Distance-integrated Combinatorial Testing

Eun-Hye Choi*, Cyrille Artho* ", Takashi Kitamura*, Osamu Mizunoi, Akihisa Yamada*$
* National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
Email: {e.choi, t.kitamura}@aist.go.jp
T KTH Royal Institute of Technology, Stockholm, Sweden. Email: artho@kth.se
¥ Kyoto Institute of Technology, Kyoto, Japan. Email: o-mizuno@Xkit.ac.jp
§ University of Innsbruck, Innsbruck, Austria. Email: akihisa.yamada@uibk.ac.at

Abstract—This paper proposes a novel approach to combina-
torial test generation, which achieves an increase of not only the
number of new combinations but also the distance between test
cases. We applied our distance-integrated approach to a state-
of-the-art greedy algorithm for traditional combinatorial test
generation by using two distance metrics, Hamming distance,
and a modified chi-square distance. Experimental results using
numerous benchmark models show that combinatorial test suites
generated by our approach using both distance metrics can
improve interaction coverage for higher interaction strengths
with low computational overhead.

Keywords-Combinatorial testing; r-way test generation; r-way
coverage; Interaction strength; Hamming distance; Chi-square
distance.

1. INTRODUCTION

Testing is an activity to ensure the reliability of systems by
actually executing the system against a certain set of test cases,
called a fest suite. In practice, resources for testing are limited,
and exhaustive testing is almost always infeasible. Therefore,
as a measure to select appropriate test cases, the notion of
coverage criterion has been widely used; it is sometimes even
required by safety standards, as in the automotive [2] and
avionics [[1]] industries. Hence, one of the central research
objectives in software testing is to develop test case generation
techniques to comply various coverage criteria.

Combinatorial t-way testing [28]], [34]—here ¢ is a small
number called the interaction strength—is a well-known
black-box testing technique based on a coverage criterion
called t-way coverage, which measures how many of the all
possible interactions of ¢ parameters are tested. Based on the
observation that most system failures are caused by only a
few parameters [30], [42], r-way testing aims at ensuring the
quality of software testing by stipulating to test all t-way
parameter interactions at least once. In principle, by r-way
testing one can detect any defects triggered by the interaction
of up to ¢ parameters. Various algorithms [3]], [16], [19] for
generating small t-way test suites (i. €., a test suite that ensures
100 % t-way coverage) have been developed so far.

Two same-sized ¢-way test suites may have different #'-way
coverage for ¢ > t. For example, 2-way test suites 7 in
Table [T and 75 in Table [[V] have different 3-way coverage:
69.81 % for 77 and 73.58 % for 7. In the real world, the
size of test suites is often limited by budget; it may happen
that 3-way testing is not admissible. Hence, a test suite with

full #-way coverage and higher #'-way coverage can potentially
detect more failures with higher interaction strength ¢’ [9].

To our knowledge, Chen and Zhang [9] proposed the only
method to tackle this problem. Their approach, which we call
the Enumerating Choice (EC) approach in this paper, takes a
t-way test suite as input and replaces “don’t-care” parameter-
values (that do not affect r-way coverage) with values that
cover as many (¢ + 1)-tuples of parameter-values as possible.
This technique indeed improves (¢ + 1)-way coverage but at
the expense of a high computation overhead; the number of
t-way tuples increases exponentially w.r.t. strength 7.

In this paper, we propose a novel approach which generates
t-way test suites and at the same time achieves higher ¢’ (> f)-
way coverage. In order to improve #’-way coverage at a reason-
able computational overhead, we do not directly enumerate #'-
way tuples; instead, based on the observation in Adaptive Ran-
dom Testing (ART) [11], [10], which integrates the notion of
distance into random testing, we propose Distance-Integrated
COmbinatorial Testing (DICOT). As in traditional greedy -
way test suite generation algorithms, DICOT generates test
cases to cover as many f-way parameter-value combinations as
possible, but it further tries to maximize the distance between
test cases.

As the distance metric, we first investigate Hamming dis-
tance [22], a traditional metric that has been already used in
existing testing approaches [8]], [33]. Since the computation
time of Hamming distance is quadratic in the length of the
input, we also investigate a modified chi-square distance [33]]
to improve efficiency, as its computation cost is linear.

The question is whether considering distance can improve
t'(> t)-way coverage or not. To experimentally investigate this
question, we implemented DICOT in a greedy z-way test gener-
ation algorithm based on PICT [16]. Through experiments on
numerous benchmarks including large-sized real applications
from literatures [[19], [38]], we observe that DICOT achieves
higher #'(> t)-way coverage compared to our implementation
of the ART algorithm [10], and with lower computation over-
head compared to our implementation of the EC approach [9]].

The rest of this paper is organized as follows: Section
describes preliminaries. Section presents our approach
DICOT. Section shows experimental results. Section
describes related work and Section [VI| concludes.

TABLE I
AN ExAMPLE SUT MODEL.

Parameter | Values Constraint
CPU Intel, AMD (OS=Mac — —~(CPU=AMD))
Net Wifi, LAN A (Browser=IE — OS=Win)
[ON] Win, Linux, Mac A (Browser=Safari —» OS=Mac)
Browser IE, Firefox, Safari,

Chrome

TABLE I
AN EXAMPLE OF ALL POSSIBLE PAIRS OF PARAMETER-VALUES.

Param. pairs | Parameter-value pairs

(C,N) (ILW), (LL), (A,W), (A,L)

(C,0) (LW), (LL), (LM), (A,W), (A,L)

(C,B) LD, (LF), (I,S), (ILC), (A,D), (AF), (A,C)

(N,0) (W, W), (W,L), (WM), (LW), (L,L), (L,M)

(N,B) WD), (W,F), (W,S), (W,0), (L), (L,F), (L,S), (L,C)
(0O,B) WD), (W,F), (W,0), (L,F), (L,C), (M,F), (M,S), M,C)

II. PRELIMINARIES
A. Combinatorial t-way testing

A system under test (SUT) for combinatorial testing (CT) is
modeled from parameters whose associated value domains are
finite. For instance, the SUT model shown in Table [l has four
parameters (CPU, Net, OS, Browser); the first two parameters
have two possible values and the others have three and
four possibilities. Constraints among parameter-values express
when some parameter-value combinations cannot occur. For
example, currently, Mac does not support AMD, IE is available
only for Win, and Safari is available only for Mac.

More rigorously, a model of an SUT is defined as follows:

Definition 1 (SUT model). An SUT model is a triple (P, V, ¢),
where

o P is a finite set of parameters py,...,pp

o V is a family that assigns a finite value domain V; for
each parameter p; (1 <i <|P|), and

o ¢ is a constraint on parameter-value combinations.

A test case is a value assignment for the parameters that
satisfies the SUT constraint. For example, a 4-tuple (Intel, Wifi,
Win, IE) is a test case for our example SUT model. We call a
sequence of test cases a fest suite.

Combinatorial t-way testing (e.g., pairwise, when t = 2)
is a CT technique to test all -way parameter interactions at
least once.

Definition 2 (t-way test). Let (P, V,¢) be an SUT model. We
say that a tuple of t (1 <t < |P|) parameter-values is possible
iff it does not contradict the SUT constraint ¢. A t-way test
suite for the SUT model is a test suite that covers all possible
t-tuples of parameter-values in the SUT model.

