
Test Effectiveness Evaluation of Prioritized
Combinatorial Testing: A Case Study

Eun-Hye Choi∗, Shunya Kawabata∗†, Osamu Mizuno†, Cyrille Artho∗, Takashi Kitamura∗
∗National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan

Email: {e.choi, c.artho, t.kitamura}@aist.go.jp
†Kyoto Institute of Technology, Kyoto, Japan

Email: s-kawabata@se.is.kit.ac.jp, o-mizuno@kit.ac.jp

Abstract—Combinatorial testing is a widely-used technique to
detect system interaction failures. To improve test effectiveness
with given priority weights of parameter values in a system
under test, prioritized combinatorial testing constructs test suites
where highly weighted parameter values appear earlier or more
frequently. Such order-focused and frequency-focused combinato-
rial test generation algorithms have been evaluated using metrics
called weight coverage and KL divergence but not sufficiently with
fault detection effectiveness so far. We evaluate the fault detection
effectiveness on a collection of open source utilities, applying
prioritized combinatorial test generation and investigating its
correlation with weight coverage and KL divergence.

Index Terms—Prioritized combinatorial testing; Pairwise test-
ing; Fault detection; Weight coverage; KL divergence.

I. Introduction

Modern software systems have many parameters, and their
interactions are too numerous to be fully tested. Combinatorial
pairwise testing (generally, t-way testing) [13] addresses this
problem by testing all interactions of two (t) parameters; it
has been shown that t-way testing with small t (2 ≤ t ≤ 4) can
efficiently detect system interaction failures while significantly
reducing the number of test cases [11].

Recent papers ([1], [2], [3], [6], [10], [16]) have investigated
prioritized pairwise test generation, which aims to achieve
better test effectiveness. Prioritized pairwise test generation
algorithms take a system under test (SUT) model with priority
weights assigned to parameter values as an input and generate
a pairwise test suite where highly weighted parameter values
appear earlier and/or more frequently.

Prioritized pairwise test generation algorithms have been
evaluated on two metrics: weight coverage and KL divergence.
Approaches in [1], [2], [10] use weight coverage to evaluate
the effectiveness of order-focused combinatorial test genera-
tion where given weights are used to order test cases. On the
other hand, approaches in [2], [6], [16] use KL divergence to
evaluate the effectiveness of frequency-focused combinatorial
test generation where the weights are used to balance the
frequency of parameter values in test cases. However, the
relation of test effectiveness on fault detection with weight
coverage and KL divergence has not been investigated so far.

To address this problem, we present a case study that
evaluates the fault detection effectiveness with weight coverage
and KL divergence and analyzes the correlation between them
using nine variants [2] of prioritized pairwise test generation.

TABLE I
An example SUT model.

parameter value; weight
p1 a; 0.2, b; 0.1
p2 c; 0.1, d; 0.1
p3 e; 0.1, f; 0.1, g; 0.4
constraint
p1=b → p3 ,g

TABLE II
An example pairwise test suite for the SUT in Table I with weight coverage

WC and KL divergence D.

test case p1 p2 p3 WC D
1 a c g 0.3182 1.5041
2 a d g 0.5000 0.8109
3 a c e 0.6136 0.6931
4 a d f 0.7273 0.4644
5 b c f 0.8636 0.2461
6 b d e 1.0000 0.2310

For empirical evaluation, we use twelve versions of three C
projects, flex, grep, and make, from the Software artifact
Infrastructure Repository (SIR) [4]. To generate prioritized
pairwise test suites, we construct SUT models with constraints
from test plans in Test Specification Language (TSL) [14]
in the repository and extract priority weights of parameter
values from bug reports of the repository. We show the results
of examining weight coverage, KL divergence, and fault
detection effectiveness of 108 (= 12 subjects × 9 prioritization
methods) pairwise test suites, and analyze the correlation of
the fault detection effectiveness with the order-focused and the
frequency-focused prioritization effectiveness.

To our knowledge, this paper presents the first case study
of evaluating not only weight coverage and KL divergence but
also fault detection effectiveness of prioritized combinatorial
test generation and investigating the correlation of them.

This paper is organized as follows: Section II explains the
related work. Section III explains prioritized pairwise test
generation and its evaluation metrics of weight coverage and
KL divergence. Section IV describes the experimental setting,
evaluation metrics we use, and experimental results. Section V
concludes and proposes future work.

II. RelatedWork

Existing prioritized combinatorial test generation algorithms
[1], [2], [6], [10], [16] have evaluated their test suites with
weight coverage and KL divergence but not fault detection
effectiveness as described in Section I.

