
Using Block-local Atomicity to Detect
Stale-value Concurrency Errors

Cyrille Artho1, Klaus Havelund2, and Armin Biere1

1 Computer Systems Institute, ETH Zürich, Switzerland
2 Kestrel Technology, NASA Ames Research Center, USA

Abstract. Data races do not cover all kinds of concurrency errors. This
paper presents a data-flow-based technique to find stale-value errors,
which are not found by low-level and high-level data race algorithms.
Stale values denote copies of shared data where the copy is no longer
synchronized. The algorithm to detect such values works as a consis-
tency check that does not require any assumptions or annotations of the
program. It has been implemented as a static analysis in JNuke. The
analysis is sound and requires only a single execution trace if imple-
mented as a run-time checking algorithm. Being based on an analysis of
Java bytecode, it encompasses the full program semantics, including ar-
bitrarily complex expressions. Related techniques are more complex and
more prone to over-reporting.

1 Introduction

Multi-threaded, or concurrent, programming has become increasingly popular,
despite its complexity [2]. The Java programming language [1] explicitly supports
this paradigm while leaving the programmer a lot of freedom for utilizing it
[16]. Multi-threaded programming, however, provides a potential for introducing
intermittent concurrency errors that are hard to find using traditional testing.
The main source of this problem is that a multi-threaded program may execute
differently from one run to another due to the apparent randomness in the way
threads are scheduled. Since testing typically cannot explore all schedules, some
bad schedules may never be discovered.

One kind of error that often occurs in multi-threaded programs is a data race,
as defined below. Traditionally this term has denoted unprotected field accesses,
which will be referred to as low-level data races. However, the absence of low-
level data races still allows for other concurrency problems, such as high-level
data races [3] and atomicity violations [11,22].

Both high-level data races and previously presented atomicity checks suffer
from the fact that they show violations of common conventions, which do not
necessarily imply the presence of a fault. High-level data races further suffer
from the fact that data flow between protected regions (synchronized blocks
in Java) is ignored. Our approach complements low-level and high-level data
races by finding additional errors, while still being more precise than previous
atomicity-based approaches.

The algorithm was designed to avoid the need of a specification or an ex-
haustive search of the program state space [10]. It detects stale-value errors as
defined by Burrows and Leino [8] and augments existing approaches concerning
low-level and high-level data races and can be employed in conjunction with
these analyses. The algorithm is fully automated, requiring no user guidance
beyond normal input. The actual fault analyzed does not have to occur in the
observed execution trace, which is why the algorithm is more powerful than tra-
ditional testing techniques. The algorithm is very modular and thus suitable for
static analysis. Compared to other atomicity-based approaches, it is simpler yet
more precise because it captures data flow and thus models the semantics of the
analyzed programs more precisely. It is related to [8] but models the full seman-
tics of Java bytecode, including arithmetic expressions. The checking algorithm
is implemented as a dedicated algorithm in JNuke [4]. Preliminary experiments
show that it is about two orders of magnitude faster than Burrows’ prototype.

1.1 Low-level Data Races

The traditional definition of a (low-level) data race is as follows [19]:

A data race can occur when two concurrent threads access a shared
variable and when at least one access is a write, and the threads use no
explicit mechanism to prevent the accesses from being simultaneous.

Without synchronization, it is theoretically possible that the effect of a write
operation will never be observed by other threads [14]. Therefore it is univer-
sally agreed that low-level data races must be avoided. Several algorithms and
tools have been developed for detecting low-level data races, such as the Eraser
algorithm [19], which has been implemented in the Visual Threads tool [15].

The standard way to avoid low-level data races on a variable is to protect it
with a lock: all accessing threads must acquire this lock before accessing the vari-
able, and release it again after. In Java, methods can be defined as synchronized
which causes a call to such a method to lock the current object instance. Return
from the method will release the lock. Java also provides an explicit form of spec-
ifying the scope and lock of synchronization using synchronized{lock}{stmt},
for taking a lock on object lock, and executing statement stmt protected under
that lock. If the above unprotected methods are declared synchronized, the
low-level data race cannot occur.