Example 1. Consider the SUT model in Table |l| and t = 2.
There exist 38 possible t-tuples (pairs) of parameter-values,
(Intel, Wifi), ..., (Mac, Chrome), as shown in Table @ The
test suites 71 in Table and T> in Table [IV] are 2-way
(pairwise) test suites, since each of them covers all the possible

parameter-value pairs in Table [[]|

Many algorithms to efficiently construct small z-way test
suites have been proposed so far. Approaches to generate -
way test suites for SUT models with constraints include greedy
algorithms (e.g., AETG [15], PICT [16] and ACTS [4]),
heuristic search (e. g., CASA [19]], HHSA [26], and TCA [32]),
and SAT-based approaches (e. g., Calot [41]).

In this paper, we are also interested in #'-tuples with ¢ > ¢,
where not all possible #'-tuples are covered. The coverage of
possible #'-tuples is called #'-way coverage.

Definition 3 (r-way coverage). t-way coverage, denoted by
C(T,8), of a test suite T for an SUT model S is defined as

Number of t-tuples of parameter-values covered by T

Number of all possible t-tuples of parameter-values in S

To evaluate coverage growth (i.e., how quickly a test suite
obtains #-way coverage), we also use the metric called APCC
(Average Percentage of Covering-array Coverage) [36l, which
measures the area under the curve when #-way coverage is on
the y-axis and the index of test cases is on the x-axis; higher
APCC implies faster growth of and higher 7-way coverage.

Definition 4 (APCC [36]). The APCC with t, which means
the average percentage of t-way coverage, of a test suite T

for an SUT model S is defined by
leiSm I + 1

AT,S8=1-
nm 2n

where n denotes the number of test cases, m denotes the
number of possible t-tuples of parameter-values in S, and
I; denotes the index of the first test case that covers the

parameter-value t-tuple i.

Example 2. Table [[1| and Table [IV] show two test suites T
and T, for the example SUT model of Table || that provide
the same 100% 2-way coverage but different 3-way coverage:
69.81 % for 71 and 73.58 % for 7,. APCC with t = 3 for T,
is 37.30 % and that for T, is 38.51 %.

B. t-way testing with higher t'(> t)-way coverage

Chen and Zhang [9] proposed a metric for t-way testing
called tuple density, which is defined as the (r + 1)-way
coverage plus 7. Metrics of #'(> f)-way coverage of t-way
test suites, like tuple density, are important [28]], [29], [37]]
because they distinguish between two #-way test suites with the
same t-way coverage from the viewpoint of higher interaction
strengths.

Chen and Zhang [9] also proposed a technique to construct
t-way test suites with higher tuple density (or equivalently,
higher (t+1)-way coverage). Their technique works as follows:
Given a t-way test suite, it detects “don’t-care” values, which
are parameter-values of a test case whose assignment does not
contribute to the coverage of more ¢-tuples; then, it computes
all the yet-uncovered (¢+1)-tuples and replaces each don’t-care
value with another value that covers as many new (¢+ 1)-tuples
as possible.

TABLE III
Test surte 71 (BY X, Cly).

TABLE IV
Test surte 7> (BY Dly).

TABLE V
Test surte 73 (BY D).

C N OB | C(%) | C3(%) CN OB | C(%) | C3(%) CN OB | Co(%) | C3(%)
I TWMC 15.79 7.55 1 TWMC 15.79 7.55 1 TWMC 15.79 7.55
2 1 LWI 31.58 15.09 2ALLF 31.58 15.09 2ALWF | 3158 15.09
3AWLF 47.37 | 22.64 31 LWI 47.37 | 22.64 31IWWEF | 42111 | 22.64
4ALLC 60.53 | 30.19 4 AWWC 60.53 | 30.19 41 LWC| 5000 | 30.19
SILMF 71.05 | 37.74 SIWLF 71.05 | 37.74 STILMF | 5526 | 37.74
6 AWWI 81.58 | 45.28 6 I LMS 81.58 | 45.28 6 ITWMF | 5526 | 39.62
71 LMS 89.47 | 50.94 71LLC 86.84 | 52.83 7TAWWC | 6053 | 47.17
8 IWLF 92.11 | 56.60 8 AWWI 92.11 | 58.49 8 I LWF | 6053 | 47.17
9ITWMS 94.74 | 60.38 9 TWMS 94.74 | 62.26 9 AWLF | 6842 | 5472
10 AWWF 97.37 | 64.15 10 AWWF 9737 | 67.92 10 I WWC | 6842 | 54.72
11 AL WC | 100.00 | 69.81 11 T L MF | 100.00 | 73.58 11 AWWEF | 6842 | 54.72

Although their approach simply improves a r-way test suite
on (t + 1)-way coverage, its limitation is that computing all
the ¢'-tuples with higher interaction strength ¢’ is expensive
since the number of such #'-tuples increases exponentially with
respect to .

III. DiSTANCE-INTEGRATED COMBINATORIAL TEST GENERATION

In this section, we introduce our approach for generating
t-way test suites with higher #'(> f)-way coverage.

A. Proposed Approach: DICOT

The key concept of our approach is increasing distance
among test cases when generating r-way test suites. Algo-
rithm (1| describes the pseudo code of our algorithm, which
we call DICOT (Distance-Integrated COmbinatorial Testing).

Traditional one-test-at-a-time t-way testing algorithms [[7]
commonly determine each test case (or parameter-value) to
cover as many yet uncovered parameter-value r-tuples as
possible (Line 3), until all possible parameter-value ¢-tuples
are covered (Line 2). DICOT uses a distance between test
cases as a tie breaker when there exist test case candidates (or
parameter-value assignment candidates) with the same score;
it chooses one that maximizes the distance from previous test
cases (Line 4). We will explain the distance metrics we use in
Section [II=Bl

DICOT can generalize existing t-way test generation algo-
rithms by integrating their original test selection strategy and
our distance strategy. For instance, AETG [14] (resp. Huang’s
method [25]) constructs each test case for pairwise testing by
first generating r different candidate test cases using a greedy
algorithm (resp. randomly) and choosing one that covers the
most new parameter-value pairs. DICOT can be easily applied
to such algorithms in a way of among r candidate test cases,
choosing the one with not only the most new pairs but also
the maximum distance.

DICOT can also employ a lot of state-of-the-art r-way
test generation algorithms, e.g., PICT [16], ACTS [31], and
CASA [19]], that do not generate test case candidates but
have tie-breakable choices in parameter-value assignments for
test case generation. DICOT provides a tie breaker rule of
maximizing distance between test cases for the existing tools.

The concept of DICQOT, i.e. increasing the distance among
test cases, can also be used for prioritizing (sorting) a given

Algorithm 1: Distance-integrated CT generation. (DICOT)

Input: SUT model S, Interaction strength ¢

Output: r-way test suite 7~
1 UC = { All possible 7-tuples of parameter-values in S };
2 while UC # 0 do

3 Find test case candidates that maximize the number of
parameter-value #-tuples in UC | CT strategy |;
4 Choose tc among the candidates that maximizes the

distance from previous test cases | Distance strategy |;

5 Add tc to T
6 Remove parameter-value #-tuples covered by tc from UC;

7 return 7

t-way test suite while we focus on using this concept in
generating a f-way test suite in this paper.

B. Distance Metrics

We use two metrics, (1) the minimum Hamming distance
and (2) a modified chi-square distance, to define the distance
between a test case and previous test cases. The minimum
Hamming distance is used in distance-based testing [8]], and
we adopt it. On the other hand, through our knowledge, the
use of chi-square distance [35]] for test generation is new and
motivated for improving efficiency.

1) Minimum Hamming Distance: As the first distance
metric, we use the traditional Hamming distance [22]. The
Hamming distance between two test cases is the number
of parameters whose values are different in test cases. The
minimum Hamming distance of a test case and another test
suite is the minimum value of Hamming distance between the
test case and a test case in the test suite.