On the other hand, X. Qu el. [17] evaluate fault detection
effectiveness of test suites by an order-focused prioritized pair-
wise test generation algorithm called a deterministic density
algorithm (DDA), which is a greedy algorithm proposed by
R. Bryce and C. Colbourn [1]. X. Qu el. presented priority
weight extractions from code coverage and specification and
showed that combinatorial test generation by DDA based on
their weights can find faults more effectively than exhaustive
test cases. They evaluate neither weight coverage nor KL
divergence with fault detection effectiveness, and their research
purpose is different from ours.

To evaluate the efficiency of combinatorial t-way testing,
Petke et al. [15] investigate fault detection effectiveness of
combinatorial t-way test suites (2 ≤ t ≤ 6) that are generated
by a simulated annealing algorithm, CASA [19], and a greedy
algorithm, ACTS [18]. They also examine the fault detection
rate of test prioritization of the t-way test suites w. r. t. t′-way
interaction coverage with 2 ≤ t ≤ 6, which means the test
suites whose test cases are re-ordered in the descent order of
t′-way coverage.

Henard et al. [8] also evaluate the fault detection availability
of test prioritization of exhaustive test suites w. r. t. t-way
coverage with 2 ≤ t ≤ 4 in their comparison of white-box
prioritization and black-box prioritization. In addition, Henard
et al. [7] examine t-way coverage and the fault detection rate
by test prioritization w. r. t. test case similarity for software
product line systems.

While we in this paper explore weight coverage and KL
divergence with fault detection effectiveness of prioritized
combinatorial testing with weighted SUT, the work [15], [7],
[8] consider combinatorial testing with non-weighted SUT and
investigate neither weight coverage nor KL divergence.

III. Prioritized Combinatorial Testing

A. Prioritized pairwise testing

A system under test (SUT) for combinatorial testing is
modeled from parameters, their associated values from finite
sets, and constraints between parameter values. Table I shows
an example SUT model with three parameters (p1, p2, p3) and
a constraint between p1 and p3; p1 and p2 have two values,
p3 has three values, and value pair (b, g) is not allowed by the
constraint.

A test case for an SUT model assigns to each parameter a
value that does not violate constraints in the SUT model. For
example, a 3-tuple (a, c, e) is a test case for our example SUT
model. We call a sequence of test cases a test suite.

A pairwise test suite for an SUT model is a test sequence to
cover all possible value pairs between two parameters in the
SUT model at least once. We say that a value pair is possible iff
it does not violate SUT constraints. Table II shows an example

pairwise test suite for the SUT model in Table I; it covers all
possible 15 value pairs between two parameters, (a, c), (a, d),
. . ., (d, g).

Prioritized pairwise testing takes an SUT whose parameter
values are assigned a weight representing a relative importance
in testing, e. g., error probability, occurrence probability, and
risk [10], and constructs a pairwise test suite that considers the
weights. Existing algorithms for prioritized pairwise test gen-
eration are classified, depending on how weights are reflected
in a test suite, into order-focused approaches, frequency-
focused approaches, and their integration.

B. Order-focused prioritization and weight coverage

The algorithms in the order-focused approach, e. g.,
DDA [1] and CTE-XL [10], consider that highly weighted
values (value pairs) should appear early in a test suite. Hence,
they use weights to let higher-priority values appear earlier in
test generation.

To evaluate a test suite T , they use a metric called weight
coverage, which is defined as

WC(T) =
Sum of weights of value pairs covered by T
Sum of weights of all possible value pairs

.

For example, weight coverage for the first two test cases of
T in Table II for the SUT in Table I is 0.5 since the sum of
weights of all possible 15 values pairs is 4.4 and that of value
pairs covered by T is 2.2. In a test suite, order-focused pri-
oritization uses higher-weighted values earlier, which implies
obtaining higher weight coverage earlier.

C. Frequency-focused prioritization and KL divergence

The algorithms in the frequency-focused approach, e. g.,
PICT [3], the method by Fujimoto et al. [6], and FoCuS [16],
consider that highly weighted values should appear frequently
in a test suite. Hence, they use weights to utilize higher-priority
values more often in test generation.

To evaluate a test suite T , they use KL divergence [12],
which measures the difference between two probability distri-
butions P and Q by

D(T) =
∑

v P(v) log(P(v)/Q(v)),

where P(v) and Q(v) respectively denote the current frequency
of each parameter value v in T and the ideal occurrence
frequency for v. The frequency-focused prioritization assumes
that the number of occurrences of v is proportional to its
weight.

For our example SUT in Table I, the ideal distribution Q(v)
is 2/3, 1/3, . . ., 2/3 for each value, a, b, . . ., g. On the other
hand, the current distribution P(v) of test suite T in Table II
is 2/3, 1/3, . . ., 1/3, and the KL divergence D(T) is 0.2310.
By definition of KL divergence, D(T) equals zero in the ideal
situation, i. e., when P = Q, and it grows when the difference
between P and Q is larger.