1.2 High-level Data Races

A program may contain a potential for concurrency errors, even when it is free
of low-level data races. The notion of high-level data races refers to sequences
in a program where each access to shared data is protected by a lock, but the
program still behaves incorrectly because operations that should be carried out
atomically can be interleaved with conflicting operations [3].

2

public void swap() { public void reset() {

int oldX; synchronized (lock) {

synchronized (lock) { coord.x = 0;

oldX = coord.x; } // inconsis-

tent state (0, y)

coord.x = coord.y; // swap X synchronized (lock) {

coord.y = oldX; // swap Y coord.y = 0;

} }

} }

Fig. 1. A high-level data race resulting from three atomic operations.

Figure 1 shows such a scenario. While the swap operation on the two coordi-
nates x and y is atomic, the reset operation is not. Because the lock is released
after setting x to 0, other threads may observe state 〈0, y〉, an intermediate state,
which is inconsistent. If swap is invoked by another thread before reset finishes,
this results in final state 〈y, 0〉. This is inconsistent with the semantics of swap
and reset. The view consistency algorithm finds such errors [3].

1.3 Atomic Sequences of Operations

The absence of low-level and high-level data races still allows for other concur-
rency errors. Figure 2 shows such an error: The increment operation is split into
a read access, the actual increment, and a write access. Consider two threads,
where one thread has just obtained and incremented the shared field. Before
the updated value is written back to the shared field, another thread may call
method inc and read the old value. After that, both threads will write back
their result, resulting in a total increment of only one rather than two.

The problem is that the entire method inc is not atomic, so its outcome may
be unexpected. Approaches based on reduction [11,22] detect such atomicity vio-
lations. The algorithm presented here uses a different approach but also detects
the error in the example. Moreover, it is conceptually simpler than previous
atomicity-based approaches and at the same time more precise.

public void inc() {

int tmp;

synchronized (lock) {

tmp = shared.field;

} // lock release

tmp++;

synchronized (lock) {

shared.field = tmp;

}

}

Fig. 2. A non-atomic increment operation.

3

1.4 Outline

Section 2 gives the intuition behind our algorithm. Section 3 formalizes the
property to be checked, and Section 4 extends the algorithm to nested locks and
recursion. The precision of this new algorithm is discussed in Section 5. Section
6 discusses related work. Section 7 shows initial experiments, and Section 8
concludes.

2 Our Data-flow-based Algorithm

The intuition behind this algorithm is as follows: Actions using shared data,
which are protected by a lock, must always operate on current values. Shared
data is stored on the heap in shared fields, which are globally accessible. Correct
synchronization ensures that each access to such shared fields is exclusive. Hence
shared fields protected by locks always have current values.

These values are accessed by different threads and may be copied when per-
forming operations such as an addition. Storing shared values in local variables
is common practice for complex expressions. However, these local variables re-
tain their original value even when a critical (synchronized) region is exited;
they are not updated when the global shared field changes. If this happens, the
local variable will contain a stale value [8] which is inconsistent with the global
program state.

public void inc() {
 int tmp;
 synchronized (lock) {
 tmp = shared.field;
 }
 tmp++;
 synchronized (lock) {
 shared.field = tmp;
 }
}

shared data is
used locally

local data is
used in another
shared operation

cu
rr

en
t

va
lu

e
st

al
e

va
lu

e

Fig. 3. Intuition behind our algorithm.

Figure 3 shows how the error from the previous example is discovered by
our new algorithm. A shared field is assigned to a local variable tmp, which
is again used later, outside the synchronized block. The value of the shared
field thus “escapes” the synchronized block, as indicated by the first arrow.
While the lock is not held, other threads may update the shared field. As soon
as the original thread continues execution (in computations, method calls, or
assignments), effects of its actions may depend on a stale value. The second
arrow indicates the data flow of the stale value.

4

Note that we use an uncommon notion of escape analysis. Usually escape
analysis is concerned with references escaping from a certain scope or region
[5,7,9,23]. In our algorithm, escaping values are considered, not just references,
and the scope of interest are synchronized blocks.

