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Abstract—Verification of distributed software systems by
model checking is not a straightforward task due to inter-
process communication. Many software model checkers only
explore the state space of a single multi-threaded process. Recent
work has proposed a technique that applies a cache to capture
communication between the main process and its peers, and
allows the model checker to complete state-space exploration.
Although previous work handles non-deterministic output in
the main process, any peer program is required to produce
deterministic output.

This paper introduces a process checkpointing tool. The com-
bination of caching and process checkpointing makes it possible
to handle nondeterminism on both sides of communication. Peer
states are saved as checkpoints and restored when the model
checker backtracks and produces a request not available in the
cache. We also introduce the concept of strategies to control
the creation of checkpoints and the overhead caused by the
checkpointing tool.

Index Terms—software model checking; caching; software
verification; distributed systems; checkpointing;

I. INTRODUCTION

Networked software is usually implemented as a concur-
rent program using multiple threads to handle connections.
Threads are execution units within a given process [1]. The
interleaving among threads, i.e. thread scheduling, is taken
care of by an operating system, thus it is beyond the con-
trol of programmers. As a result, software testing [2] may
miss some failures under a certain sequence of interleaving,
because it cannot cover all possible thread schedules in one
run. Chess [3] remedies this disadvantage by executing a
test case repeatedly to find concurrent failures and ensuring
that every run takes a different interleaving. More program
behaviors are tested by this technique. Model checking [4]
is a more powerful verification technique that takes every
possible schedule into account. Some software model checkers
such as Java PathFinder (JPF) [5] execute real application
code at runtime and are applied in the implementation phase
of a software development. In this paper, the main process
to be verified is called the system under test (SUT). The
system under test is backtracked by a model checker during

verification to analyze multiple outcomes of non-deterministic
decisions, such as thread scheduling and variable input data.
The combination of decisions increases exponentially over
the number of instructions. As a result, the program state
space is usually too large to be explored exhaustively within a
reasonable amount of time. This limitation is called the state
explosion problem, which is one of the fundamental problems
for model checking. Partial order reduction [6] is a technique
to relieve the state explosion by atomically executing a group
of program instructions that do not affect any other threads.
This method reduces the number of thread interleavings, and
thus the size of the state space.

Verifying a distributed system [7] with a model checker
is not a straightforward process. The distributed system is
composed of several computational entities that exchange data
and interoperate with one another through a network. Each
process may run on a different environment, increasing system
complexity. Most software model checkers only handle a
single process at a time and cannot be applied simulatenously
to all processes of the distributed system. When a process in
the system is executed, as the SUT, by the model checker, the
other processes are running as peer processes in the normal
execution environment. Since the peer processes are not under
model checker control, they cannot be backtracked in tandem
with the SUT. After the SUT backtracks, it may try to interact
with the peers, which are not in a state to respond correctly.
Several techniques [8], [9], [10] have been established to
automate the verification of such systems. Some of them are
briefly introduced in Section II. Our previous work [11], [12]
has shown that an I/O cache can interact with the SUT on
behalf of the peer.

A. Cache-based Verification

Fundamentally, dynamic software verification can be carried
out by two approaches: testing and model checking. Figures 1a
and 1b compare the configurations of both approaches in the
verification of a distributed application. Testing executes both
the SUT and peers in the normal execution environment. Only
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Figure 1: Three configurations: testing, cache-based model
checking, and model checking with checkpointing support.

one execution path of the SUT is exercised for each run in this
configuration. On the other hand, model checking executes
the SUT inside an environment where the program state may
be rolled back. Thus, the SUT can be systematically driven
through every possible execution path. In case of a multi-
process application, the I/O cache is required to interact with
the SUT on behalf of the peers [11], [12]. The I/O cache
intercepts every request packet, a data packet sent by the
SUT, and stores it in an internal data structure. Similarly,
response packets coming back from the peers are stored in
the I/O cache as well. Each request packet is matched with
its corresponding response packet, if any. The I/O cache uses
this information to imitate peer behaviors. As a result, the SUT
experiences the same interaction with the I/O cache that would
encounter with the actual peers. The single-process model
checker then can complete the exploration of the SUT state
space. In doing so, it avoids an expensive analysis of the full
state space of each peer. Similar to a partial-order reduction,
this reduces the state space significantly. By analyzing the full
state space of the SUT combined with only a few (rather than
all) peer executions, cache-based verification allows systems
to be analyzed that were previously out of reach for model
checking [11], [12].