Definition 5 (Minimum Hamming Distance). The Minimum
Hamming distance, denoted by HD(t,T"), of a test case t from
a test suite T is defined by

HD(t,7) = min,jgr d(t, Z‘j)

where d(t;,t;) denotes the Hamming distance between the test
cases t; and tj, which is the number of parameters assigned
different values in test cases t; and t;.

For example, the minimum Hamming distance of #;3 from
previous test cases in 7, is computed by HD(t3,{t|,1:}) =

TABLE VI
AN EXAMPLE CALCULATION OF THE MODIFIED CHI-SQUARE DISTANCE (CD) FOR 75.

CPU Net (O Browser
TA|[WL | WLM|ITFSC cD
1 1 T 1 T 1 1 T 1 1 _ 33
A S o T
Ui i) | 53 3513331333311 M-5%

min(d(ts, t1),d(t3, 1)) = min(4, 3) = 3.

Maximizing the minimum Hamming distance for a new test
case was also used in adaptive distance-based testing [§8]. On
the other hand, antirandom testing [33]] adopted maximizing
the fotal Hamming distance for a new test case. We internally
compared using the minimal, maximal, and total Hamming
distance, and concluded that maximizing the distance between
test cases on the minimum Hamming distance achieves higher
interaction coverage compared to maximizing that on the
maximum Hamming distance and the total Hamming distance.
The cost of computing this metric in generating a test suite 7~
is O(171%).

2) Chi-square Distance: For the second distance metric, we
modify the well-known y?-divergence [35]. In order to spread
parameter-values as much as possible, we assume that in an
ideal situation, the number of occurrences of a value for each
parameter is identical in a test suite. Under this assumption,
we define the distance of a test case from a test suite by the
difference between the probability distribution for parameter
value occurrences when the test case is added to the test suite
and the ideal probability distribution.

Employing the distance of probability distributions reduces
computational overhead since we can avoid calculating the
distance of a test case with all the previous test cases one by
one; instead, we calculate the distance of a new distribution
after adding a test case to the previous distribution.

We choose y?-divergence to simply measure the difference
of probability distributionsm We define y-divergence between
probability distributions for value occurrences U of test suites
7 and 7' by

(u, — ”,v)z

uy, + u,

U U = 1
veV;(1<i<|P))
where u, (resp. u) is the occurrence probability for each
parameter-value v in the test suite 7 (resp. 7). Using the
above y’-divergence, we define the following modified chi-
square distance as the distance between test cases.

Definition 6 (Modified Chi-square Distance). We define the
modified chi-square distance, denoted by CD(t,T"), of a test
case t from a test suite T on a given SUT model by

CD(,T) =M —x* (UT uin) |l U

where

o U(T U {t}) denotes the probability distribution for value
occurrences of the test suite T U {t},

! To measure the divergence of probability distributions, we can also use
other metrics [18]], e.g., Kullback-Leibler divergence and Jensen-Shannon
divergence, instead of chi-square distance.

Assume the following first test case. c N o) B Po+ | HD
ter | 1 L w | 6 |3
[TcINToTl B [pr] Ll Llwl F [6]s
1T 7 Twlm][clsl teal 1 L L F 6 |3
teal A L L B 6 4
teiol A L W | 6 4

For the next test case,
S1) Search for rtest candidates
with the maximum number of

S2) Choose the one with the
maximum distance (HD)
newly covered pairs, P*.

as the next test case.

Fig. 1. An example of distance-integrated r-way test generation by DICOT.

o U; denotes the ideal probability distribution for occur-
rences of parameter-values in the SUT model. That is,
for each parameter p; € P and its value v € V;, we have
u, = 1/|Vy| in U, and

o M denotes the maximum value of x> (UT U {t}) || U)),
i.e. M= % icqp(Vil = D/QVil + 1),

For example, the maximum jy?-divergence for our example
SUT model in Tableis M=1+1+1+2 =3 The
modified chi-square distance of #3 from its previous test cases
in 7, is obtained by M — % = ‘3‘—8, which is computed as shown
in Table

The ideal value of y2-divergence is 0 and thus the ideal
value of the modified chi-square distance is M, the maxi-
mum value of y2-divergence, by definition. Maximizing the
modified chi-square distance (corresponding to minimizing y>-
divergence) for a new test case makes value occurrences of a
generated test suite close to having the ideal parameter-value
divergence.

The cost of computing the modified chi-square distance in
generating a test suite 7 is O(|7|). Thus, using the modified
chi-square distance reduces the computational overhead of our
distance strategy.

C. DICOT on an Ideal CT Generation: A Case Study

We first illustrate DICOT using the ideal t-way test gener-
ation, i.e., repeatedly choosing the best test cases among all
possible test case candidates (w.r.t. newly covered tuples or
distances). A more feasible setting is considered in the next
section. We compare the following four approaches for our
example SUT model to reveal the influence of using different
measures for the test case distance.

o X: Generate a test case to maximize the number of
new parameter-value f-tuples, denoted by P (fc), not
considering distances nor the (#+1)-way coverage. This is
the basic form of the traditional one-test-at-a-time ¢t-way
test generation.

o DlIx (ours): After generating r test case candidates that
maximize P/ (zc) (Line 3 in Algorithm , choose the one
with the maximum distance (Line 4 in Algorithm [I]).

o Clx : After generating r test case candidates that maxi-
mize P/ (tc), choose the one with the minimum distance.

o D: Generate a test case with the maximum distance from
the previous test suite, not considering P; (tc).

Note that X, Dlx, and D employ the concept of the traditional
CT generation, that of our DICOT, and that of test generation
focusing on only the distance. Hereafter, we call the distance-
focused testing approaches, e.g., D and ART, DT.

For the case study, we implemented all the four algorithms
in Python. We encoded the problem of finding a test case can-
didate that maximizes P; (tc) to a pseudo-Boolean optimization
(PBO) problem, and resolve this using an existing PBO solver,
Sat4j [44]. (Zhang et al. [43] proposed a similar approach
of one-test-at-a-time CT generation using PBO.) Sat4j is also
used to find a test case with the maximum distance from the
previous test suite for approach D.

Consider the example SUT model in Table [[] and r = 2.
Figure [I] illustrates a 7-way test generation process by our
approach, denoted by Dlx, using the minimum Hamming
distance HD, assuming that the first test case is (Intel, Wifi,
Mac, Chrome) and r = 10. The first test case candidate is
tci=(Intel, LAN, Win, IE) which has the maximum P} (tc|) = 6,
and the Hamming distance of candidate 7c; from the previous
test case #; is 3. In the same way, we find other test case
candidates, calculate their distance from the previous test suite,
and choose the one with the maximum distance, fc4 in our
example, as the next test case. This process iterates until all
possible parameter-value pairs in Table [II] are covered. 7, in
Table [IV]is generated by Dly.

Conversely to our approach, Clx chooses a test case with the
minimum distance among test case candidates. 7 in Table
is generated by Clx for our example model. We can see that
7> by our Dl and 73 by Clx are the same-sized pairwise test
suites, but Dly achieves better 3-way coverage compared to
Clyx: 73.58 % for 7> and 69.81 % for 7, which is a relative
improvement of 5.4 %.

On the other hand, approach X represents a typical CT
construction that does not consider the distance; it corresponds
to selecting a test case with a random distance. This means
that in the worst case, X corresponds to Clx. For our running
example, X generates the same test suite 7 as Clx does, and
hence Dlx obtains better 3-way coverage compared to X.

Conversely, approach D generates test cases where not P}
but only the test case distance is considered. For example, 73
in Table [V] is generated by D when its termination condition
is the number of test cases (11). We see that our Dly achieves
both higher 2-way and 3-way coverages compared to D.