The lack of a single synchronization scope for the entire sequence of oper-
ations is responsible for having stale values. Hence, if the entire method had
been synchronized, it would have consisted of a single block, which would have
executed atomically. Our algorithm uses existing synchronized blocks to verify
whether shared data escapes them. It therefore requires synchronization to be
present for accesses to shared fields. The assumption that each field access itself
is properly guarded against concurrent access can be verified using Eraser [19].

Like Eraser and the high-level data race algorithm [3], our new algorithm only
requires one execution trace if implemented as a run-time verification algorithm.
Furthermore, the property is entirely thread-local. A static implementation of
the algorithm is therefore straightforward. If aliases of locks are known, method-
local static analysis can verify the desired property for each method while re-
quiring only summary information about other methods. Static analysis has the
advantage of being able to symbolically examine the entire program space.

A dynamic analysis on the other hand has precise information about aliases of
locks. However, a particular execution typically cannot cover the entire behavior
of a program. Even though the probability of actually observing erroneous states
in a multi-threaded program is small, dynamic analysis algorithms are often
capable of detecting a potential error even if the actual error does not occur
[3,19]. The reason is that the property which is checked against (such as locking
discipline) is stronger than the desired property (e.g. the absence of a data race).
The algorithm presented here also falls into that category.

3 Formalization of Our Algorithm

This section gives a precise formalization of our algorithm. The algorithm is
explained without going into details about nested locks and method calls. These
two issues are covered in the next section.

In Java, each method invocation frame contains an array of variables known
as its local variables and a fixed-size stack holding its stack variables. These two
kinds of variables are always thread-local [14]. Both kinds of variables will be
referred to as registers r. A shared field f will denote a field of a dynamic object
instance which is accessed in a shared context, using lock protection.

A monitor block encompasses a range of instructions: Its beginning is the lock
acquisition (monitorenter) of a new lock. Its end is marked by the corresponding
lock release (monitorexit). It is assumed that lock acquisitions and releases are
nested as required by the Java semantics [1]. Each monitor block has a unique
ID b distinguishing individual lock acquisitions. Reentrant lock acquisitions and
releases have no effect on mutual exclusion and are ignored.

A register is shared when it contains the value of a shared field f and unshared
otherwise. When shared, the monitor block in which the shared value originated

5

is also recorded. The state s(r) = 〈sh, b〉 of a register comprises its shared status
sh ∈ {0, 1} and its monitor block ID b. The current monitor block bcurr is the
block corresponding to the latest non-reentrant lock acquisition.

At the beginning of execution, all registers are unshared. There are two pos-
sibilities to obtain a shared value: First, a getfield instruction within a monitor
block will produce a shared value. Second, a method invocation may return a
shared value. Shared values have state 〈1, bcurr 〉. We will use two auxiliary func-
tions returning the first and second part of a state s, respectively: shared(s) and
monitorblock(s).

Each assignment of a value will carry over the state of the assigned value.
Operations on several values will result in a shared value if any of the operands
was shared. A register r is used by an instruction i, r ∈ used(i), if it is read by it.
If r is a stack element, the corresponding stack argument is consumed when it is
read, according to the Java bytecode semantics [14]. If r is a local variable, read-
ing it does not have any further effect. Note that this definition of usage includes
expressions and arithmetic operations. In expression tmp2 = tmp1 + tmp0, the
result tmp2 is shared if any of the operands tmp1 or tmp0 is shared.

A stale value is a value of a shared register that originated from a different
monitor block than where it is used. This can be formalized as follows: A program
uses no stale values iff, for each program state and each register r used by current
instruction i, the following holds: monitor block of that register, s(r), must be
equal to the current monitor block:

∀i, r · (r ∈ used(i) ∧ shared(s(r)) → (monitorblock(s(r)) = bcurr)

If a single operation uses several shared values with different monitor block
IDs b, then at least one of them must be a stale value. This property is then
violated, and the result of that operation is again a shared value. 3 We will refer
to this property as block-local atomicity. If it holds for the entire program, then
actions based on shared data will always operate on current data.