In this research, determinism of programs is defined to be
based on the output they produce with respect to input on
a communication channel. Note that multithreaded programs
whose thread schedules are non-deterministic can still produce
deterministic output by this definition. We do not impose a
restriction on “internal” non-determinism of programs. Fur-

thermore, the term ‘“deterministic output” means that the
output solely depends on the input trace of the communication
peer. A program with deterministic output may still produce
a different output pattern if it receives a different input trace.

The initial implementation of the I/O cache assumed deter-
minism of the SUT output [11]. However, this assumption is
not always true. Some kinds of programs serve clients with
dynamic data, e.g. web servers and database servers. Their
outcomes do not only depend on the response from a peer but
also on their internal state. Therefore, the I/O cache may ob-
serve multiple patterns of request packets from such programs
running as SUT. We can say that the SUT behaves in a non-
deterministic way from the perspective of the I/O cache. To
handle programs with non-deterministic output, the I/O cache
creates, for each distinct request pattern, a new instance of the
peer. Each instance of the peer is responsible for one request
pattern. While non-determinism on the SUT side is taken
into account, previous work [12] assumes deterministic output
from peers. Previous work restores a peer state by replaying
previously recorded communication to a new instance of the
peer [12]; non-deterministic peer systems cannot be handled
in this way.

B. Extension for Non-deterministic Peers

This paper proposes a method to support non-deterministic
output from both SUT and peers with the help of process
checkpointing. Process checkpointing is a technique that runs
a group of processes in an environment that keeps track of
the process states. This environment is called a checkpointing
environment. Figure lc shows the configuration of cache-
based model checking with a checkpointing environment. The
checkpointing environment creates a checkpoint of the peers
when requested by the I/O cache. When the I/O cache needs to
synchronize the state of the SUT and peers, the checkpointing
environment restarts the peers from an appropriate checkpoint.
This avoids replaying peer actions that may cause the pre-
viously executed non-deterministic transition to be repeated.
Thus, the SUT only observes one peer behavior for each SUT
output trace. This method eliminates false positives caused by
different instances of peers interacting with the SUT under
one execution path.

Nondeterminism inside a peer can be divided into two types
by its source: thread scheduling and external input. Thread
scheduling is controlled by an operating system. Even though
a peer is loaded from a checkpoint, there is no guarantee
that the peer will execute under the same thread schedule.
Accordingly, we assume peer output of each communication
channel is independent of thread scheduling.

Checkpointing a process is an expensive operation. Doing
it naively would incur extremely high overhead. We propose
strategies to prevent the model checker from creating unneces-
sary checkpoints. The contribution of this work is as follows:

o The application of process checkpointing to software
model checking.

o Support for distributed applications that produce non-
deterministic output.
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C. Outline

Section II shows related work to verify distributed appli-
cations. Section III presents how to make use of process
checkpointing in software model checking. Section IV gives
the implementation details of the model checker extension
that supports peers with non-deterministic output. Section V
presents and analyzes experimental results of the checkpoint-
supported I/O cache on several systems under test. Section VI
concludes the paper and proposes future work.

II. RELATED WORK

Several approaches have been presented to automate verifi-
cation of distributed systems. The Centralization technique [8],
[9] offers automatic unification of processes. It collects all
processes in an application and transforms each process to a
thread. All threads start inside a process called a centralized
process, which can be automatically generated by a tool. A
single-process model checker runs the centralized process,
which starts all threads at the beginning, and verifies the
entire system at once. Since all processes must be wrapped
into one process, they must be written in the same pro-
gramming language and be compiled on the same platform.
These requirements are not always fulfilled. The centralization
approach does not scale well since exploring the interleavings
of all processes in the system yields very large state space.

Implementing a multi-process model checker is one of the
solutions. This idea was proposed in [13]. The extension of
User-mode Linux [14] called ScrapBook can save and restore
the state of a system running inside a virtual environment. A
SUT is executed inside the virtual environment. Note that there
is no peer process in this approach, because every process is
inside the virtual environment. Each process of the application
is controlled by an instance of GDB (GNU Debugger) [15].
Given a set of breakpoints, GDB suspends the process. A user
specifies these breakpoints beforehand. ScrapBook works as
a model checker in the sense that it can save and revert the
system state. Since the state of the entire system must be saved
and restored during verification, this approach is not scalable
as well.

