
Visual Analytics for Concurrent Java Executions*

Cyrille Artho
KTH Royal Institute of Technology

Email: artho@kth.se

Monali Pande
KTH Royal Institute of Technology

Email: monalip@kth.se

Qiyi Tang
Imperial College London

Email: qiyi.tang71@gmail.com

Abstract—Analyzing executions of concurrent software is very
difficult. Even if a trace is available, such traces are very hard to
read and interpret. A textual trace contains a lot of data, most
of which is not relevant to the issue at hand. Past visualization
attempts either do not show concurrent behavior, or result in a
view that is overwhelming for the user.

We provide a visual analytics tool, VA4JVM, for error traces
produced by either the Java Virtual Machine, or by Java
Pathfinder. Its key features are a layout that spatially associates
events with threads, a zoom function, and the ability to filter
event data in various ways. We show in examples how filtering
and zooming in can highlight a problem without having to read
lengthy textual data.

Index Terms—Execution trace visualization, visual analytics

I. INTRODUCTION

Program executions are complex, and the visualization of
execution traces can be a key towards understanding them, and
finding the root cause of problems. Tools that derive sequence
diagrams [1] from executions, or visualize message passing [2]
are not ideal for thread-level concurrency, because different
threads are not clearly distinct in the way the trace is shown.

In our work, program traces may originate from a concurrent
program running under the Java Virtual Machine (JVM), or
on the dedicated concurrency analysis tool Java Pathfinder
(JPF) [3], [4]. On the JVM, a recorded trace is an approxima-
tion of the executed program behavior, because event recording
in an unrestricted concurrent execution environment is not
atomic [5]. On JPF, the trace is a precise representation of
the failure. Both cases have in common that traces are long
and complex, and include a lot of irrelevant data, such as long
event sequences that merely set up the program.

On the JVM, we record a trace until the program terminates
due to an assertion failure or uncaught exception. JPF checks
a given program against uncaught exceptions, deadlocks, and
assertion violations. Without visualization, trace data in textual
format has an overwhelming amount of detail. For any non-
trivial error, traces exceed thousands of lines of text.

Figure 1 shows a partial trace of the Dining Philosophers [6]
example, generated by JPF. As can be seen, the trace is clut-
tered with details such as parsing command line parameters.
The first twelve transitions merely initialize all threads; the
actual part that leads to a deadlock begins with transition
13. The only clue to a user that transition 13 is the first
“interesting” transition is that the ID of the active thread
changes from 0 to 1, something that is easily overlooked when
analyzing long traces.

* Part of this work has been supported by Google Summer of Code.

== trace #1

--------------------------------------- transition #0 thread: 0

gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"ROOT",1/1,...}

 [3157 insn w/o sources]

 DiningPhil.java:46: static int nPhilosophers = 6;

 DiningPhil.java:1 : /*

 [1 insn w/o sources]

 DiningPhil.java:49: if (args.length > 0){

 DiningPhil.java:50: nPhilosophers = Integer.parseInt(args[0]);

 [2 insn w/o sources]

 DiningPhil.java:50: nPhilosophers = Integer.parseInt(args[0]);

...

 DiningPhil.java:59: Philosopher p = new Philosopher(...);

 DiningPhil.java:60: p.start();

 [1 insn w/o sources]

--------------------------------------- transition #1 thread: 0

gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"START",1/2,...}

 [2 insn w/o sources]

 DiningPhil.java:58: for (int i = 0; i < nPhilosophers; i++) {

 DiningPhil.java:59: Philosopher p = new Philosopher(...);

 DiningPhil.java:29: public Philosopher(Fork left, Fork right) {

 [27 insn w/o sources]

--------------------------------------- transition #2 thread: 0

gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"LOCK",1/2,...}

 [119 insn w/o sources]

 DiningPhil.java:30: this.left = left;

 DiningPhil.java:31: this.right = right;

...

--------------------------------------- transition #13 thread: 1

gov.nasa.jpf.vm.choice.ThreadChoiceFromSet{id:"TERMINATE",1/5,...}

...

Fig. 1. Excerpt of an error trace in JPF (Dining Philosophers). Ellipses
represent elided parts.

We present a pragmatic visualization that adopts a tabular
layout to show the threads spatially, while keeping the option
to show the original (detailed) transition information in full
text. We furthermore have a facility that selectively highlights
and filters out operations that are expected to contribute to
the failure, allowing the user to mine a trace interactively and
understand its meaning using visual analytics [7].

The intended audience consists of developers who want
to analyze concurrent execution traces, be this for software
validation or root cause analysis of a failed software execution.