4 Extension to Nested Locks and Recursion

The assumption behind dealing with nested locks is that any locks taken beyond
the first one are necessary to ensure mutual exclusion in the nested synchronized
blocks. This is a natural assumption arising from the program semantics: nested
locks are commonly used to access shared fields of different objects, which use
different locks for protection. Let louter and linner denote an outer and an inner
lock, respectively. Assume a thread acquires linner when already holding louter .
It then accesses a shared field f holding both locks. After releasing linner , the
shared field is no longer protected by that nested lock and may thus be updated

3 In our implementation we marked the result of any such operation as unshared. The
operation already generates a warning. Resetting the state of that register prevents
generating more than one warning for any stale value.

6

by other threads. This usage of stale values outside the nested lock linner violates
block-local atomicity.

Low-level data race detection like Eraser misses this error, because each field
access operation is properly protected. Block-local atomicity detects that the
shared value becomes stale outside the inner monitor block. The following treat-
ment of nested locks covers such errors: The algorithm declares a separate mon-
itor block for each nested lock. If any operation outside the inner block uses a
shared value such as f , this will be detected by the consistency check defined in
the previous section.

Using the shared data from f outside the inner block would only be safe if
linner was superfluous: If linner was always used only in conjunction with louter ,
then linner would not contribute to protection against concurrent access. Instead
the extra lock would constitute an overhead that should be eliminated, and the
warning issued by our algorithm can help to identify this problem.

Because a new monitor block is used with each lock acquisition, the total
number of locks held when acquiring a new lock linner is not relevant. Thus the
idea generalizes to a set of outer locks Louter instead of a single outer lock louter .

When dealing with method calls, only the effect of data flow and synchro-
nized blocks has to be considered. In run-time analysis, this is implemented
trivially as method calls do not have to be treated specially.4 In static analysis,
method calls are essentially inlined, using only summary information of called
methods. If no new synchronization is used by the called method, the method
call has no special effect and behaves like a local operation. Otherwise, if a new
(non-reentrant) lock is used by the callee, the return value will be shared with
a new unique monitor block ID. Hence the return value of a call to a synchro-
nized method is shared, unless the caller itself used the same lock during the
call, which would make the inner lock merely reentrant.

Because of this treatment of nested locks, handling inter-method data flow
is quite natural and very efficient. The analysis does not have to consider call-
ing contexts other than the lock set held. A context-insensitive variant of the
algorithm is easily created: One can simply assume that any locks used in called
methods are distinct. The algorithm will still be sound but may emit more false
warnings. The same assumption can be used if the effect of a called method is
unknown, e.g. when a method is native.

Finally, in a static implementation of the algorithm, the temporary lock re-
lease in a wait() operation has to be modeled explicitly [8]. For run-time verifi-
cation in JNuke [4], the lock release event is implicitly generated by its run-time
verification API [4].

5 Precision and Limitations of Our Algorithm

If a program is free of data races, our algorithm finds all stale values but may issue
false warnings. Atomicity-based approaches, including this one, are sometimes

4 A call to a synchronized method is treated like a block using synchronized(this).

7

too strict because certain code idioms allow that the globally visible effect of
a non-atomic operation corresponds to an atomic execution. Serializability is a
more precise property, but even non-serializable programs can be correct.

5.1 Soundness and Completeness

Our algorithm assumes that no low-level data races are present. This kind of error
can be detected by algorithms like Eraser [19]. If a program is free of (low-level)
data races then our static analysis algorithm is sound; no faults are missed. In a
static approximation of this analysis, however, the alias information about locks
is not always known. If one assumes each lock acquisition utilizes a different
lock, the algorithm remains sound but becomes more prone to overreporting.
Furthermore, soundness is also preserved if it is assumed that any unknown
method called returns a shared value belonging to a monitor block of its own.
If the algorithm is implemented dynamically, then soundness depends on the
quality of a test suite and can usually not be guaranteed.