Verisoft [16] is another model checking tool that verifies
concurrent processes. It deals directly with the implementation
of a target system, which may comprise multiple processes.
However, it could not handle multi-threaded processes and did
not maintain states of file descriptors for files and sockets
that the system would open. Therefore, modern applications
composed of multiple threads cannot be directly verified by
the tool.

Uhttp://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/net-iocache

III. PROCESS CHECKPOINTING SUPPORT

This section explains how process checkpointing is applied
to verification of distributed systems. This idea is built on the
concept of the I/O cache, which is reviewed in Section III-A.
Some checkpointing tools are briefly introduced in Sec-
tion III-B. We use process checkpointing to capture consistent
behaviors of peer processes. Without process checkpointing,
the I/O cache may store inconsistent data, which causes the
model checker to report false positives. Such a situation is
shown in Section III-C. We propose an optimization method
in Section III-D in order to reduce the number of checkpoints
and control the overhead caused by the checkpointing tool.

A. Fundamentals of the I/O Cache

The I/O cache is a software module that controls data
packets transferred between a SUT and a peer. It captures
the messages sent by the SUT and matches them to the
corresponding messages from the peer. A message from the
SUT is called a request message while one from the peer is
called a response message. A request message will be stored
in an internal data structure if the I/O cache receives it for
the first time. In this case, the I/O cache will poll the peer
process for a response message. If a response message is
available, the I/O cache will match it with the most-recent
request message [11]. On the other hand, if the I/O cache
receives a request message it has received before, it will send
the response message associated with that request message to
the SUT.

Figure 2 demonstrates how the I/O cache works on a
two-thread SUT. Let W and R be threads that produce an
output trace and receive an input trace, respectively. Thread
W randomly produces string ‘01’ or ‘02’. In the first schedule,
Thread W writes ‘0’, denoted by W (0). The cache memorizes
the data block transferred and shades the block to indicate that
the SUT has passed through. Then, the I/O cache sends the
request message to the peer and polls a response message.
The response message is saved in the next block (Figure 2a).
Note that the response message is not shaded, because the
SUT has not read it yet. In the next step, thread R attempts to
read a message and receives the previously cached response
message. The I/O cache shades the read block to mark that the
SUT has already received this message (Figure 2b). Suppose
that thread W produces ‘1’ in the next step, the I/O cache
becomes like Figure 2c. When the SUT backtracks to state 2,
the I/O cache restores the shade position, but the cached data
remains permanent (Figure 2d). The model checker executes
another possibility in which W produces ‘2’. At this time,
the peer is restarted from the beginning to handle the new
request messages ‘02’ (Figure 2e). The SUT backtracks to
state 1. Thread W may execute at this point with two options,
writing ‘1’ or ‘2°. Suppose that it writes ‘1°, the I/O cache
in fact does not write this message to the peer since the
message is already in the cache. Instead, it only shades the
associated data block to remember the state of the data stream
(Figure 2f). The model checker continues running until the



Figure 2: Evolution of the partial state space and cached traces. Two different communication traces are represented by solid
lines and dashed lines. Rectangular nodes represent request messages. Circled nodes represent response messages.

whole state space is explored with the help of the I/O cache,
which interacts with the SUT as a peer.

B. Checkpointing Environments

Process checkpointing is a technique to create a snapshot
of a group of processes. The snapshot stored in non-volatile
memory is referred to as a checkpoint. A checkpoint can be
loaded later on to recreate the process group in a certain state.
After checkpointing, the recreated processes can continue
running from where they were suspended as if they had not
stopped running.

Most virtualization tools [17], [18], [19] provide check-
pointing functions save and restore. However, virtual-
ization consumes a large amount of system resources since
it applies those functions on the entire system. Initially, we
implemented our approach by using Kernel-based Virtual
Machine (KVM) [18]. It took a few seconds merely to create
one snapshot of a system, rendering it impractical.