II. VISUALIZATION OF JPF TRACES

When used with Java Pathfinder (JPF), our visual analytics
tool [8] is implemented on top of the JPF shell [9]. It has
a navigation panel on the left, which allows a user to ex-
pand/collapse all transitions at once, or to highlight individual
aspects of all transitions. Operations that can be highlighted
include wait/notify, starting new threads and joining a
thread, lock usage, field accesses, and method calls. The latter
two options are accessed by a drop-down list (see Figure 2).
Highlighted parts of the source code are shown in up to 15
distinct colors, both in the expanded and collapsed modes.

The trace is split into transitions. Each transition (in JPF)
represents a sequence of thread-local actions. The user starts

Fig. 2. Screenshot of the application. Thread starts and lock acquisitions are highlighted. The deadlock between the threads is immediately visible. The
collapsed summary hides the command line parsing that reduces the number of threads from the initial value of six to five.

with a fully collapsed summary, which shows only the first
and last line of code for each transition. On the right side,
a “world map” (overview) is shown. This view can simplify
the navigation in large traces and also supply a condensed
representation of key thread attributes [2].

VA4JVM combines a bottom-up analysis of transitions with
top-down filtering for key events. Typical selections for high-
lighting include “(un)lock” for debugging traces highlighting
a data race or deadlock, and field accesses or method calls for
more complex problems such as NullPointerExceptions. With
each selection, the central panel is automatically updated; the
summarized error trace is extended if necessary, so the selected
attributes are always shown in the summarized view as well.

As the tool is designed to analyze concurrent executions,
the special method calls start, join, wait, and notify
(including notifyAll) are given as preset filters. Filters will
automatically highlight the chosen event, e. g., an access to a
field, even in collapsed transitions. Preliminary experiments
have shown that compared to a textual log, VA4JVM greatly
cuts down the amount of data that is presented to the user,
and allows a step-wise analysis of a trace when the root cause
is suspected (by filtering) and even when it is still unknown
(by zooming in on individual transitions from the bottom
up) [10]. These experiments include examples with several
threads exhibiting data races, deadlocks, and examples that
use reader-writer locks or producer-consumer patterns [10].

III. ADAPTATION OF JPF-VISUAL FOR THE JVM
While Java Pathfinder is, thanks to its exhaustive analysis of

thread schedules, a very powerful tool to detect concurrency

problems, the state space explosion limits software model
checking from being applied to larger programs. However,
there exist many approaches to find concurrency issues based
on run-time monitoring, such as data race detection [11], [12].

These algorithms have in common that they show a partial
snapshot of the state in which a (potential) data race is
found, but not the execution history that leads to that state.
Furthermore, their output is purely textual. VA4JVM covers
these gaps: It records the execution history up to the error,
and displays the result graphically. It also supports a detailed
analysis of all field accesses of a certain type, in order to
follow the history of field accesses up to the data races.

We have implemented VA4JVM by extending the visualiza-
tion of JPF traces [8] and adding the capability to record and
present events from executions on the standard Java Virtual
Machine (JVM) [13], [10]. We record execution events with
an extended version of AspectJ [14] that covers the occurrence
synchronized blocks in Java as well as events relating
to method calls and field accesses [15]. Our instrumentation-
based event recording may not always capture events in the
order in which they take effect on the program, as this is
impossible without changing the JVM due to the Java memory
model [16]. We also treat calls to key functions of class
ReentrantLock specially, so a user can analyze locking
with that utility class in a uniform way with standard locking
using synchronized blocks.

Our instrumented code uses adapters [17] to represent data
from the JVM and from JPF with a unified interface. As our
back-end partially relies on instruction-level events, we create

Fig. 3. Screenshot of VA4JVM, for analyzing a reader-writer example with one reader and one writer thread. The left panel shows the filters, the central
panel part of the execution (zoomed out), and the right panel shows the thread state view. In the thread state view, the yellow (green) bars represent locking
(unlocking) operations; a vertical line shows the lifetime of a thread while holding a lock (in yellow) or no lock (in green).

synthetic events to represent method calls recorded by AspectJ
the corresponding bytecode instruction.

VA4JVM has the same analysis capabilities for event traces
from the JVM, as it has for JPF traces (see Fig. 3). The only
exception is the occurrence of a deadlock, a situation where no
thread can continue. Because our visualization occurs after a
program terminates, and depends on observing the termination
of the last active thread, we have to detect deadlocks at run-
time at the point just before the last unsuccessful (deadlocking)
operation takes place. We currently implement this for special
cases [10]; a generalization is future work.