False positives may be reported if too many distinct monitor blocks are cre-
ated by the analysis. A possible reason is the creation of more locks than actually
necessary to ensure mutual exclusion. However, assuming that synchronization
primitives are only used when necessary, then the algorithm will not report false
positives, in the following sense: each reported usage of a shared value in a dif-
ferent monitor block actually corresponds to the use of a stale value.

5.2 Precision Compared to Previous Atomicity-based Approaches

Block-local atomicity is more precise than method-level atomicity as used by
previous approaches [11,13,18,22]. These approaches check for the atomicity of
operations and assume that each method must execute atomically. This is too
strict. Non-atomic execution of a certain code block may be a (welcome) opti-
mization allowing for increased parallelism. Our algorithm detects whether such
an atomicity violation is benign or results in stale values. Furthermore, it does
not require assumptions or annotations about the desired scope of atomicity.

Our algorithm uses data flow to decide which regions must necessarily be
atomic. At the same time, the analysis determines the size of atomic regions.
Therefore block-local atomicity reports any errors found by earlier atomicity-
based approaches but does not report spurious warnings where no data flow
exists between two separated atomic regions.

Figure 4 shows an example that illustrates why our algorithm is more precise.
A program consists of several threads. The one shown in the figure updates a
shared value once a second. For instance, it could read the value from a sensor
and average it with the previously written value. It then releases the lock, so
other threads can access and use this value. A reduction-based algorithm will
(correctly) conclude that this method is not atomic, because the lock is released
during each loop iteration. However, as there is no data flow between one loop
iteration and the next one, the program is safe. Our algorithm analyzes the
program correctly and does not emit a warning.

8

void sensorDaemon() {

while (true) {

synchronized (lock) {

value = shared.field; // acquire latest copy

value = func (value);

shared.field = value; // write back result

}

sleep(1000); // wait

}

}

Fig. 4. The importance of data flow analysis for synchronized blocks.

5.3 Limitations of Atomicity-based Approaches

The strict semantics of atomic operations and block-local atomicity are not al-
ways required for a program to be correct. This creates a potential for warnings
about benign usages of stale values. An example is a logging class using lax syn-
chronization: It writes a local copy of shared data to its log. For such purposes,
the most current value may not be needed, so block-local atomicity is too strict.

Finally, conflicts may be prevented using higher-level synchronization. For
instance, accesses can be separated through thread start or join operations
[15]. This is the most typical scenario resulting in false positives. Note that other
atomicity-based approaches will always report a spurious error in such cases as
well. The segmentation algorithm can eliminate such false positivies [15].

5.4 Serializability

Even without higher-level synchronization, block-local atomicity is sometimes
too strong as a criterion for program correctness. Serializability is a weaker but
still sufficient criterion for concurrent programs [10]. Nevertheless, there are cases
involving container structures where a program is correct, but neither atomic nor
serializable. Consider Figure 5, where a program reads from a buffer, performs a
calculation, and writes the result back. Assume buffer.next() always returns
a valid value, blocking if necessary. After a value has been returned, its slot is
freed, so each value is used only once. Method buffer.add() is used to record
results. The order in which they are recorded does not matter in this example.

The reason why the program is correct is because the calculation does not
depend on a stale shared value; “ownership” of the value is transferred to the
current thread when it is consumed by calling buffer.next(). Thus the value
becomes thread-confined and is no longer shared. This pattern is not captured
by our data flow analysis but is well-documented as the “hand-over protocol”
[16]. It could be addressed with an extension to the approach presented here,
which checks for thread-local confinement of data.

9

public void work() {

int value, fdata;

while (true) {

synchronized (lock) {

value = buffer.next();

}

fdata = f(value); // long computation

synchronized (lock) { // Data flow from previous block!

buffer.add(fdata); // However, the program is correct because

} // the buffer protocol ensures that the

} // returned data remains thread-local.

}

Fig. 5. A correct non-atomic, non-serializable program.

6 Related work

Our algorithm builds on previous work on data races. It has been designed to
detect errors that are not found by data race analysis. The algorithm is related
to previous work on atomicity violations but is an independent approach to that
problem. The data flow analysis used in our algorithm is at its core an escape
analysis, although it uses different entities and scopes for its analysis.