As a result of this case study, we observe that DICOT
has the ability to improve interaction coverage with higher
interaction strength compared to the approach considering only
combinatorial coverage or only distances. We present more
experimental results and an analysis of the effectiveness and
efficiency of our approach using large benchmark SUT models
in Section

D. DICOT on a Greedy CT Generation

Since the ideal combinatorial test generation strategy is not
scalable for large SUT models, in this section we integrate our
approach DICOT into an existing greedy #-way test generation
algorithm. As explained in Section DICOT can also

Algorithm 2: Distance-integrated pairwise test generation
based on the PICT algorithm. (DC)

Input: SUT model S

Output: Pairwise test suite 7~
1 UC = { All possible pairs of parameter-values in S };
2 while UC # 0 do

3 while unassigned parameter exists for the next test case tc
do
4 if no parameter is assigned then
5 Choose a parameter pair with the most
parameter-value pairs in UC;
6 Choose a parameter-value pair p of the parameter

pair that maximizes the distance from previous
test cases | Distance strategy |;

7 Assign the parameter-value pair p to tc;

8 | Remove p from UC;

9 else if UC # () then

10 List parameter-value pairs in UC that can be

assigned to 7c and cover the maximum number of
new parameter-value pairs;
11 Choose any candidate pair p that maximizes the

distance from previous test cases
Distance strategy |;
12 Assign the parameter-value pair p to fc;

13 Remove parameter-value pairs covered by the
assignment of p from UC;

14 else
15 Assign to unassigned parameters in tc values that
do not violate SUT constraints and maximize the

distance from previous test cases
Distance strategy |;
16 | Addrcto T

[
=

return 7 ;

employ other state-of-the-art r-way test generation algorithms,
which obtain as many uncovered parameter-value combina-
tions as possible in various heuristic and greedy ways.

Algorithm [2} which we call DC, describes the pseudo code
of the proposed algorithm which applies DICOT to a pairwise
test generation algorithm that is based on the combinatorial
test generation strategy by PICT [16].

In the original PICT algorithm, for each test case, first a
parameter pair that has the most uncovered possible parameter-
value pairs is selected, and one of the parameter-value pairs
of the parameter pair is assigned. Next, a parameter pair is
assigned one by one to cover the most uncovered parameter-
value pairs until all parameters of the test case are assigned.

In DC, when assigning each parameter-value pair, we
choose the one that not only covers the most uncovered
parameter-value pairs but also maximizes the distance from
previous test cases (Lines 6 and 11). When there exist no
more uncovered parameter-value pairs that can be assigned
to a parameter pair, the original PICT algorithm assigns
any already-covered parameter-value pair, but we assign a
parameter-value pair that maximizes the distance (Line 15).

IV. EXPERIMENTS AND RESULTS
A. Research Questions

We set up the following four research questions to investi-
gate the effectiveness and the efficiency of our approach.

RQI1. Compared with the traditional #-way test generation,
can DICOT deliver higher #-way coverage with
higher interaction strength #'(> £)? If so, how big
are the improvement and computational overhead?
Compared with the Enumerating Choice (EC) ap-
proach, how effective and efficient is DICOT w.r.t.
t' (> t)-way coverage and computational overhead?
Compared with the DT approach, how effective and
efficient is DICOT w.r. t. the #-way test suite size and
t'(> t)-way coverage?
How different is the performance when using Ham-
ming distance and chi-square distance as a distance
metric in DICOT?

DICOT employs another approach for the same purpose of
EC and integrates the concept of DT into traditional 7-way test
generation. We thus explore RQ1-RQ3 to compare DICOT
with the traditional t-way test generation, EC, and DT. We
also compare two distance metrics used in DICOT by RQ4.

RQ2.
RQ3.

RQ4.

B. Experimental Setting

In order to answer the above research questions, we imple-
mented the following five methods in C:

o CT: A PICT-based pairwise test generation algorithm.

« DCcp: The proposed algorithm DC (Algorithm [2) using
the modified chi-square distance.

« DCpyp: The proposed algorithm DC (Algorithm [2)) using
the minimum Hamming distance.

o EC (improved): The original algorithm of Chen and
Zhang [9] does not support constraints, since “don’t-care”
analysis under constraints becomes a hard computational
problem. We avoid this problem by integrating the idea
of Chen and Zhang into the PICT-based algorithm. The
new algorithm, which we call just EC later on, constructs
test cases as in CT and additionally tries to increase the
number of newly covered 3-tuples of parameter-values.
This means that it chooses a parameter-value pair that
maximizes P;’ among candidates in lines 6, 11, and 15
of Algorithm

o DT: The FSCS-ART-based algorithm [[L1] that for each
test case, first randomly generates a fixed number, r,
of test case candidates satisfying SUT constraints and
next among the r test case candidates, chooses one with
the maximum over all minimal Hamming distances to
previous test cases.

We implemented CT by ourselves based on the description
of PICT’s algorithm [16], since its original implementation
was not yet open at the time of our implementationE] Un-
fortunately, from that description, we could not figure out
how constraints are handled in PICT. Our implementation

2 PICT is now open at https://github.com/microsoft/pict as of 2015-10-16.

naively uses a SAT solver to check if each assignment in
test generation satisfies constraintsE] and is slower than the
original PICT, when SUT constraints are considered. For a
fair comparison, our naive constraints handling is adopted
in the same way for all the five methods. To evaluate the
computation overhead, we also use benchmarks where SUT
constraints are disregarded. For DT, we set r = 10, use
the random number generator of the standard C library, and
take the average value of 20 runsE] For evaluation of #-way
coverage, we also implemented a program to calculate ¢'-way
coverage and APCC for a given SUT model with constraints.

As benchmarks, we collected 55 SUT models. 20 of the
models, which are from the work by Segall et al. [38]], are
for real-life applications for such as banking, health care, and
insurance. The other 35 models, which are from the work by
Garvin et al. [19], include five models for real applications:
spins, spinv, apache, gcc, and bugzilla, and large artificial
models whose numbers of parameters are up to around 200.
(See Table in Appendix, which shows the size and the
numbers of possible pairs and 3-tuples of parameter-values for
each benchmark SUT model.)

For the benchmark models, we generated 2-way (i. e., pair-
wise) test suites by the five methods, and measured their 3-way
and 4-way coverages and the corresponding APCCs. We also
evaluate the size of the generated test suite, i.e., the number
of test cases (denoted by |77]), and the test generation time.
The sizes of test suites differ depending on the method. For a
fair comparison, we investigate t-way coverage (2 <t < 4) of
the same sized test suites, each of which is achieved by the
first m test cases, where m is the minimum size of the test
suites generated by the five methods.

Experiments were performed using a computer with Quad-
Core Intel Xeon E5 3.7GHz, with 64GB memory running on
Mac OS 10.10.5.

C. Results

Table summarizes the averages of resultsE] test suite
sizes, test generation times, and f-way coverage (C,) and
APCC (A)) with 2 < ¢t < 4, for all models. Note that
we compare C, and A, of the truncated test suites with the
same size, so that less than 100 % C, appears in the table.
In addition, the table reports the results for models without
constraints, i.e., models with their constraints removed.

For 17 models with constraints (and 13 models without
constraints), EC could not finish generating test suites in an
hour. CT, DC¢p, DCyp, and DT can generate test suites for
all models, but we could not finish computing 4-way coverage
of test suites for 15 models with constraints (and two models
without constraints) in one hour. The number of such cases is
shown as “NAs” in the table.

3 For the SAT solver, we employ PicoSAT [3].

4 The work on FSCS-ART [IT]] has shown that failure-detection effective-
ness improves as r increases up to about 10, and does not improve much
further.