A lightweight checkpointing package such as MTCP [20]
can be used as a replacement in certain circumstances where
a peer is a single-process program. The checkpointing package
takes care of the state of a single process, unlike the virtual-
ization tools. It approximately takes 200-300 milliseconds on

average in order to create a checkpoint, which is acceptable.
Distributed MultiThreaded CheckPointing (DMTCP) [21] is
an extended version of MTCP, which manages a group of
processes connected by network connections or parent-child
relations. This work employs DMTCP as the checkpointing
environment to support the I/O cache. All peer processes are
controlled by DMTCP.

Checkpointing environments introduce a new method to
synchronize a SUT and a peer. Model checkers save SUT
states in order to backtrack it to any previously visited point
in the state space. A checkpointing tool can do the same
with peer processes. When the I/O cache has detected a new
communication trace from the SUT, it restores the peer process
from a checkpoint saved prior to the equivalent state instead
of restarting the peer from the beginning. In the extreme
case, we may create a peer checkpoint for each SUT state. In
practice, the peer does not have to be checkpointed as often
as the SUT. Some peer checkpoints may be omitted under
a certain condition. An optimization method is discussed in
Section III-D.



Figure 3: (Left) State transition diagram of a peer that produces
non-deterministic output. (Middle) One possibility of incorrect
cached data. (Right) Correct cached data.

C. Support for Non-deterministic Peer Output

In this paper, we propose an approach to cope with non-
deterministic peer output. An example of such a peer is shown
in Figure 3 (left). The peer may change state and produce
output differently (‘A’ and ‘B’) in each run, although it receives
the same data ‘0’ as shown in the transitions from Sy to
S1 and S. The I/O cache approach without checkpointing
restarts the peer process when the SUT produces a different
trace after backtracking [12]. This technique does not work if
the peer also produces non-deterministic output, which may
cause inconsistency in the cached data. Suppose that the peer
moves from Sy to Sy, the I/O cache receives ‘A’ and ‘C’
from the peer. After backtracking the SUT produces a new
trace (‘02’), request message ‘2’ is added into a new branch,
forcing the peer to restart. The new peer may move from state
So to state S, after receiving message ‘0’. The transition to
So emits ‘B’, which differs from the existing cache content
‘A’. The I/O cache may handle a mismatch by: (1) aborting the
process, or (2) giving a warning and continuing. If it continues,
it will receive ‘F’ as a response for ‘2’. The cache contents
in Figure 3 (middle) indicate that the SUT receives response
message ‘AF’ for request message ‘02°, which is an incorrect
behavior. According to the state transition diagram in Figure 3
(left), the peer obviously never produces ‘A’ and ‘F’ in the
same run. The I/O cache may return an incorrect response
message, because the new peer does not stay in the same state
as its previous instance did. As a result, the model checker
would report a false positive due to the communication trace
that the SUT never receives in a normal environment.

This inconsistency can bring about a serious problem if the
communication between two programs depends on the results
of non-deterministic peer operations. For example, a SUT and
a peer may perform key exchange [22] by generating random
values required to build a shared secret key. If the I/O cache
restarts the peer later, the peer will generate a new random
value for building the key. The key obtained from the new
random value is different from what the SUT is holding. As
a result, both programs cannot decrypt messages from the
opponent after the peer has restarted.

This issue can be solved by running a peer in a checkpoint-
ing environment, which can save and revert the peer state. A
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Figure 4: (Left) SUT state space. Dashed lines represent
transitions without network I/O operations. (Right) Peer check-

point space. Solid-line circles represent physical checkpoints.
Dashed-line circles represent logical checkpoints.

peer checkpoint is created as the SUT changes state. States
So and S; are saved for the example in Figure 3. When the
SUT needs the peer in a certain state, the peer is restarted in a
way that it will produce outcomes consistent with the cached
contents. In this case, the peer is restarted from state S;. The
peer continues running from that point and correctly sends
response message ‘E’ for request message ‘2’. The correct
cache contents are shown in Figure 3 (right). By this method,
only one behavior of the peer is revealed to the SUT as if the
peer produced deterministic output.

D. Checkpointing Strategies

Checkpointing every single peer state is not always neces-
sary and not efficient since the I/O cache can replay cached
messages in most cases. Instead, we introduce a concept of
logical checkpoints, which do not occupy disk space. They
are created as the model checker discovers new states of a
SUT. Figure 4 shows checkpoint space as compared to SUT
state space. State S; associates with logical checkpoint C;.