TABLE III
Project data, number of seeded faults and number of detected faults.

No. project ver. LoC
of faults

seeded detected by detected by prioritized pairwise tests by nine algo.
all tests cs co cf cs.co co.cs cs.cf co.cf cs.co.cf co.cs.cf

1 flex v1 12,160 19 16 16 16 16 16 16 16 16 16 16
2 v2 12,737 20 13 13 13 13 13 13 13 13 13 13
3 v3 12,781 17 9 9 9 9 9 9 9 9 9 9
4 v4 14,168 16 11 11 11 11 11 11 11 11 11 11
5 v5 12,893 9 5 5 5 5 5 5 5 5 5 5
6 grep v1 12,507 18 4 4 4 4 4 4 4 4 4 4
7 v2 13,179 8 2 2 2 2 2 2 2 2 2 2
8 v3 13,291 18 8 7 7 8 7 7 7 8 7 8
9 v4 13,359 12 2 2 2 2 2 2 2 2 2 2

10 make v1 18,460 19 4 4 4 4 4 4 4 4 4 4
11 v2 19,149 6 1 1 1 1 1 1 1 1 1 1
12 v3 20,340 5 1 1 1 1 1 1 1 1 1 1

TABLE IV
Number of all possible tests, and sizes of pairwise test suites used in the experiment.

No. project ver. # of all tests # of prioritized pairwise tests by nine algo.
cs co cf cs.co co.cs cs.cf co.cf cs.co.cf co.cs.cf

1 flex v1 525 52 52 51 52 52 51 51 51 52
2 v2 525 52 52 51 52 52 51 51 51 52
3 v3 525 52 53 52 51 51 51 53 52 51
4 v4 525 52 52 51 51 51 51 52 51 51
5 v5 525 52 52 51 52 52 51 51 51 52
6 grep v1 470 75 77 81 75 76 75 75 78 75
7 v2 470 75 75 81 76 76 78 75 76 79
8 v3 470 75 78 80 75 78 77 79 77 79
9 v4 470 75 74 80 75 75 78 76 77 77

10 make v1 793 33 33 33 32 33 33 32 33 32
11 v2 793 33 33 35 34 33 33 33 33 33
12 v3 793 33 33 35 34 33 34 33 34 33

D. Pricot

The algorithm in [2], which we call pricot, integrates the
order-focused prioritization (shortly co) and the frequency-
focused prioritization (shortly cf) with a size-focused prior-
itization (shortly cs) which considers that the size of a test
suite should be small. To realize a small test suite where
high-priority test cases appear early and frequently in a good
balance, pricot takes a prioritization order of cs, co, and cf
(e. g., cs > co > cf, denoted by cs.co.cf) as an input and
generates a pairwise test suite that considers the weights in
the given order.

To evaluate test suites, pricot uses both weight coverage and
KL divergence [2]. Table II shows a pairwise test suite that
is generated by pricot with co.cf, together with cumulative
weight coverage and KL divergence of its test cases. For
our case study to investigate the relation of fault detection
effectiveness with weight coverage and KL divergence, we
use pairwise test suites generated by pricot with various
prioritization orders.

IV. Experiments

A. Research Questions

We set up the following two research questions to in-
vestigate the effectiveness of existing evaluation metrics of
prioritized combinatorial testing.

RQ1. Do order-focused prioritized combinatorial test suites
with higher weight coverage achieve better fault
detection effectiveness?

RQ2. Do frequency-focused prioritized combinatorial test
suites with better (lower) KL divergence achieve
better fault detection effectiveness?

B. Experimental Setting

1) Subjects: For empirical experiments, we use three open
source projects of C programs, flex, grep, and make, from the
Software artifact Infrastructure Repository (SIR) [20]. Each
project includes

• multiple versions of programs with seeded faults,
• a test plan in Test Specification Language (TSL) [14],
• all test cases satisfying the test plan, and
• a bug report for each version of the project that describes

which test case detects a fault.

Table III shows the lines of code (LoC) including comments,
the number of seeded faults, the number of detected faults by
all test cases. Table IV shows the number of all test cases
for each version of the projects we use. The faults in the
repository were hand-seeded by multiple developers to reflect
real types of faults based on their experience [4]. We choose
the versions whose number of detected faults is not zero from
the repository.

Parameters:
...
Bypass use: # -Cr
Bypass_on. [property Bypass]
Bypass_off.

Fast scanner: # -f, -Cf
FastScan. [property FastScan]
FullScan. [if !Bypass][property FullScan]
off. [property f&Cfoff]

...

Fig. 1. A part of the test plan for flex in TSL.