In our example of VA4JVM for JVM traces, Fig. 3 shows
the same left and central panels as in Fig. 2, but a thread state
view in the right panel. This view, available as an alternative
to the “world map”, shows the lifetime of each thread (as
a vertical bar) and its state (green = runnable; yellow =
holding at least one lock; red = blocked). We can see that
lock synchronization is heavily used by the program, due to the
implementation of reader/writer locks that uses low-level locks
internally. The reader thread terminates early in this example,
as illustrated by the end of the vertical bar that represents the
thread state over its lifetime.

IV. RELATED WORK

We compare our work with visual dashboards that are
common for log analytics and DevOps, and execution trace
analytics tools that are popular for embedded software.

A. Log data analysis

Log analysis has been used to find integration problems,
and to localize the root cause of failures [18]. System and
integration testing have become log-driven activities [19],
because log analysis is appropriate for large, distributed, and
heterogeneous platforms [19].

DevOps relies on monitoring tools that typically provide
dashboard-like overviews and detailed views of individual
logs or data points computed from it [20]. Some tools also
provide trace analysis capabilities, at the level of monitoring
functions but not the execution between functions (and without
thread-specific visualization). These include OverOps [21],
which provides data tracing and analysis; OpenZipkin [22],
which features monitoring and filtering; and Shiviz [23], which
provides a small set of log analytics functions.

B. Visualization of execution traces

Platforms for visualizing traces from embedded software
on the Linux kernel are currently the most advanced and
accessible ones. They include a tool to visualize message
passing [2], LTTng (trace analysis of Linux kernel events) [24],
TraceCompass (for a visual analysis of LTTng traces) [25],
and the APP4MC component in Amalthea, which analyzes
multi-process programs [26]. These platforms have fixed visu-
alizations that support interval-like views of events and system
states that are obtained from system events. They currently do
not visualize thread-based concurrency.

To visualize test executions at a higher level, Dine et al. [27]
represent TTCN-3 (Testing and Test Control Notation) test
case executions graphically. ASTRO [28] extracts information
from test execution log files and represents it through three
visual metaphors or perspectives: an overview (a general visu-
alization of the test case execution), callers and callees (classes
and methods that were called before and after a selected
method execution), and a history perspective (chronological
test executions). Jones et al. [29] provide a visual mapping of
the participation of each program statement in a test suite. A
similar approach is developed by Gouveia et al. [30], where
three different interactive visualizations are used to navigate
through the project structure.

Recent work for the Java platform includes a tool that shows
a tabular overview of program counters and memory contents
of test executions [31], and SDExplorer [1], a very scalable
tool that generates UML sequence diagrams. Like our tool,
these tools are integrate event collection with visualization;
however, they do not feature concurrency-related views that
allow the user to visually distinguish threads.

V. CONCLUSION AND FUTURE WORK

Our visual analytics tool VA4JVM records error traces and
displays them graphically in a way that multiple threads are
clearly separated. VA4JVM allows a user to zoom in, filter,
and highlight parts of concurrent execution traces. This makes
it possible to look at parts of the trace in higher detail, and
provides an interactive, dynamic visualization.

We plan to refine and extend the visualization in various
ways. The current version of field/method call highlighting
is limited to static information from the available data in the
trace. A more detailed highlighting could distinguish different
object instances (rather than just types). This will produce
more trace data, which will then require a dedicated back-end
database for storage and analysis.

Other improvements include more complex filters and the
ability to hide threads to reduce visual clutter. Furthermore,
we want to add more “zoom levels” for transitions, such as a
low-level view with individual bytecode instructions [31], and
alternative views such as a diagrammatic visualization [32].
The “world map” will also be enriched with some key infor-
mation on threads, such as their state.

REFERENCES

[1] K. Lyu, K. Noda, and T. Kobayashia, “SDExplorer: A generic toolkit
for smoothly exploring massive-scale sequence diagram,” in Proc. 26th
Conf. on Program Comprehension, ser. ICPC 2018. New York, NY,
USA: ACM, 2018, pp. 380–384.

[2] D. Kvarfordt and E. Bogren, “Visualization of message passing in an
embedded system,” Master’s thesis, Chalmers University of Technology
and University of Gothenburg, 2014.

[3] C. Artho and W. Visser, “Java Pathfinder at SV-COMP 2019 (com-
petition contribution),” in TACAS (3), ser. Lecture Notes in Computer
Science, vol. 11429. Springer, 2019, pp. 224–228.