A checkpointing strategy defines how to maintain the bal-
ance of the checkpoint creation overhead with the possibility
of restoring a previous state directly. It decides whether to
create a physical checkpoint, which occupies storage space,
over the corresponding logical checkpoint. When the SUT
needs the peer at a specific state, the model checker restores
the corresponding logical checkpoint. If it lacks a physical
checkpoint, the peer will be instead restored from the most-
recent physical checkpoint on a path to that logical checkpoint.
After that the model checker must replay communication data
from there, up to the designated logical checkpoint.

Generally, creating two identical checkpoints is pointless.
We assume that a peer does not change state significantly
if it performs no network I/O operation, e.g. connect,
accept, send, and recv. Following this assumption, the
peer should be checkpointed only after a network I/O operation
is performed. Using this strategy, an example of the resulting
checkpoint space is shown in Figure 4. States S7, Sy, and
Sy come from transitions without network I/O operations, so
physical checkpoints are not created at Cy, Cy4, and C5. If
the SUT needs the peer at Cs, we must start from physical
checkpoint Cj and replay network I/O operations, by using the
cache contents, until it reaches C'5. A variant of this strategy
is to only checkpoint after operation connect or accept.
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In this case, the I/O cache must replay I/O operations from
the beginning of the connection up to point where the peer is
synchronized with the SUT again.

A checkpointing strategy takes effect after each SUT state
transition to decide whether the current peer state should
be saved. In addition to that, if the I/O cache receives a
notification from the checkpointing environment about a non-
deterministic operation, it will always saves the state of the
peer. The I/O cache must do this in order to preserve the result
of the non-deterministic operation. This method requires a
way to detect non-deterministic peer “actions” at runtime. Our
solution is to build wrapper functions for standard functions
that may cause non-determinism such as time and read;
see Section IV. When one of these functions is called with a
certain argument, the wrapper function sends a notification to
the I/O cache. Receiving the notification, the I/O cache saves
the peer state after the current SUT transition is completed.
Note that we must wait until the transition is completed in
order to create a checkpoint synchronized with the SUT state
as shown in Figure 4.

When a SUT needs a peer in one of the previous states, the
I/0O cache may either restore a peer from a checkpoint or start a
new peer from the beginning. Figure 5 compares these options.
The SUT moves from state S; to S3, producing a hitherto
unseen request message. C; is the peer state associated with
SUT state S;. Loading a checkpoint takes time in creating
a process and the execution of transition to. Restarting the
peer takes time in creating a new process and the execution of
transitions tg and ¢2. Checkpointing strategies should provide a
way to estimate and compare cost in each choice. In the current
implementation, the model checker always restores the peer
from a checkpoint, assuming that loading the program space
from a checkpoint is faster. In this case, the initial peer state
(Cp) must always have a physical checkpoint since it can be a
starting point to go to any logical checkpoints. Implementation
of other checkpointing strategies constitutes future work.

E. Restrictions

A checkpointing tool cannot force a peer process to produce
output in a specific non-deterministic branch. The I/O cache
uses the checkpointing tool only to make sure that the SUT

receives peer output from a certain branch. However, the peer
output captured by the I/O cache may be different in each
run. As a result, only part of the SUT state space of the
SUT is checked. In Figure 3, once the peer moves to state
s1, the SUT will never receive message ‘BD’ or ‘BF’ during
the verification, although these messages are possible in a real
run.

The introduction of checkpointing technology intervenes in
the execution of a peer process in the sense that the peer
must run in a special environment. In contrast to the pure
cache-based approach, the behavior of the peer process in the
new environment may differ from the original behavior. This
limitation also implies that one must have a permission to set
up a checkpointing environment on the machine that runs the
peer process.