TABLE V
Sizes of SUT models.

project model constraint
flex 29; 3234462 97; 27122212422517269

grep 14; 243143516191111131201 87; 243332748751612412712813110

make 22; 2231244526171 79; 2526211221231243257269

2) SUT models: For each project, we construct an SUT
model whose parameters, values, and constraints are fully
extracted from the TSL specification. For example, Fig. 1 show
a part of the test plan in TSL for project flex included in SIR.
From the TSL specification, we construct the SUT model for
flex whose parameters include Bypass use(= px) and Fast
scanner(= py), values for px includes Bypass on(= va),
values for py includes FullScan(= vb), and constraints include
(py = vb) → (px , va). Table V shows the size of the SUT
model for each project. In the table, the size of a model is
expressed as k; gk1

1 gk2
2 . . . g

kn
n which indicates that the number of

parameters is k and for each i there are ki parameters that have
gi values. The size of constraints is expressed as l; hl1

1 hl2
2 . . . h

lm
m

which indicates that the constraint is described in conjunctive
normal form (CNF) with l variables whose Boolean value
represents an assignment of a value to a parameter and for
each j there are h j clauses that have l j literals.

3) Weights: For each version of the project, we extract the
weight of each parameter value v, denoted by w(v), from the
bug report. We define w(v) as the conditional probability that
a test case t detects a fault given that v is assigned to the test
case t. w(v) is then calculated using the Bayesian inference as
follows [9]:

w(v) = P(t detects a fault | v is assigned to t) (1)

=
P(v is assigned to t | t detects a fault)

P(v is assigned to t)
(2)

We compute the above equation (2) and determine the weight
for each parameter value v using the information in the bug
report of SIR that describes whether each test case t detects a
fault or not.

4) Test suites: We use prioritized pairwise test suites gen-
erated by pricot [2] for the constructed SUT models with
constraints and weights. For each model, we use nine variants
of test suites generated with the following prioritization orders:
1) cs, 2) co, 3) cf, 4) cs.co, 5) co.cs, 6) cs.cf, 7) co.cf, 8)

cs.co.cf, and 9) co.cs.cf. In Tables III and IV, we show the
size of each test suite and the number of faults detected by
the test suite. We highlight the case where more faults are
detected in Table III, and highlight the case where the size of
the test suite is minimum in Table IV. For all subjects except
grep v3, all the pairwise test suites detect all faults detected
by all test cases, while sizes of the pairwise test suites are less
than 18% of those of exhaustive test suites.

C. Evaluation metrics

To evaluate the fault detection effectiveness of a test suite
T , we use the metric called NAPFD (Normalized Average
Percentage of Faults Detected) [17], which is defined by

NAPFD(T) = p −
F1 + F2 + . . . + Fm

m × n
+

p
2n

where m denotes the number of faults detected by the all test
cases, n denotes the number of test cases of T , Fi (1 ≤ i ≤ m)
denotes the number of the test cases where fault i is detected,
and p denotes the number of faults detected by T divided by
m. For example, assume that there are two faults and the first
test case and the third test case of T in Table II detect each of
the two faults. (We call this assumption X in the following.)
NAPFD of T is 0.75(= 1 − 4/12 + 1/12).

NAPFD is a normalized APFD [5], which is a common met-
ric to evaluate fault detection effectiveness of test prioritization
in regression testing, for evaluating test suites with different
sizes and thus different numbers of faults detected (See [17]
for further details). NAPFD measures the area under the curve
when the percent of detected faults is on the y-axis and the
percent of test cases is on the x-axis; higher NAPFD implies
faster and more effective fault detection.

To evaluate weight coverage and KL divergence for pri-
oritized test suites with different sizes, we use normalized
values of weight coverage WC and KL divergence D following
NAPFD, which we call Normalized Weight Coverage (NWC)
and Normalized KL divergence (NKLD) respectively. We de-
fine NWC and NKLD of a test suite T as follows:

NWC(T) =
pw

n

(∑
1≤i≤n

WC(Ti)/WC(T) −
1
2

)
,

NKLD(T) =
pd

n

(∑
1≤i≤n

D(Ti)/Dmax(T) −
1
2

)
,

where
• n denotes the number of test cases in T ,
• Ti denotes the test suite having the first i test cases in T ,
• pw denotes WC(T) divided by the maximum value of

weight coverage, i. e., 1.
• Dmax(T) denotes the maximum value of D(Ti) for 1 ≤ i ≤

n,
• pd denotes Dmax(T) divided by dmax, where dmax denotes

the maximum value of Dmax(T ′) for each T ′ of all test
suites for evaluation.

For the test suite T in Table II, NWC is 0.5871(= 4.0227/6 −
1/12). NKLD is 0.3543(= 3.9496/(6 × 1.5041) − 1/12) where
dmax = 1.5041.