6.1 Data races

Low-level data races denote access conflicts when reading or writing individual
fields without sufficient lock protection [19]. For detecting data races, the set
of locks held when accessing shared fields is checked. High-level data races turn
this idea upside down and consider the set of fields accessed when holding a
lock. View consistency serves as a consistency criterion to verify whether these
accesses are semantically compatible [3].

Block-local atomicity is a property which is independent of high-level data
races. Figure 1 in the introduction showed that certain faults result in high-level
data races but do not violate block-local atomicity. However, the reverse is also
possible, as shown in Figure 2, where no high-level data races occur, but stale
values are present in the program. Hence the two properties are independent [22].
Both high-level data races and block-local atomicity build on the fact that the
program is already free of underlying low-level data races, which can be detected
by Eraser [19]. The intent behind block-local atomicity is to use it in conjunction
with low-level and high-level data race analyses, because these notions do not
capture atomicity violations.

10

6.2 Atomicity of Operations

Atomicity of operations is not directly concerned with data accessed within in-
dividual critical (synchronized) regions, but with the question whether these
regions are sufficiently large to guarantee atomic execution of certain operations.
Atomicity is a desirable property in concurrent programs [11,13,18,22]. In con-
junction with the absence of data races, program correctness with respect to
concurrently accessed data can be guaranteed.

The key idea is to reduce sequences of operations to serializable (atomic)
actions based on the semantics of each action with respect to Lipton’s reduc-
tion theory [17]. In Figure 2, the actions of the entire increment method can-
not be reduced to a single atomic block because the lock is released within
the method. The reduction-based atomicity algorithm verifies whether an entire
shared method is atomic. Recent work includes a run-time checker that does not
require annotations [11]. A different approach to verify the atomicity of methods
extends the high-level data race algorithm with an extra scope representing the
desired atomicity of a method [18]. Block-local atomicity is more precise than
such previous approaches, as shown in section 5. At the same time it is concep-
tually simpler, because modeling the data flow of instructions is much simpler
than deciding whether a sequence of instructions is atomic.

Atomicity only by itself is not sufficient to avoid data corruption.5 However,
augmenting data race checks with an atomicity algorithm finds more errors than
one approach alone.

6.3 Stale Values

The kind of error found by our algorithm corresponds to stale values as defined
by Burrows and Leino [8] but is an independent approach to this question. Our
algorithm compares IDs of monitor blocks to verify whether a register contains
stale shared data. Their algorithm uses two flags stale and from critical instead,
which must by updated whenever a register changes. Unlike their approach,
which is based on source code annotation, we model the semantics of Java byte-
code directly. This covers the full semantics of Java, including method calls and
arithmetic expressions. This allows us to discover potential non-determinism in
program output, when registers are written to an output. Their approach misses
such an error as it involves the use of a register in a method call. Furthermore,
we have a dedicated checker for this property, which is orders of magnitude faster
than their prototype which uses the ESC/Java [12] framework that was targeted
to “more heavy-weight checking” [8].

6.4 Serializability

Atomicity is sometimes too strong as a desired property. Atomic blocks are
always serializable, but correct programs may be serializable but not atomic
5 Flanagan and Qadeer ignored the Java memory model when claiming that low-level

data races are subsumed by atomicity [13].

11

[10]. Serializability, while weaker than atomicity, still suffices to guarantee the
consistency of thread-local and global program states. Code idioms exist where
operations are performed on outdated values but still yield the same result as if
they had been performed on the current value, because of double-checking.

public void do_transaction() {

int value, fdata;

boolean done = false;

while (!done) {

synchronized (lock) {

value = shared.field;

}

fdata = f(value); // long computation

synchronized (lock) {

if (value == shared.field) {

shared.field = fdata;

// The usage of the locally computed fdata is safe because

// the shared value is the same as during the computation.

// Our algorithm and previous atomicity-based approaches

// report an error (false positive).

done = true;

}

}

}

}

Fig. 6. A code idiom that cannot be analyzed with block-local atomicity.