IV. IMPLEMENTATION ARCHITECTURE

Java PathFinder (JPF) [5] is a model checker for programs
written in Java. It is used as the model checker and the
run-time environment for SUT in this work. The pure I/O
cache approach without checkpointing functions was devel-
oped as an extension of JPF called net-iocache [11], [23]
for verifying networked applications. This work introduces
process-checkpointing support by applying the tool called
DMTCP [21] to suppress non-deterministic behaviors of peer
processes. DMTCP runs a group of connected nodes, i.e.
peer processes, in a special environment where some standard
functions are wrapped in order to gain information to create
system checkpoints. DMTCP has the DMTCP coordinator
process that manages the execution of all nodes and handles
external commands. When the DMTCP coordinator receives
a checkpoint command, it captures the state of each node
in the group, including connection information, in checkpoint
files. One checkpoint file represents the state of one node, so
for each checkpoint command, the number of checkpoints
created is equal to the number of nodes currently running.
The checkpoint files contain sufficient information to restart
the group of processes at a state where each process is
communicating with one another. In order to make DMTCP
work with the I/O cache, we modify some part of DMTCP
and register callback functions to capture the events inside the
peer process.

A. Connection with the Model Checker

DMTCP is a checkpointing tool for a group of connected
processes. Users can add a process into the group by starting it
with command dmt cp_checkpoint. Another way to add a
process into the process group is creating a new process using
the fork-family functions. Every child created by a process
in the group automatically becomes a member of the group.

DMTCP saves the entire state of the process group including
connections among the internal processes when receiving the
checkpoint command. Similarly, it restarts all processes in
a group from a given checkpoint when receiving the restart
command. The SUT state is controlled by JPF while the peer
state is controlled by DMTCP as shown in Figure 6. Since the
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SUT is not a process in the group, the connection between the
SUT and peers is not subject to checkpointing. As a result,
the connection is closed when the I/O cache kills the group
of peers before loading a new one from a checkpoint. When
restarting, the I/O cache must provide a way to restore this
connection so that the SUT and peer can communicate with
each other again.

In our implementation, we create a proxy process that
represents a SUT in the DMTCP environment. The proxy
process runs similar to other peer processes as shown in
Figure 7. When the SUT performs an operation that establishes
a connection, the I/O cache sends the corresponding com-
mand to the proxy process. Currently, the proxy supports five
commands: create_socket, connect, accept, bind,
and close. Table I shows a mapping between the network
operations called by SUT and the proxy commands. The proxy
performs the requested operation and sends the result back to
the I/O cache. Some operations may return a file descriptor
that represents a network socket. The I/O cache can use the file
descriptor it receives to communicate with the peer directly. In
order to transfer file descriptors between processes, the SUT
and proxy use a pair of Unix domain sockets to communicate
with each other.

Table I: Supported Java methods and their associated proxy

commands
Java Method Proxy Command FD

Returned?
new Socket () create_socket yes
Socket .connect () connect no
Socket.close () close no
new ServerSocket () bind no
ServerSocket.accept () accept yes

B. DMTCP Modification

Our checkpointing-based approach requires a mechanism
that notifies the I/O cache whenever a peer executes an
instruction that causes non-deterministic behaviors. In order to
implement such a mechanism, we need to watch calls to some
functions of the peer program. In the current implementation,
functions time and read are specially treated as they may
produce non-deterministic results. Function time may be
called obtain the current time, which varies across executions.
This value is often used as a seed to generate a sequence of
pseudo-random numbers such as function srand. When func-
tion t ime is called, the I/O cache is notified. As for function
read, the I/O cache will be notified if the file descriptor argu-
ment is associated with the system random number generator
device /dev/random or /dev/urandom. These devices
are non-deterministic data sources supplied by the operating
system.

DMTCP provides a set of wrapper functions that collects
necessary information for checkpointing before calling the real
version of the functions. The wrapped functions include both
standard C libraries and system calls. In a similar way, we
add one wrapper function (time) and modify an existing
one (read). When either of these functions detects non-
determinism (ND), it sends a ND notification to the I/O cache.

C. Cache-DMTCP Private Communication

During verification, the I/O cache and DMTCP must have
a way to communicate with each other. The I/O cache sends
commands to the proxy process inside the DMTCP environ-
ment, as mentioned in Section IV-A. In addition to that, it
must be ready to receive a notification when a peer process
performs a non-deterministic operation.

We set up two communication channels between the I/O
cache and DMTCP: the proxy command channel and the
non-determinism notification channel, illustrated in Figure 7.
When verification starts, the proxy process connects to the I/O
cache using a Unix-domain socket, which allows the proxy to
transfer file descriptors to the I/O cache. This connection is
called the proxy command channel. It must be cut off before
checkpointing, otherwise DMTCP will try to save the state of
the process at the other side of the connection, i.e., the model
checker. JPF does not run inside the DMTCP environment and
should never be dumped into a checkpoint. The proxy com-
mand channel is re-established after checkpointing/restarting.
We register the pre/post-checkpoint callback functions to
DMTCP that are responsible for cutting off and repairing this
connection, respectively.