TABLE VI
NAPFD, NWC, and NKLD for sample subjects.

subject test suites NAPFD NWC NKLD
flex v1 co 0.9772 0.6349 0.5629

cf 0.9571 0.7038 0.4105
co.cf 0.9767 0.6381 0.5493

grep v3 co 0.7492 0.6799 0.2882
cf 0.8266 0.6447 0.3492

co.cf 0.8608 0.6864 0.2801
make v1 co 0.8106 0.7439 0.3771

cf 0.9242 0.7131 0.3648
co.cf 0.8047 0.7373 0.3839

NWC (resp. NKLD1) measures the area under the curve
when the percent of WC (resp. D) is on the y-axis and the
percent of test cases is on the x-axis; higher NWC (resp. lower
NKLD) implies better test effectiveness on order-focused (resp.
frequency-focused) prioritization.

D. Results

Fig. 2 shows the cumulative numbers of faults detected,
weight coverage, and KL divergence by the pairwise test cases
generated by pricot. Due to space limitations, we show the re-
sults by three methods co (order-focused prioritization), and cf
(frequency-focused prioritization), and co.cf (their integration)
for three subjects flex v1, grep v3, and make v1; we selected
a subject whose number of detected faults is the maximum in
each project. Table VI gives NAPFD, NWC, and NKLD for
each case.

From Table VI, for grep v3, method co.cf, which provides
the best NWC and NKLD among the three methods, obtains
the best NAPFD. For make v1, method cf, which provides
the best NKLD, obtains the best NAPFD but the worst NWC.
For flex v1, method co obtains the best NAPFD but the worst
NWC and NKLD. However, looking at the first 10 test cases
for flex v1 in Fig. 2, where all faults are detected, co and co.cf
achieve better fault detection with better weight coverage and
KL divergence compared to cf.

Table VII presents the results of NAPFD, NWC, and NKLD
for all 108 test suites by nine variants of prioritization for
all 12 subjects. Fig. 3 shows box plots for the results. Each
box plot shows the mean (triangle in the box), median (thick
horizontal line), the first/third quartiles (hinges), and high-
est/lowest values within 1.5 × inter-quatile range of the hinge
(whiskers). Points outside the range (dots) are considered
outliers. Table VIII shows the average and the number of wins,
which indicates the number of times that each method obtains
the best value among the nine methods, of NAPFD, NWC, and
NKLD for all subjects.

Although the result shows arbitrary orders on NAPFD,
NWC, and NKLD for the nine methods, co.cf, which provides
the maximum NAPFD (0.8943) on average, obtains the max-
imum number of wins for NWC and NKLD among the nine
methods; co.cf achieves the best NWC for 5 subjects and the

1Strictly the area under the curve for KL divergence is calculated by pd/n×
(
∑

1≤i≤n D(Ti)/Dmax(T) − D(T1)/2 +
∑

2≤i≤n(D(Ti−1) − D(Ti))/2). We use the
simplified formula in this paper.

best NKLD for 6 subjects among 12 subjects. On the other
hand, co.cs.cf, which obtains the maximum number of wins (5
times) for NAPFD, achieves the maximum NWC (0.7294) and
the best NAPFD (0.3426). On the contrary, cs (size-focused
prioritization, which does not consider weights of values in
test generation) provides the minimum NAPFD (0.7018) on
average and achieves the best NWC or NKLD for no subject.

Fig. 4 shows scatter plots with regression lines and coef-
ficients R for the correlation between NWC and NAPFD and
that between NKLD and NAPFD, using the 108 test suites.
From the result, NAPFD is correlated with NWC (R = 0.389)
although no correlation is found between NAPFD and NKLD
(R = −0.101). We also investigated NWC, NKLD, and NAPFD
of the minimum test suite Ti having the first i test cases of
each test suite T that detect all faults detected by T . (For
example, assuming X in Section IV, the minimum test suite
of T is the one having the first three test cases.) Fig. 5
shows the correlation using the minimum test suites. The result
shows that NAPFD is more significantly correlated with NWC
(R = 0.556) but is still not correlated with NKLD (R = 0.146).

The experimental results answer to the research questions,
RQ1 and RQ2, as follows: Combinatorial test generation that
achieves higher weight coverage can provide better (faster)
fault detection but that with better KL divergence might not.
Basically, frequency-focused prioritization aims to provide
more effective fault detection while order-focused prioritiza-
tion aims to provide earlier fault detection. Therefore, to in-
vestigate the fault detection effectiveness of frequency-focused
combinatorial test generation, examining the correlation of KL
divergence to the number of faults detected is also our interest.
Unfortunately, the numbers of faults detected by test suites
used in our experiments are almost the same, and thus further
case studies on more software projects will be included in
future work.