5See http://staff.aist.go.jp/e.choifissre2016/results.html for the detailed re-
sults.

https://github.com/microsoft/pict

TABLE VII
COMPARISON OF THE RESULTS FOR BENCHMARK MODELS WITH/WITHOUT CONSTRAINTS. “N/A” DENOTES THE CASE CANNOT BE OBTAINED DUE TO TIMEOUT CASES.

With Constraints CT DC¢p DCyp EC DT Without Constraints CT DC¢p DCyp EC DT
Hall 3542 36.86 36.25 N/A 83.96 Size |77 Uall 34.35 36.20 3491 N/A 5731

Size |77 sub 31.89 33.21 32,52 3142 65.00 sub 32.05 33.89 3273 3244 52.08
Wins 36 14 20 27 0 Wins 35 10 24 18 0

Hall 3.25 3.28 347 N/A 0.61 Time (s) Hail 0.03 0.07 0.30 N/A 0.02

Time (s) Usub 0.42 0.42 0.45 5.35 0.13 Msub 0.01 0.03 0.09 1.70 0.01
Wins 7 3 2 2 47 Wins 25 6 6 4 31

NAs 0 0 0 18 0 NAs 0 0 0 13 0

2-way coverage Hall 99.85 99.70 99.75 N/A 98.17 2-way coverage Hall 99.90 99.50 99.70 N/A 97.96
Cy (%) sub 99.86 99.61 99.70 99.92 97.51 Cy (%) sub 99.88 99.35 99.61 99.84 97.41
Wins 35 16 20 26 1 Wins 35 16 20 26 1

APCC Hall 80.78 82.04 81.36 N/A 78.58 APCC Hall 80.00 80.69 80.20 N/A 78.58

Ay (%) sub 76.66 78.29 7744 7673 74.43 Ay (%) sub 7729 78.04 7748 7722 7585
Wins 2 46 6 4 0 Wins 4 42 4 2 4

3-way coverage Hall 71.30 80.19 81.37 N/A 80.12 3-way coverage Hall 73.49 76.70 76.90 N/A 7749
C3 (%) Usub 71.82 74.89 7578 7635 74.22 C3 (%) sub 69.10 72.32 72.44 7375 72.78
Wins 2 3 30 24 2 Wins 2 3 30 24 2

APCC Hall 42.47 45.20 45.76 N/A 4414 APCC Hall 37.68 40.29 40.26 N/A 40.39

Az (%) Msub 34.24 36.84 37.10 3742 3578 Az (%) Msub 31.88 34.28 3418 35.07 34.13
Wins 0 8 26 21 1 Wins 3 2 1 27 27

4-way coverage Hall 41.89 44.88 46.47 N/A 46.34 4-way coverage Hall 41.05 44.07 44,71 N/A 47.19
Cy (%) sub 40.68 43.70 45.12 4535 44.68 Cy4 (%) sub 36.44 39.14 39.62 40.85 41.49
Wins 2 5 15 20 6 Wins 2 5 15 20 6

APCC Hall 10.50 11.75 12.22 N/A 1197 APCC Hall 11.40 12.58 12.79 N/A 1217

Ay (%) sub 9.66 10.85 11.19 1131 10.99 Ay (%) sub 7.43 8.26 8.39 8.79 8.97
Wins 2 7 16 19 4 Wins 5 4 6 15 32

NAs 15 15 15 17 15 NAs 2 2 2 13 2

We report the average, denoted by /JauE] for each of the
four evaluation metrics by each of the five methods. There are
cases where EC could not generate a test suite and cases where
we could not compute 4-way coverage for all methods. Hence
we also show the average, denoted by p,p, of results for the
subset of models, denoted by sub, that all the five methods
could handle. We also report the number of “Wins”, i.e., how
often the method obtains the best result among others. Ties
are counted as a win for all tied methods.

Figure [2] presents the box plots for the results of C, and
APCC, with 2 <t <4 by CT, DC¢p, DCyxp, EC, and DT for
all models. Figure [3] presents the box plots for test suite sizes
and test generation times for all models, and also for the mod-
els where all constraints are removed. Each box plot shows the
mean (triangle in the box), median (thick horizontal line), the
first/third quartiles (hinges), and highest/lowest values within
1.5 X the inter-quartile range of the hinge (whiskers). “Wins”
and “NAs” for each method are also attached to the box plot.

RQ1. Can DICOT deliver higher #'(> f)-way coverage?
If so, how big is the improvement and the computational
overhead, compared with traditional 7-way test genera-
tion?

Ans. Yes. We observe that DICOT improves 3-way and
4-way coverage over traditional 2-way test generation
CT which does not consider distances or the higher-way
coverage. Compared to CT, the test suites by DICOT also
achieve higher APCC, i.e., can quickly obtain higher t-

®We use the geometric mean to avoid emphasizing larger benchmarks over
smaller ones, which would be the case with the arithmetic mean.

way coverage for all 2 < t < 4 with small computation
overhead.

From Figure [2] and Figure [3] we conclude that both DCyp
and DC¢p obtain higher 3-way and 4-way coverage compared
to CT while the sizes of test suites are not significantly af-
fected. In detail, Table [VII| shows that our DCyp (resp. DCc¢p)
improves 3-way coverage by 5.26 % (resp. 3.74 %), APCC
for t = 3 by 7.74% (resp. 6.45%), 4-way coverage by
10.94 % (resp. 7.14 %), and APCC for + = 4 by 16.38%
(resp. 11.97 %) over CT on average for the given benchmarks.
This improvement is not minor; for example, for benchmark
Apache, 3-way coverage over CT is improved by 4.69 % and
2.58 %, resp., using DCpp and DCcp, which indicates that
they cover 347,053 and 190,750 more 3-tuples of parameter-
values compared to CT in the first 34 test cases. We confirmed
that the improvements by DCyp and DC¢p over CT for 3-way
and 4-way coverage are all significant with p < 0.01 by the
Wilcoxon signed-rank test [40].

As for the sizes of test suites, DCyp and DCc¢p generated
0.63 and 1.44 more test cases than CT in average, but the
tendency is unclear as sometimes (e.g., benchmarks 9 and
18) DCyp generates smaller test suites than CT.

RQ2. How effective and efficient is DICOT compared
with the EC approach?

Ans. DCyp and DCcp improve t' (> t)-way coverage with
much smaller test generation time compared to EC.

C,: 2-way coverage

e

x1- —e.
CT DC CD DC HD
Wins:35 Wins:16 ~ Wins:20 Wins:26 Wins:1
NAs:0 NAs:0 NAs:0 NAs:18 NAs:0
Cs3: 3-way coverage
x1.25-
1]
cT DC CD DC HD
Wins:2 Wins:3 Wins:30 Wins:24 Wins:2
NAs:0 NAs:0 NAs:0 NAs:18 NAs:0
Cy4: 4-way coverage
x1.5-
L]
x1.25-
X1 - —t— ;
CT DC_CD DC_HD EC DT
Wins:2 Wins:5 Wins:15 Wins:20 Wins:6
NAs:15 NAs:15 NAs:15 NAs:17 NAs:15

Fig. 2.
among all methods for each benchmark is plotted.

Experimental results show the efficiency of our approach
DCyxp and DCcp compared to EC. We observe that EC
achieves slightly higher 3-way and 4-way coverage compared
to DCpyp and DCcp, but requires much longer test generation
time. For the models that EC could handle, EC improves
3-way coverage by 6.31% (DCyp by 5.52%) and 4-way
coverage by 11.48 % (DCpyp by 10.91 %) over CT. However,
EC could not finish test generation for 17 (resp. 13) models
among the 55 models with (resp. without) constraints in
an hour. In addition, the test generation time for sub with
(resp. without) constraints for EC was more than 11 (resp. 18)
times of those for DCyp and DC¢p on average.