The I/O cache recognizes non-deterministic operations on
the peers by creating a worker thread that waits for ND
notifications. The worker thread binds a TCP server socket
to a fixed port number. Every time a peer executes a non-
deterministic function, the corresponding DMTCP wrapper
function asynchronously sends a ND notification packet to
the worker thread as shown in Figure 7. If the I/O cache
receives a notification during a transition, it will create a peer
checkpoint at the end of the transition. Note that we must wait
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Figure 8: Communication between the model checker and
DMTCP during checkpointing and restarting.

until the current transition is completed in order to generate
the checkpoint state space that maps on the SUT state space
one-to-one as shown in Figure 4.

When the I/O cache dispatches the checkpoint/restart com-
mand to DMTCP, it must be blocked until the peers are ready
again. In the current implementation, the proxy process notifies
the I/O cache via a named pipe (FIFO) as shown in Figure 8.
The I/0O cache executes a shell script (1) that dispatches a
command to the DMTCP coordinator, an interface of the
peer processes (2). After the operation has been completed,
DMTCP notifies the I/O cache by putting a message in
a pipe (3). Waiting on the pipe, the shell script receives
the message and returns the control to the I/O cache (4).
This procedure makes sure that the I/O cache only continues
running when the peer side is ready. All processes must run
on the same Linux machine in order to use the named pipe.
Otherwise, another synchronization method must be provided.
Currently, DMTCP supports only Linux-based operating sys-
tems, so our implementation adds no extra limitation.

V. EXPERIMENTS AND DISCUSSION

This section compares the time and the number of states
generated in the model checking process between the pure I/O
cache approach and the checkpointing approach with several
checkpointing strategies. The experiment was run on an §-core
Mac Pro workstation with 24GB of physical memory, running
Ubuntu 8.04, JPF 6 (changeset 382:4f9c3fc91a2f), and
DMTCEP (revision 967). The time limit for each case was set
to one hour. Table II shows the experimental results?. Column
“no CP” denotes the I/O cache approach with no checkpointing
support. Three checkpointing strategies were applied in the
experiment.

1) always save: Create a checkpoint if the peer is alive.

2) after I/O: Create a checkpoint after a transition involved

a networked I/O operation.
3) after ND: Create a checkpoint after a transition during
which a ND notification is received.
In the alphabet application, a multi-threaded client sends num-
ber n to the server and receives the nth letter of the English
alphabet as a response, for a specified number of times. The
alphabet client randomly sends a number of messages from set
{0,1,...,9} while the alphabet server randomly sends either
small or capital letters. Deterministic versions of the peers

2The verification time and the number of states are higher than the results
in a previous publication [12] due to a change in JPF to cover more thread
schedules.

were used in the “no CP” case. Non-deterministic versions
were used in the other cases. Note that the number of states
explored by JPF is the same, regardless of determinism of
peer output, since our approach captures one of the possible
responses of the peer. The model checking process then runs
as if the peer produced deterministic output.

The HTTP client simply requests a file from a server via
HTTP. It generates worker threads to request multiple files in
parallel. thttpd [24] is a small-size HTTP server, used in the
experiment without modification. It sends static contents, thus
deterministic output, according to client requests. Jget [25]
creates multiple threads that each download a portion of a file
in parallel from a server.

ScpTo is an example program in the Java Secure Channel
(JSch) package [26], which copies a local file to a remote host
via a secure channel. Both the client and server can produce
non-deterministic output. ScpTo and the server generate a
random value in the process of building a secret shared
key [22]. As explained in Section III, checkpointing support
is essential in this case. The GUI code in the program is
removed before doing the experiment with Dropbear [27], a
SSH server. The I/O cache with checkpointing has found a
fault in ScpTo that involves a race condition. ScpTo creates
a session thread to receive packets from the server while the
main thread sends packets to the server. Both threads are not
synchronized properly so that a race condition happens under
a certain thread schedule. If the main thread makes progress
much faster than another thread and reaches the point where a
required packet has not been received, it throws an exception®.
Another version of ScpTo is bug-fixed and further abstracted
in order to finish the verification within reasonable time. An
abstract SSH server runs as a peer for this version of ScpTo.
Both versions were verified in the experiment together with
other applications.