[4] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering Journal, vol. 10, no. 2, pp.
203–232, 2003.

[5] J.-D. Choi and H. Srinivasan, “Deterministic replay of Java multi-
threaded applications,” in Symposium on Parallel and Distributed Tools:
Proceedings of the SIGMETRICS Symposium on Parallel and distributed
tools, vol. 3, no. 04, 1998, pp. 48–59.

[6] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[7] K. A. Cook and J. J. Thomas, Illuminating the Path: The Research and
Development Agenda for Visual Analytics. Los Alamitos, CA, United
States(US).: IEEE Computer Society, 2005.

[8] Q. Tang and C. Artho, “jpf-visual,” https://github.com/qiyitang71/jpf-
visual, 2019, last accessed: 2019-08-23.

[9] S. Badame, P. Mehlitz, and P. Hudececk, “jpf-shell,”
https://jpf.byu.edu/hg/jpf-shell, 2016, last accessed: 2019-05-30.

[10] M. Pande, “Visual analytics tool for Java virtual machine execution
traces,” Master’s thesis, KTH Royal Institute of Technology, 2019.

[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Computer Systems, vol. 15, no. 4, pp. 391–411, 1997.

[12] C. Artho, K. Havelund, and A. Biere, “High-Level Data Races,” in
VVEIS 2003: The First Int. Workshop on Verification and Validation of
Enterprise Information Systems. Angers, France: ICEIS Press, 2003.

[13] M. Pande, “VA4JVM,” https://github.com/monalip/VA4JVM, 2019, last
accessed: 2019-06-04.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An overview of AspectJ,” LNCS, vol. 2072, pp. 327–355, 2001.

[15] E. Bodden and K. Havelund, “Aspect-oriented race detection in Java,”
IEEE Trans. Softw. Eng., vol. 36, no. 4, pp. 509–527, 2010.

[16] J. Manson, W. Pugh, and S. V. Adve, The Java memory model. ACM,
2005, vol. 40, no. 1.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, ser. Addison-Wesley
Professional Computing Series. New York, USA: Addison-Wesley
Publishing Company, 1995.

[18] L. Mariani, F. Pastore, and M. Pezzè, “Dynamic analysis for diagnosing
integration faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4, pp. 486–508,
2011.

[19] A. J. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, 2012.

[20] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[21] OverOps, “The OverOps AIOps Platform,” https://www.overops.com/,
2019, last accessed: 2019-06-04.

[22] Zipkin, “OpenZipkin: A distributed tracing system,” https://zipkin.io/,
2019, last accessed: 2019-06-04.

[23] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Commun. ACM, vol. 59, no. 8, pp. 32–37, 2016.

[24] M. Desnoyers and M. Dagenais, “The LTTng tracer : A low impact
performance and behavior monitor for GNU / Linux,” in OLS (Ottawa
Linux Symposium), 2006, pp. 209–224.

[25] The Eclipse Foundation, “TraceCompass,”
https://www.eclipse.org/tracecompass/, 2019, last accessed: 2019-
06-04.

[26] R. Hoettger, H. Mackamul, A. Sailer, J. Steghöfer, and J. Tessmer,
“APP4MC: application platform project for multi- and many-core sys-
tems,” it - Information Technology, vol. 59, no. 5, pp. 243–251, 2017.

[27] G. Din, J. Zander, and S. Pietsch, “Test execution logging and visuali-
sation techniques,” in 17th Int. Conf. Software and Systems Engineering
and their Applications, Paris, France, 2004.

[28] D. Castro and M. Schots, “Analysis of test log information through inter-
active visualizations,” in Proc. 26th Conf. on Program Comprehension,
ser. ICPC 2018. New York, NY, USA: ACM, 2018, pp. 156–166.

[29] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in Proc. 24th Int. Conf. on Software
Engineering, ser. ICSE 2002. New York, NY, USA: ACM, 2002, pp.
467–477.

[30] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5 visualizations
in software fault localization,” 09 2013, pp. 1–10.

[31] S. Wesonga, E. G. Mercer, and N. Rungta, “Guided test visualization:
Making sense of errors in concurrent programs,” in 26th IEEE/ACM
Int. Conf. on Automated Software Engineering (ASE 2011), 2011, pp.
624–627.

[32] C. Artho, K. Havelund, and S. Honiden, “Visualization of concurrent
program executions,” in Proc. 2nd Int. Workshop on Software Architec-
tures and Component Technologies (SACT 2007), vol. 2, Beijing, China,
2007, pp. 541–546.