Aj: APCC for k=2

x1.1-
x1- [—
CT DC_CD DC_HD EC DT
Wins:2 Wins:i46 Wins:6 Wins:4 Wins:0
NAs:0 NAs:0 NAs:0 NAs:18 NAs:0
Ajz: APCC for k =3
x1.5-
) | | :
x1.25- . 3
 mm =S
x1- —h— .
CT DC_CD DC_HD EC DT
Wins:0 Wins:8 Wins:26 Wins:21 Wins:1
NAs:0 NAs:0 NAs:0 NAs:18 NAs:0
Ay4: APCC for k =4
X2 -
x1.75-
x1.5- :
X1.25- i *
X1~ —he
CT DC_! cD DC HD DT
Wins:2 Wins:7 Wins:16 Wins:19 Wins:4
NAs:15 NAs:15 NAs:15 NAs:17 NAs:15

Comparison of t-way coverage and APCC with 2 < k < 4 of test suites by the five methods for benchmark models. The ratio over the worst results

RQ3. How effective and efficient is DICOT compared
with the DT approach?

Ans. Compared to DT, our approach, especially DCyp,
effectively generates small-sized t-way test suites that
improve t' (> t)-way coverage for SUT models with con-
straints.

Experimental results indicate that DT requires extremely
large test suites to satisfy 100 % 2-way coverage although it
generates the test suites very fast compared to other methods.
In detail, DT generates 131.16 % (127.78 %) more test cases
for pairwise tests with 82.42% (81.40%) less times over
DCpgp (DCcp) on average.

Size (With Constraints)

x10-

T

1

D>

X1 - —t—

cT DC.CD DCHD EC DT
Wins:36 Wins:14 Wins:20 Wins:27 Wins:0
NASO NAsO NAsO NAsi18 NAsO

Time (With Constraints)

x5000 -
x1000 -
x500 -
x100 -
x50 -
x10-

o

T

—A

CT DCCD DC HD DT
Wins:7 Wins:3 Wins:2 Wins:2 Wins:47
NAs:0 NAs:0 NAs:0 NAs:18 NAs:0

Fig. 3.
methods for each benchmark is plotted.

From Table [VII| and Figure 2} we observe that our approach
achieves higher r-way coverage and APCC for r = 2 and 3
compared to DT. For t = 4, DCyp obtains higher 4-way
coverage and APCC but DC¢p obtains lower ones. In detail,
DT improves the 3-way coverage by 3.65 % (DCpp by 5.26 %
and DC¢p by 3.74 %), APCC for t = 3 by 3.94 % (DCyp by
7.74 % and DCc¢p by 6.45 %), the 4-way coverage by 10.63 %
(DCpp by 10.94 % and DCcp by 7.14 %), and APCC for t = 4
by 14.03 % (DCpyp by 16.38 and DCc¢p by 11.97 %) over CT.
For the number of Wins, DCpp and DC(p are in total superior
to DT. In detail, for 2-way, 3-way, and 4-way coverage, and
the relative APCC, DCyp wins 20, 30, 15, 6, 26, and 16 times
and DC¢p wins 16, 3, 5, 46, 8, and 7 times while DT wins 1,
2,6, 0, 1, and 4 times. Interestingly, DT obtains much better
results w.r.t. higher strength for models without constraints,
but does not for models with constraints.

RQ4. How different are the performance when using
Hamming distance and chi-square distance in DICOT?
Ans. Using Hamming distance is slightly better to im-
prove test effectiveness, and using chi-square distance is
competitive for reducing computational overhead.

From the experimental results, we observe that DCpp,
which uses Hamming distance, achieves avg. 1.18-1.59 %
higher 3-way and 4-way coverage over DCcp, which uses

Size (Without Constraints)

X2~
=
| * L ——
CT DC CD DC HD EC DT
Wins:35 Wins:10 Wins:24 Wins:18 Wins:0
NAs:0 NAs:0 NAs:0 NAs:13 NAs:0
Time (Without Constraints)
x5000 -
x1000 -
X500 -
x100 -
x50 -
x10- 1
i ’
=

DC_HD DT

DC CD
Wins:25 Wins:6 Wins:6 Wins:i4 Wins:31
NAs:0 NAs:0 NAs:0 NAs:13 NAs:0

Comparison of the test suite sizes and generation times for benchmark models with/without constraints. The ratio over the best results among all

chi-square distance, while DC¢p requires shorter test gen-
eration time. For the benchmarks with constraints, DCcp
was avg. 5.48 % faster than DCpp, although most of the
computation time is consumed for constraint handling. For
the benchmarks without constraints, DCcp was avg. 76.67 %
faster than DCpp.

D. Threats to Validity

In order to evaluate the efficiency of the proposed approach,
we compared the overhead of computing distance for DICOT
and that of enumerating (¢ + 1)-tuples of parameter-values
newly covered for EC. In our implementation, each assignment
is checked using a SAT solver, and it could take considerable
time for large models. One might suspect that the difference
of test generation times by DICOT and EC shown in the
experimental results could be smaller if constraint checking
was not time-consuming.

To assess the validity, we also showed the experimental
results for models without constraints. From the results, we
can see that the difference of the computational overhead by
DICOT and that by EC is more significant. Further studies by
integrating our approach to actual combinatorial testing tools
could be helpful to reduce this threat.

V. ReLATED WORK

There have been a number of techniques and tools that
generate f-way test suites, including greedy algorithms [14],

[16], [31], heuristic search [19], [26], [39], and SAT-based
approaches [24], [41]. These techniques, however, only ensure
100 % t-way coverage for given ¢, and do not try to improve
(> t)-way coverage.

Chen and Zhang [9], as far as we know, are the first
to focus on the #(> f)-way coverage of t-way testing. In
order to achieve higher #'(> f)-way coverage, they adopt the
intuitive approach that enumerates the number of parameter-
value (z + 1)-tuples covered by an alternative test case. They
showed that using several unconstrained small SUT models
whose number of parameters is up to 20, the improvement rate
of 3-way coverage by their method is from 2% to 4% over
the original pairwise test suites. For the same objective, we
adopted increasing the distance between a new test case and
the previous test cases. We showed that, using constrained/un-
constrained large SUT models whose number of parameters
is up to around 200, our approach can improve 3-way cov-
erage by approx. 5% and 4-way coverage by approx. 11%
over traditional pairwise test suites, with lower computational
overhead.

Our work is inspired by Adaptive Random Testing
(ART) [11], [10] which takes the notion of distance into
account in random testing; e.g., FSCS-ART [11] randomly
generates a certain number of test case candidates, and picks
one that has the maximum distance from already generated test
cases. ART is to improve random testing on failure detection
effectiveness [[L0], but do not guarantee t-way coverage.

Henard et al. [23] pointed out that r-way test generation
with higher interaction strength (# > 2) is not scalable for large
SUT models with constraints even when parameters have only
two values (their targets, Software Product Lines (SPLs), can
be seen as SUT models whose parameters have only Boolean
values). This is because f-way testing has to enumerate all
possible 7-way combinations, whose number is exponential in
t. To overcome the problem, they proposed random-based and
search-based algorithms to generate test cases, employing the
concept of DT: their algorithms consider the distance between
configurations and do not compute #-way combinations. They
used the distance metric based on the total Jaccard distance
among SPL configurations.

Bryce et al. [8] proposed adaptive distance-based testing,
which constructs test cases as follows: to generate one test
case, it assigns to every parameter (in an arbitrary order) a
value that makes the generated test case as distant as possible
from previous test cases. They used either the number of new
parameter-value #-tuples or the Hamming distance as a distance
metric, while we consider both in an integrated way in our
approach.