V. Conclusion and FutureWork

This paper investigates the fault detection effectiveness with
weight coverage and KL divergence of prioritized combi-
natorial test generation. In our empirical evaluation using a
collection of open source utilities, order-focused combina-
torial test generation with higher weight coverage achieves
the best (fastest) fault detection while the frequency-focused
combinatorial test generation with better KL divergence fares
worse. The correlation between KL divergence and the test
effectiveness w. r. t. detecting more faults will be investigated
in future work. In addition, further case studies on software
projects with real faults is an important future work. We are
also investigating automated methods of extracting priority
weights for prioritized combinatorial testing to achieve better
fault detection effectiveness.

Acknowledgments

The authors would like to thank anonymous referees for
their helpful comments to improve this paper. This work
was partly supported by JSPS KAKENHI Grant Number
16K12415.

fle
x

v1
:

Fa
ul

t
de

te
ct

io
n

fle
x

v1
:

W
ei

gh
t

co
ve

ra
ge

fle
x

v1
:

K
L

di
ve

rg
en

ce

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

051015

0
10

20
30

40
50

of

 te
st

 c
as

es

of detected faults

m
et

ho
d

●
co cf co

.c
f

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.
00

0.
25

0.
50

0.
75

1.
00

0
10

20
30

40
50

of

 te
st

 c
as

es

Weight coverage

m
et

ho
d

●
co cf co

.c
f

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0102030

0
10

20
30

40
50

of

 te
st

 c
as

es

KL divergence

m
et

ho
d

●
co cf co

.c
f

gr
ep

v3
:

Fa
ul

t
de

te
ct

io
n

gr
ep

v3
:

W
ei

gh
t

co
ve

ra
ge

gr
ep

v3
:

K
L

di
ve

rg
en

ce

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

02468

0
20

40
60

80

of
 te

st
 c

as
es

of detected faults

m
et

ho
d

●
co cf co

.c
f

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.
00

0.
25

0.
50

0.
75

1.
00

0
20

40
60

80

of
 te

st
 c

as
es

Weight coverage

m
et

ho
d

●
co cf co

.c
f

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0510152025

0
20

40
60

80

of
 te

st
 c

as
es

KL divergence

m
et

ho
d

●
co cf co

.c
f

m
ak

e
v1

:
Fa

ul
t

de
te

ct
io

n
m

ak
e

v1
:

W
ei

gh
t

co
ve

ra
ge

m
ak

e
v1

:
K

L
di

ve
rg

en
ce

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

01234

0
10

20
30

of

 te
st

 c
as

es

of detected faults

m
et

ho
d

●
co cf co

.c
f

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.
00

0.
25

0.
50

0.
75

1.
00

0
10

20
30

of

 te
st

 c
as

es

Weight coverage

m
et

ho
d

●
co cf co

.c
f

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

01020

0
10

20
30

of

 te
st

 c
as

es
KL divergence

m
et

ho
d

●
co cf co

.c
f

Fi
g.

2.
N

um
be

r
of

fa
ul

ts
de

te
ct

ed
,w

ei
gh

t
co

ve
ra

ge
,a

nd
K

L
di

ve
rg

en
ce

fo
r

sa
m

pl
e

su
bj

ec
ts

.

TABLE VII
NAPFD, NWC, and NKLD of nine variants of test suites for each subject.

flex v1 flex v2 flex v3
test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD

cs 0.9111 0.7204 0.4107 cs 0.8277 0.7140 0.4137 cs 0.6442 0.6357 0.4756
co 0.9772 0.6349 0.5629 co 0.7907 0.6261 0.5676 co 0.8606 0.8034 0.2916
cf 0.9571 0.7038 0.4105 cf 0.8107 0.6976 0.4137 cf 0.6741 0.6195 0.4894

cs.co 0.9111 0.7234 0.4076 cs.co 0.8277 0.7169 0.4107 cs.co 0.6765 0.7170 0.3953
co.cs 0.9772 0.6745 0.5096 co.cs 0.8025 0.6666 0.5132 co.cs 0.7505 0.7609 0.3079
cs.cf 0.9632 0.7204 0.4103 cs.cf 0.8137 0.7140 0.4133 cs.cf 0.6656 0.6289 0.4794
co.cf 0.9767 0.6381 0.5493 co.cf 0.8544 0.6294 0.5541 co.cf 0.8606 0.8034 0.2914

cs.co.cf 0.9632 0.7234 0.4072 cs.co.cf 0.8137 0.7169 0.4103 cs.co.cf 0.6784 0.7167 0.3952
co.cs.cf 0.9772 0.6738 0.5046 co.cs.cf 0.8602 0.6659 0.5083 co.cs.cf 0.7505 0.7609 0.3077

flex v4 flex v5 grep v1
test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD

