. Finally, the feedback from
the analysis stage currently has to be used manually (for se-
lecting sets of test cases). This task could be automated by
integration of coverage evaluation into test case selection.
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