Figure 6 derived from [10] shows a code idiom suitable for long computations:
A shared value is read and stored locally. A complex function is then computed
using the local copy. When the result is to be written back, the writing thread
checks whether the computation was based on the current value. If this was the
case, the result is written; otherwise the computation is repeated with a new
copy of the shared value. Note that even in a successful computation, the shared
value may have been changed in between and re-set to its original value. Thus
this operation is non-atomic but still serializable, and therefore correct.

Atomicity-based approaches, including this one, will report an error in this
case [11,21,22]. Flanagan’s definition of atomicity only entails visible effects of an
operation; in this sense, the program is atomic but irreducible [10]. On the other
hand, the program violates block-local atomicity because its action is not atomic.
It is merely wrapped in a (potentially endless) loop that creates the impression
of atomicity. There is currently no approach other than model checking [20] to
decide whether a program is serializable. This observation does not diminish the

12

value of our algorithm because model checking is still much too expensive to be
applied to large programs [4,10,20].

6.5 Escape Analysis

Our data flow analysis is related to escape analysis, see [5,7,9,23] and the more
recent [6], in the sense that it determines whether some entity escapes a region
of interest. In our case entities are values (primitive as well as references), and
the regions are synchronization sections. For example, if the content of a field
x is 5 and this value is read inside a synchronized section, and then later used
outside this region, then that value has escaped. In traditional escape analysis
on the other hand, typically entities are references to heap-allocated objects (not
primitive values, such as an integer) and regions are methods or threads. In our
case, the analysis is simpler because modeling the effect of each instruction on
the stack and local variables is straightforward.

7 Experiments

A preliminary version of a static analyzer that checks for block-local atomicity
has been implemented in JNuke [4]. So far it can only analyze small examples
because the analyzer cannot yet load multiple class files. Due to this, relevant
parts of benchmark packages had to be merged into one class. The check for lock
use in called methods was not yet implemented and was performed manually in
trivial cases. These limitations will be overcome in the final version.

Benchmark Size [LOC] PraunGross [18] FlanaganFreund [11] Block-local atomicity

Elevator 500 2 2 2

SOR 250 0 0 0

TSP 700 1 7 1

Table 1. Comparison to other approaches: Number of warnings reported.

Besides a few hand-crafted examples used for unit testing, three benchmark
applications [18] were analyzed: A discrete-event elevator simulator and two
task-parallel applications, SOR (Successive Over-Relaxation over a 2D grid) and
the Travelling Salesman Problem (TSP). Table 1 shows the results. The three
warnings issued by all approaches are benign: In the elevator example, the two
warnings refer to a case where a variable is checked twice, similarly to the exam-
ple in Figure 6. For TSP, the warning refers to an access inside a constructor,
where the data used is still thread-local.

Our approach necessarily reports fewer atomicity violations than the run-time
checker from Flanagan and Freund [11]. This can be expected since block-local
atomicity implies method-local atomicity, and thus the number of violations

13

of method-local atomcity constitutes an upper bound to the number of block-
local atomicity violations. It remains to be seen how much the reports from our
algorithm will differ on larger benchmarks in comparison to [18].

Compared to a previous prototype checker for stale values [8], our checker
is significantly faster. Burrows reported 2000 source lines (LOC) per minute on
unspecified hardware. JNuke checked a binary resulting from 500 lines in 0.02 s,
on a Pentium 4 with a clock frequency of 2.8 GHz. Accounting for different
hardware, a difference of about two orders of magnitude remains.

8 Conclusions and Future Work

We have presented a data-flow-based algorithm to detect concurrency errors
that cannot be detected by low-level [19] or high-level [3] data races. Previous
atomicity-based approaches were entirely based on the atomicity of operation
sequences, but ignored data flow between synchronized blocks [11,18,22]. This
results in cases where correct non-atomic methods are reported as faulty. The
algorithm presented in this paper detects stale values [8]. This conceptually
simpler and more precise property captures data flow between synchronized
blocks. The property can be checked in a thread-modular, method-local way. It
can be implemented as a static analysis or as a run-time checking algorithm.