cs 0.8488 0.7352 0.4125 cs 0.9904 0.7165 0.4110 cs 0.5900 0.6537 0.3550
co 0.9205 0.6547 0.5538 co 0.9904 0.6261 0.5676 co 0.7013 0.6137 0.3889
cf 0.9207 0.7198 0.4117 cf 0.9902 0.7001 0.4109 cf 0.8025 0.6513 0.3396

cs.co 0.8387 0.7353 0.4291 cs.co 0.9904 0.7178 0.4087 cs.co 0.6933 0.6545 0.3418
co.cs 0.8565 0.6826 0.5143 co.cs 0.9904 0.6391 0.5447 co.cs 0.6842 0.6088 0.3947
cs.cf 0.9207 0.7352 0.4120 cs.cf 0.9902 0.7165 0.4106 cs.cf 0.7867 0.6509 0.3507
co.cf 0.9205 0.6547 0.5494 co.cf 0.9902 0.6294 0.5541 co.cf 0.6933 0.6174 0.3831

cs.co.cf 0.8244 0.7353 0.4290 cs.co.cf 0.9902 0.7178 0.4083 cs.co.cf 0.7949 0.6492 0.3440
co.cs.cf 0.8565 0.6826 0.5081 co.cs.cf 0.9904 0.6393 0.5392 co.cs.cf 0.6767 0.6150 0.3846

grep v2 grep v3 grep v4
test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD

cs 0.7200 0.4555 0.6314 cs 0.8242 0.6446 0.3587 cs 0.7467 0.7203 0.4737
co 0.8733 0.8171 0.5009 co 0.7492 0.6799 0.2882 co 0.9257 0.7977 0.5393
cf 0.9444 0.4691 0.6535 cf 0.8266 0.6447 0.3492 cf 0.9000 0.7126 0.4549

cs.co 0.8553 0.6764 0.8030 cs.co 0.8242 0.6446 0.3587 cs.co 0.8733 0.7982 0.5585
co.cs 0.8487 0.7614 0.5659 co.cs 0.7492 0.6799 0.2882 co.cs 0.9133 0.8035 0.5425
cs.cf 0.9423 0.4518 0.6156 cs.cf 0.7752 0.6463 0.3545 cs.cf 0.8974 0.7211 0.4732
co.cf 0.8733 0.8171 0.5091 co.cf 0.8608 0.6864 0.2801 co.cf 0.9276 0.8024 0.5377

cs.co.cf 0.9539 0.6798 0.8108 cs.co.cf 0.7752 0.6463 0.3545 cs.co.cf 0.9091 0.7982 0.5549
co.cs.cf 0.9557 0.7709 0.5785 co.cs.cf 0.8608 0.6864 0.2801 co.cs.cf 0.9156 0.8041 0.5406

make v1 make v2 make v3
test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD test suites NAPFD NWC NKLD

cs 0.7727 0.7339 0.4084 cs 0.3788 0.5274 0.2821 cs 0.1667 0.5063 0.2873
co 0.8106 0.7439 0.4238 co 0.9848 0.8523 0.2693 co 0.9848 0.8574 0.3715
cf 0.9242 0.7131 0.4054 cf 0.9571 0.5361 0.3335 cf 0.9571 0.5468 0.3151

cs.co 0.8516 0.6567 0.6259 cs.co 0.9853 0.8388 0.4171 cs.co 0.9853 0.8439 0.4870
co.cs 0.8788 0.7513 0.4506 co.cs 0.9848 0.8522 0.2694 co.cs 0.9848 0.8574 0.3716
cs.cf 0.9091 0.7342 0.4184 cs.cf 0.9545 0.5291 0.2758 cs.cf 0.9559 0.5075 0.2815
co.cf 0.8047 0.7373 0.4315 co.cf 0.9848 0.8523 0.2696 co.cf 0.9848 0.8574 0.3720

cs.co.cf 0.9470 0.6666 0.6184 cs.co.cf 0.9848 0.8388 0.4174 cs.co.cf 0.9853 0.8439 0.4874
co.cs.cf 0.8750 0.7439 0.4470 co.cs.cf 0.9848 0.8522 0.2697 co.cs.cf 0.9853 0.8574 0.3720

TABLE VIII
NAPFD, NWC, and NKLD for all subjects.

test suites NAPFD NWC NKLD
avg # wins avg # wins avg # wins

cs 0.7018 1 0.6469 0 0.4060 0
co 0.8808 3 0.7256 4 0.3537 0
cf 0.8887 2 0.6429 0 0.4063 3

cs.co 0.8594 3 0.7269 5 0.3518 0
co.cs 0.8684 2 0.7282 1 0.3460 0
cs.cf 0.8812 1 0.6463 1 0.4039 0
co.cf 0.8943 3 0.7271 5 0.3491 6

cs.co.cf 0.8850 2 0.7277 4 0.3506 3
co.cs.cf 0.8907 5 0.7294 2 0.3426 1

References

[1] R. Bryce and C. Colbourn. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Information & Software

Technology, 48(10):960–970, 2006.
[2] E. Choi, T. Kitamura, C. Artho, A. Yamada, and Y. Oiwa. Priority

integration for weighted combinatorial testing. In Proc. of COMPSAC,
pages 242–247. IEEE, 2015.