The performance of the checkpointing approach with the
“ND” strategy is not much different from the pure cache
approach (no CP) since it only creates a checkpoint if nec-
essary. It also provides support for non-deterministic peers,
making it more powerful than the previous version of the
I/O cache. The “I/O” strategy is slightly slower than “ND”,
because it creates more checkpoints. However, it would be
useful when the peer takes a long time in I/O operations since
it prevents re-execution of those operations. The “always”
strategy excessively creates checkpoints, so its performance
is not practically useful. Its results are presented for the sake
of comparison.

VI. CONCLUSIONS AND FUTURE WORK

Software model checkers cannot be applied directly to a
program that interacts with external processes. Cache-based
model checking allows a single-process model checker to ver-
ify such a program against an external process. This approach
scales well, but imposes some requirements on the target
system. In particular, previous work required peer processes to

3This bug has been acknowledged by the developer.



Table II: Experimental results

SUT Peer #conn | #msg time (mm:ss) #states #checkpoints
always [ T/O ] ND [ noCP always | /O [ ND
2 27:45 0:11 0:10 0:05 7572 3438 6 4
2 3 > 1h 0:26 0:24 0:14 333K - 12 7
ND alphabet | ND alphabet 4 - 1:18 1:12 0:53 147.5K - 24 13
client server 2 - 4:22 4:20 4:08 525.3K - 10 6
3 3 - | 33:40 | 33:22 32:38 | 4581.9K - 20 11
4 > 1h
2 2:14 0:11 0:10 0:01 299 277 9 8
2 3 3:55 0:16 0:16 0:02 499 491 15 14
4 5:53 0:21 0:20 0:03 747 739 20 19
2 33:59 0:18 0:18 0:04 4269 4241 15 13
ND alphabet | ND alphabet 3 3 > 1h 0:28 0:27 0:07 8775 - 24 22
server client 4 - 0:37 0:37 0:10 15.5K - 32 30
2 - 0:48 0:47 0:29 57.8K - 21 18
4 3 - 1:35 1:34 1:05 143.1K - 33 30
4 - 2:50 2:48 2:09 295.2K - 44 41
2 - 7:06 7:06 6:34 746.4K - 27 23
5 3 - | 20:07 | 19:59 18:59 | 2209.1K - 42 38
4 - | 47:08 | 47:03 44:58 | 5295.8K - 56 52
2 2:57 0:05 0:04 0:02 415 415 3 1
HTTP 3 46:42 0:51 0:50 0:48 6675 6675 4 1
client thttpd 4 > 1h | 23:12 | 23:07 22:10 112.5K - 5 1
5 > 1h
Jget 2 N/A 41:54 0:15 0:15 0:11 5984 5984 4 3
3 > 1h | 45:48 | 45:48 45:43 839.8K - 6 4
ScpTo! Dropbear 1 7:56 0.15 0:15 X 1027 1026 9 9
ScpTo Abstract 1 I:15 0:05 0:05 X 167 167 6 2
(bug fixed) SSH Server 2 > 1h 9:21 9:19 X 557.7K - 8 3

X: The I/0O cache without checkpointing does not support these cases.
'A bug is found in this case.

be deterministic. In this work, the class of verifiable programs
has been expanded to cover non-deterministic peers, which
are controlled by process checkpointing. Our extension creates
checkpoints of a peer program according to a checkpoint
strategy. The experiment has shown that the overhead caused
by the checkpointing tool is acceptable if an appropriate
strategy is used.

Future work includes development and analysis of check-
pointing strategies. The shell scripts that communicate with
DMTCP will be replaced with a library in the I/O cache to
eliminate the platform dependency. We also have a plan to run
each peer process under a model checker. The model checker
could be modified so that it controls low-level peer behaviors
such as thread scheduling. Furthermore, the model checker
may store peer states in memory rather than non-volatile
storage, reducing the I/O operation overhead. Being able to
control thread scheduling, we could analyze the peer behaviors
and selectively perform the ones that would potentially reveal
faults in the SUT. We will consider how the model checker
engines communicate with each other as well.
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