Huang et al. [25]] integrated the notion of t-way coverage
into ART, and used the number of newly covered parameter-
value t-tuples as a distance metric. Their method randomly
generates test case candidates, and chooses a test case with
the maximum distance, i.e., the maximum number of newly
covered parameter-value #-tuples.

The approaches by Bryce et al. [8] and Huang et al. [25]
both interpret the number of new parameter-value z-tuples

as the test case distance to generate t-way test suites, and
do not care about #'(> f)-way coverage. On the other hand,
we integrate increasing the distance and increasing the new
parameter-value z-tuples so as to improve ¢’ (> f)-way coverage.

We previously proposed a t-way test generation [12] to
construct test suites where higher priority test cases and
parameter-values appear early and frequently for SUT models
whose parameter-values are prioritized. The previous method
considers increasing both the coverage called weight coverage
and the metric called KL divergence. Its concept of integration
is similar but the purpose, target SUT models, and the metrics
are different from this newly proposed method.

VI. ConcLusioN AND FUTURE WORK

In this paper, we proposed a distance-integrated CT con-
struction approach, called DICOT, where we increase not
only the number of new combinations of parameter-values
but also the distance between test cases. The contribution of
this paper is that we propose the first CT generation approach
that takes into account both the CT criterion, i.e., the number
of new parameter-value z-tuples, and the test case distance,
e. g., Hamming distance or a modified chi-square distance, in
a hierarchical integration.

We applied our approach to a traditional greedy algorithm
for CT generation and investigated the effectiveness and the
efficiency of our approach using a number of practical SUT
models with constraints. The experimental results show that
our distance-integrated test case generation achieves higher
t'(> t)-way coverage, and hence, can be effective in detecting
failures that are triggered by the interaction of more than ¢
parameters. Moreover, the required computational overhead is
smaller than the intuitive approach of Chen and Zhang [9].

Future work includes investigating other distance metrics
to determine test case dissimilarity for CT. In this paper,
we use two metrics, Hamming distance and a modified chi-
square distance, but there are other dissimilarity metrics for
binary data [13] or categorical data [6]. Those metrics could
be adopted in our approach in order to define the distance of
test cases for a discrete and finite CT domain.

Another future work is to investigate the correlation between
t'-way coverage and fault detection effectiveness. On the one
hand, the effectiveness of t-way testing has been shown by a
number of empirical studies [4]], [17], [20], [27], [30], [42].
On the other hand, coverage-based software testing could raise
an open question whether the coverage is actually useful for
real fault detection [21]. Evaluating the improvement of fault
detection effectiveness by DICOT is further work.

ACKNOWLEDGMENTS

The authors would like to thank Tatsuhiro Tsuchiya and
anonymous referees for their helpful comments and sugges-
tions to improve this paper. This work was partly supported
by JSPS KAKENHI Grant Number 16K12415.

[1]

[2]
[3]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

[23]

REFERENCES

Radio Technical Commission for Aeronautics (RTCA) standards, DO-
178B - Software considerations in airborne systems and equipment
certification, December 1992.

International Standardization Organization, ISO26262: Road vehicles -
Functional safety, November 2011.

A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling
and Computation, 4(2-4):75-97, 2008.

M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial
testing of ACTS: A case study. In Proc. of the 5th International
Conference on Software Testing, Verification and Validation (ICST),
pages 591-600. IEEE, 2012.

M. N. Borazjany, L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Combi-
natorial testing of ACTS: A case study. In Proc. of the 5th International
Conference on Software Testing, Verification and Validation (ICST),
pages 591-600, 2012.

S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categor-
ical data: A comparative evaluation. In Proc. of the Sth international
conference on data mining (SDM’08), pages 243-254. SIAM, 2008.
R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework of greedy
methods for constructing interaction test suites. In Proc. of the 27th
International Conference on Software Engineering (ICSE), pages 146—
155. IEEE, 2005.

R. C. Bryce, C. J. Colbourn, and D. R. Kuhn. Finding interaction
faults adaptively using distance-based strategies. In Proc. of the 18th
International Conference on Engineering of Computer Based Systems
(ECBS), pages 4-13. IEEE, 2011.

B. Chen and J. Zhang. Tuple density: a new metric for combinatorial
test suites (NIER track). In Proc. of the 33rd International Conference
on Software Engineering (ICSE), pages 876-879. IEEE, 2011.

T. Y. Chen, F. C. Kuo, R. G. Merkel, and T. Tse. Adaptive random
testing: The art of test case diversity. Journal of Systems and Software,
83(1):60-66, 2010.

T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In
Proc. of the 9th Asian Computing Science Conference (ASIAN), Lecture
Notes in Computer Science, volume 3321, pages 320-329, 2004.

E. Choi, T. Kitamura, C. Artho, A. Yamada, and Y. Oiwa. Priority
integration for weighted combinatorial testing. In Proc. of the 39th An-
nual Computer Software and Applications Conf. (COMPSAC), volume 2,
pages 242-247. IEEE, 2015.

S. S. Choi, S. H. Cha, and C. C. Tappert. A survey of binary
similarity and distance measures. Journal of Systemics, Cybernetics
and Informatics, 8(1):43-48, 2010.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatiorial design. /[EEE
Trans. Software Eng., 23(7):437-444, 1997.

M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach. IEEE Trans. Software Eng., 34(5):633-650, 2008.

J. Czerwonka. Pairwise testing in the real world: Practical extensions
to test-case senarios. In Proc. of the 24th Pacific Northwest Software
Quality Conference, pages 419-430. Citeseer, 2006.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Proc.
of the International Conference on Software Engineering (ICSE), pages
285-294. IEEE, 1999.

D. M. Endres and J. E. Schindelin. A new metric for probability
distributions. IEEE Trans. Information Theory, 49(7):1858-1860, 2003.
B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical
Software Engineering, 16(1):61-102, 2011.

L. S. G. Ghandehari, M. N. Borazjany, Y. Lei, R. Kacker, and D. R.
Kuhn. Applying combinatorial testing to the Siemens suite. In Proc. of
the 6th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 362-371. IEEE, 2013.

A. Groce, M. A. Alipour, and R. Gopinath. Coverage and its discontents.
In Proc. the ACM Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, pages 255-268. ACM, 2014.
R. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 29:147-160, 1950.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon. Bypassing the combinatorial explosion: Using similarity

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[39]

[40]

[41]

[42]

[43]

[44]

to generate and prioritize t-wise test configurations for software product
lines. IEEE Trans. Software Eng., 40(7):650-670, 2014.

B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith. Constraint
models for the covering test problem. Constraints, 11(2-3):199-219,
2006.

R. Huang, X. Xie, T. Y. Chen, and Y. Lu. Adaptive random test
case generation for combinatorial testing. In Proc. of the 36th Annual
Computer Software and Applications Conf. (COMPSAC), pages 52-61.
IEEE, 2012.

Y. Jia, M. B. Cohen, M. Harman, and J. Petke. Learning combinatorial
interaction testing strategies using hyperheuristic search. In Proc. of the
37th International Conference on Software Engineering (ICSE), pages
540-550. IEEE/ACM, 2015.

R. Krishnan, S. M. Krishna, and P. S. Nandhan. Combinatorial testing:
learnings from our experience. ACM SIGSOFT Software Engineering
Notes, 32(3):1-8, 2007.

D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to combinatorial
testing. CRC Press, 2013.

D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei. Combinatorial
coverage measurement concepts and applications. In Proc. of the 6th
Software Testing, Verification and Validation Workshops (ICSTW), pages
352-361. IEEE, 2013.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng.,
30(6):418-421, 2004.