[3] J. Czerwonka. Pairwise testing in the real world: Practical extensions to
test case generators. Microsoft Corporation, Software Testing Technical
Articles, 2008.

[4] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[5] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case priori-
tization: A family of empirical studies. IEEE Trans. Software Eng.,
28(2):159–182, 2002.

[6] S. Fujimoto, H. Kojima, and T. Tsuchiya. A value weighting method
for pair-wise testing. In Proc. of APSEC, pages 99–105, 2013.

[7] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon.
Comparing white-box and black-box test prioritization. In Proc. of the
38th International Conference on Software Engineering (ICSE), pages
523–534. ACM, 2016.

[8] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon. Bypassing the combinatorial explosion: Using similarity

●

●

●

●

●
●

●

●

●● ●●

●
●

●

●

●● ●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

0.25

0.50

0.75

1.00

0.5

0.6

0.7

0.8

0.2

0.4

0.6

N
A

P
F

D
N

W
C

N
K

LD

cs co cf cs.co co.cs cs.cf co.cf cs.co.cf co.cs.cf

Fig. 3. NAPFD, NWC, and NKLD for all subjects.

to generate and prioritize t-wise test configurations for software product
lines. IEEE Trans. Software Eng., 40(7):650–670, 2014.

[9] S. Kawabata, E. Choi, and O. Mizuno. A prioritization of combinatorial
testing using Bayesian inference. Technical Report of IEICE (in
Japanese), 115(SS2015-95):115–120, 2016.

[10] P. Kruse and M. Luniak. Automated test case generation using
classification trees. Software Quality Professional, pages 4–12, 2010.

[11] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng.,
30(6):418–421, 2004.

[12] S. Kullback and R. A. Leibler. The annals of mathematical statistics.
On information and sufficiency, pages 79–86, 1951.

[13] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):11, 2011.

[14] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating functional tests. Commun. ACM, 31(6):676–
686, 1988.

[15] J. Petke, M. Cohen, M. Harman, and S. Yoo. Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection. IEEE Trans. Software Eng., 41(9):901–924, 2015.

[16] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision diagrams
for combinatorial test design. In Proc. of ISSTA, pages 254–264, 2011.

[17] Q. Xiao, M. Cohen, and K. Woolf. Combinatorial interaction regression

●●● ●●

●
●
●
●

●●

●
●

●
●●●●

●

●●

●●

●●
●●

●●●

●● ●

●

●●

●●●●● ●●●●

●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●●●

●

●
●
●●

●●

●●

●

●

●

●●
●●●●

●

●
●●

●
●●●●

●

●
●●

0.5 0.6 0.7 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

NWC

N
A

P
F

D

R = 0.389

● ●●●●

●
●
●
●

● ●

●
●

●
●●●●

●

●●

●●

●●
●●

● ●●

●●●

●

●●

● ●●●●●●●●

●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●●●

●

●
●
● ●

●●

●●

●

●

●

●●
●●●●

●

●
●●

●
●●●●

●

●
●●

0.1 0.3 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

NKLD

N
A

P
F

D

R = −0.101

Fig. 4. Correlation of NAPFD with NWC and NKLD for full test suites.

●

●●●●

●

●

●

● ●●

●

●

●
●●●●

●
●● ●●

●●
●●

●

●●

●●
●

●

●

●

● ●●●●●●●●

●

●●
●●

●

●

●

●

●

●●●●

●

●

●●

● ●

●

●

●

●
●

●
●

●
●●●●

●
●

●●

●

●●
●●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

NWC

N
A

P
F

D

R = 0.556

●

●●●●

●

●

●

●● ●

●

●

●
●●●●

●
●●●●

●●
●●

●

●●

●●
●

●

●

●

●●●●●●●●●

●

●●
●●

●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●

●
●

●
●

●
●●●●

●
●

●●

●

●●
●●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

NKLD

N
A

P
F

D

R = 0.146

Fig. 5. Correlation of NAPFD with NWC and NKLD for the minimum test
suites.

testing: A study of test case generation and prioritization. In Proc.
ICSM’07, pages 255–264. IEEE, 2007.

[18] ACTS, Available: http://csrc.nist.gov/groups/SNS/acts/.
[19] CASA, Available: http://cse.unl.edu/citportal/.
[20] SIR, Available: http://sir.unl.edu/.