Future work includes investigating the relationship to Burrows’ algorithm in
more depth. Our algorithm currently issues a warning when a stale register is
used even though the use of such a snapshot may be benign. Burrows’ more
relaxed reporting could be more useful for pratical purposes. Extensions to the
algorithm include coverage of thread-locality of data and higher-level segmen-
tation [15] of events. It remains to be seen how easily the algorithm translates
into a run-time implementation. A major challenge for a run-time analysis of
this algorithm is the fact that each instruction has to be monitored, creating
an impossibly large overhead for instrumentation-based analysis. However, our
JNuke framework is capable of handling efficient low-level listeners that could
make a run-time algorithm feasible [4]. A static analysis may still be preferable
because aliasing information of locks can usually be approximated easily [2].

Acknowledgements

Thanks go to Christoph von Praun for the benchmark applications and for
quickly answering questions about the nature of the atomicity violations in them.

References

1. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

2. C. Artho and A. Biere. Applying static analysis to large-scale, multithreaded Java
programs. In D. Grant, editor, Proc. 13th ASWEC, Canberra, Australia, 2001.
IEEE Computer Society.

14

3. C. Artho, K. Havelund, and A. Biere. High-level data races. Journal on Software
Testing, Verification & Reliability (STVR), 13(4), 2003.

4. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke:
efficient dynamic analysis for Java. In R. Alur and D. Peled, editors, Proc. CAV ’04,
Boston, USA, 2004. Springer.

5. B. Blanchet. Escape analysis for object-oriented languages: application to Java. In
Proc. OOPSLA ’99, pages 20–34, Denver, USA, 1999. ACM Press.

6. B. Blanchet. Escape analysis for java, theory and practice. ACM Transactions on
Programming Languages and Systems, 25(6):713–775, November 2003.

7. J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java. In
Proc. OOPSLA ’99, pages 35–46, Denver, USA, 1999. ACM Press.

8. M. Burrows and R. Leino. Finding stale-value errors in concurrent programs.
Technical Report SRC-TN-2002-004, Compaq SRC, Palo Alto, USA, 2002.

9. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In Proc. OOPSLA ’99, pages 1–19, Denver, USA, 1999. ACM Press.

10. C. Flanagan. Verifying commit-atomicity using model-checking. In Proc. SPIN
Workshop (SPIN’04), volume 2989 of LNCS, Barcelona, Spain, 2004. Springer.

11. C. Flanagan and S. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. SIGPLAN Not., 39(1):256–267, 2004.

12. C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended
static checking for Java. In Proc. PLDI 2002, pages 234–245, Berlin, Germany,
2002. ACM Press.

13. C. Flanagan and S. Qadeer. Types for atomicity. In Proc. Workshop on Types in
Language Design and Implementation (TLDI’03), New Orleans, USA, 2003. ACM
Press.

14. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Virtual Machine Specifica-
tion, Second Edition. Addison-Wesley, 2000.

15. J. Harrow. Runtime checking of multithreaded applications with Visual Threads.
In Proc. SPIN Workshop (SPIN’00), volume 1885 of LNCS, Stanford, USA, 2000.
Springer.

16. D. Lea. Concurrent Programming in Java, Second Edition. Addison-Wesley, 1999.
17. Richard J. Lipton. Reduction: a method of proving properties of parallel programs.

Commun. ACM, 18(12):717–721, 1975.
18. C.v. Praun and T. Gross. Static detection of atomicity violations in object-oriented

programs. In Proc. Formal Techniques for Java-like Programs, volume 408 of Tech-
nical Reports from ETH Zürich. ETH Zürich, 2003.

19. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. on Computer
Systems, 15(4), 1997.

20. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2), April 2003.

21. C. von Praun and T. Gross. Object-race detection. In OOPSLA 2001, Tampa Bay,
USA, 2001. ACM Press.

22. L. Wang and S. Stoller. Run-time analysis for atomicity. In Proc. Run-Time
Verification Workshop (RV’03), volume 89(2) of ENTCS, Boulder, USA, 2003.
Elsevier.

23. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proc. OOPSLA ’99, pages 187–206, Denver, USA, 1999. ACM Press.

15