Y. Lei, R. N. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. IPOG: A
general strategy for t-way software testing. In Proc. of the 14th Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS), pages 549-556. IEEE, 2007.

J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang. TCA: An efficient
two-mode meta-heuristic algorithm for combinatorial test generation.
In Proc. of the 30th International Conference on Automated Software
Engineering (ASE), pages 494-505. ACM/IEEE, 2015.

Y. Malaiya. Antirandom testing: getting the most out of black-box
testing. In Proc. of the 6th International Symposium on Software
Reliability Engineering (ISSRE), pages 86-95. IEEE, 1995.

C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):11, 2011.

K. Pearson. X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302):157-175, 1900.

J. Petke, M. B. Cohen, M. Harman, and S. Yoo. Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection. IEEE Trans. Software Eng., 41(9):901-924, 2015.

X. Qu and M. B. Cohen. A study in prioritization for higher strength
combinatorial testing. In Proc. of the 6th Software Testing, Verification
and Validation Workshops (ICSTW), pages 285-294. IEEE, 2013.

I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision diagrams
for combinatorial test design. In Proc. of the 2011 International
Symposium on Software Testing and Analysis (ISSTA), pages 254-264.
ACM, 2011.

T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to
generate test cases for combinatorial testing. In Proc. of the 28th Annual
International Computer Software and Applications Conf. (COMPSAC),
pages 72-77. IEEE, 2004.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80-83, 1945.

A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa, and A. Biere.
Optimization of combinatorial testing by incremental SAT solving.
In Proc. of the 8th International Conference on Software Testing,
Verification and Validation (ICST), pages 1-10. IEEE, 2015.

Z. Zhang, X. Liu, and J. Zhang. Combinatorial testing on ID3v2 tags
of MP3 files. In Proc. of the 5th International Conference on Software
Testing, Verification and Validation (ICST), pages 587-590. IEEE, 2012.
Z. Zhang, J. Yan, Y. Zhao, and J. Zhang. Generating combinatorial test
suite using combinatorial optimization. Journal of Systems and Software,
2014(98):191-207, 2014.

Sat4j, Available: http://www.sat4j.org/.

APPENDIX

In Table [VIII, we show the sizes and the numbers of possible 2-tuples and 3-tuples of parameter-values for all benchmark
SUT models we used for experiments. The size of an SUT model is expressed as |P|; g]f ggz .. gfl”, i.e., for each i there are k;
parameters with g; values and |P| is the number of parameters. The size of constraint is expressed as [; hll1 hlz2 . hf,?, i.e., its

conjunctive normal form (CNF) has [variables and h; clauses with /; literals for each j.

TABLE VIII
BencaMaRK SUT MODELS.

of possible t-tuples

No. Name Model size Constraint size =2 t=3
1 Banking1 5 ; 3%41 16 ; 5112 102 324

2 Banking2 15 ; 21441 2123 473 4,290

3 CommProtocol 11 ; 21071 27 ; 210310412524630730g12 285 1,650

4 Concurrency 5,2 10 ; 243152 36 55

5 Healthcarel 10 ; 20325161 18 ; 23318 361 2,535

6 Healthcare2 12 ; 253641 32 ; 2136518 466 4,076

7 Healthcare3 29 ; 21636455161 77 ;231 3,092 74,274

8 Healthcare4 35 ; 213312465261 71 99 ; 222 5,707 191,398

9 Insurance 14 ; 2031516211113117131! — 4,573 113,592

10 NetworkMgmt 9 ; 22415310%11! 54 ;2% 1,228 15,370
11 ProcessorComml 15 ; 233646 48 ; 213 1,058 14,229
12 ProcessorComm2 25 ; 233124852 81 ; 142121 2,525 53,228
13 Services 13 ; 23345282102 62 ; 338042 1,819 30,031
14 Storagel 4 ;21314151 14 ; 4% 53 71
15 Storage2 5 ; 3%6! — 126 432
16 Storage3 15 ; 223'536!8! 48 ; 238310 1,020 11,840
17 Storage4 20 ; 25374152627110'13! 31 ;2% 3,491 86,153
18 Storage5 23 ; 29385362819110%11! 106 ; 211 5,342 157,950
19 SystemMgmt 10 ; 293451 27 ; 21334 310 1,982
20 Telecom 10 ; 2531425161 29 ; 2113149 440 3,431
21 Spins 18 ; 21347 38 ;213 979 12,835
22 Spinv 55 ; 24232411 133 ; 24732 8,741 369,976
23 Apache 172 ; 215838445161 366 ; 2331425! 66,927 8,085,958
24 Gcee 199 ; 2189310 82 ; 23733 82,770 11,131,894
25 Bugzilla 52 ;2493142 108 ; 243! 5,818 202,683
26 bml 97 ; 28633415562 43 ; 2203341 23,876 1,704,243
27 bm2 94 ; 2863343516l 40 ; 21933 20,331 1,339,412
28 bm3 29 ; 27742 14 ; 2931 1,838 34,728
29 bm4 58 ; 251344251 27 ; 21532 7,530 298,517
30 bmS5 174 ; 215537435564 86 ; 2323641 76259 9,816,481
31 bm6 77 ; 2734361 32 ; 22034 11,382 559,764
32 bm7 30 ; 22931 12 ;21332 1,567 27,669
33 bm8 119 ; 210932425363 55 ; 2323441 33,680 2,865,125
34 bm9 61 ; 2573141516! 31 ; 23037 6,835 259,060
35 bm10 147 ; 213036455264 62 ; 24037 52,659 5,619,635
36 bml1 96 ; 28434425264 48 ; 22834 23,636 1,676,265
37 bm12 147 ; 213634434163 65 ; 22334 49522 5,131,693
38 bm13 133 ; 212434415262 58 ; 22234 38,862 3,564,693
39 bml4 92 ; 281354363 45 ; 21332 20,544 1,361,650
40 bml5 58 ; 25034415261 29 ; 22032 8,388 349,991
41 bml6 87 ; 2813342¢! 36 ; 23034 14,600 815,386
42 bm17 137 ; 212833425163 60 ; 22934 43,390 4,199,845
43 bm18 141 ; 212732334662 76 ; 2233441 50,128 5,222,583
44 bm19 197 ; 217239495364 95 ; 23833 98,778 14,485,184
45 bm20 158 ; 213834455467 80 ; 24236 64,620 7,647,389
46 bm21 85 ; 27033425163 37 ; 24036 15,442 885,299
47 bm22 79 ; 272344162 32 ; 23134 13,405 714,902
48 bm23 27 ; 2353161 16 ; 21332 1,495 25,363
48 bm24 119 ; 2110325364 55 ; 22534 34204 2,932,980
50 bm25 134 ; 211836425266 66 ; 2233341 46,968 4,728,180
51 bm26 95 ; 287314354 45 ; 22834 20,921 1,396,703
52 bm27 62 ; 25932425162 27 ;21733 9,714 436,049
53 bm?28 194 ; 2167316425366 98 ; 23136 96,599 14,013,342
54 bm29 144 ; 21343753 62 ;21933 45,839 4,570,949
55 bm30 79 ; 2733343 32 ; 22032 12,453 640,511

	Introduction
	Preliminaries
	Combinatorial t-way testing
	t-way testing with higher t' (>t)-way coverage

	Distance-integrated Combinatorial Test Generation
	Proposed Approach: DICOT
	Distance Metrics
	Minimum Hamming Distance
	Chi-square Distance

	DICOT on an Ideal CT Generation: A Case Study
	DICOT on a Greedy CT Generation

	Experiments and Results
	Research Questions
	Experimental Setting
	Results
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

