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Abstract—Many modern software systems are implemented as
client/server architectures, where a server handles multiple clients
concurrently. Testing does not cover the outcomes of all possible
thread and communication schedules reliably. Software model
checking, on the other hand, covers all possible outcomes but is
often limited to subsets of commonly used protocols and libraries.

Earlier work in cache-based software model checking handles
implementations using socket-based TCP/IP networking, with
one thread per client connection using blocking input/output.
Recently, servers using non-blocking, selector-based input/output
have become prevalent. This paper describes our work extending
the Java PathFinder extension net-iocache to such software, and
the application of our tool to modern server software.

Index Terms—software model checking; caching; software veri-
fication; distributed systems; non-blocking input/output; selector-
based input/output

I. INTRODUCTION

Modern client/server architectures are complex software
systems. In addition to the processes involved on the client
and server sides, the server is usually written as concurrent
software using multiple threads [1] internally. This introduces
two dimensions of non-determinism: Both the thread schedule
of the software, and the order in which incoming messages
arrive, cannot be controlled by the application. Application
defects that depend on the timing of events are therefore
extremely hard to find and reproduce using traditional testing.

Model checking [2] provides an automated analysis of
concurrent systems under test (SUT). Classical model checking
operates on an abstract model of software. Software model
checking implemented by tools such as Java PathFinder
apply the same principles to implementations, executing the
implementation code at run-time [3]. A software model checker
analyzes the state space of an application by backtracking the
entire application state (thread stacks and program counters,
and the heap) to a previously stored checkpoint. A problem
arises if this approach is applied to systems communicating
with other components; if external components are not managed
by the model checker, their state will be inconsistent with the
SUT after backtracking. Previous work resolves this by using
a caching data structure that stores all previously recorded

network traffic and maps the application state of the SUT to
communication states [4] to overcome this problem.

Previous work handles various types of applications that
use socket-based, blocking input/output (I/O) operations [5],
[6]. Such operations suspend the currently active thread until
the information is transmitted over the network. This has
the advantage that the server side is relatively intuitive to
implement, because one worker thread typically handles one
connection (and thus one client). On the other hand, modern
selector-based I/O libraries allow a single thread to handle
multiple connections at once. In a finely-tuned system, this has
shown to yield better performance (due to a lower overhead for
thread management) although the implementation architecture
is more complex [7], [8].

When model checking a server algorithm, the distinction
in the implementation library may lie below the level of
abstraction used. However, when analyzing the application
code in a software model checker, the use of such I/O libraries
requires special tool support. Initially, this appeared to be
just a matter of layering the extra semantics on top of the
existing tool. Unfortunately, subtle issues arose from the non-
blocking behavior of communication operations. In particular,
the network data cache polls the peer processes after data has
been sent, to determine the structure of the protocol used [4].
By this approach the cache introduces an intermediate data
layer where messages are stored before they are seen by the
SUT. This made it difficult to handle end-of-file semantics
correctly, and required adaptations of the existing tool.

To our knowledge, no other tool exists that exhaustively
analyzes application code using non-blocking, selector-based
networking against live peer processes. Our tool supports
all important aspects of Java’s network library java.nio
on top of the Java PathFinder tool. We have first analyzed
our tool using Modbat [9], a model-based test case generator
that is designed to test libraries with non-blocking I/O and
exceptions. Then, we have applied our tool to a test server and
to rupy, a high-performance light-weight HTTP server [10]. We
successfully found a seeded bug in the former and a previously
unknown race condition in the latter.
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Figure 1. General architecture of net-iocache.

This paper is organized as follows: Section II gives back-
ground on our general approach and on blocking and non-
blocking I/O. Section III lists related work, and Section IV
describes our implementation. Our experiments with various
client/server systems are shown in Section V. Section VI
concludes and outlines future work.

II. BACKGROUND

This section briefly introduces our approach to handling
client/server systems in a software model checker, and gives
the necessary technical background on non-blocking I/O.

A. Cache-based Verification

A software model checker executes a system under test (SUT)
until a non-deterministic operation or scheduling decision
affects the outcome of the program. The location of such
an event is called a choice point.1 At each choice point, the
software model checker stores the state of the entire program,
adds that state with the current choices to the set of states to
be explored, and continues its analysis. Unlike in “traditional”
model checking, the structure of the system is not defined
a priori as a Kripke structure, but explored dynamically; the
structure of program states is likewise complex and dynamic
due to dynamic memory allocation in the SUT. Therefore, a
software model checker typically executes the SUT at run-time
and explores different program states explicitly [3].

In this paper, the term backtracking denotes the restoration
of a previous state, even if that state is not a predecessor
of the current state. As the execution of the SUT is subject
to backtracking, this has implications on networked software.
External processes, called peers, can usually not be backtracked.
If the software model checker backtracks only the SUT but not
the peers, then their states (and the state of the communication
links) are no longer consistent.

Possible solutions to synchronize the state of the SUT with
its peers after backtracking include restarting the peer processes
when needed, replaying previously recorded communication to
reach the desired peer state again [5], or using a virtualization
environment to store snapshots of the peer processes (thus
extending the state management capabilities of the model
checker to both the SUT and its peers) [6]. In both cases,
the use of a cache layer in between is essential for a useful
verification performance on realistic systems [5], [6].

Our Java PathFinder extension net-iocache supports
the analysis of client/server systems on Java PathFinder, by

1In Java PathFinder, scheduling choice points are not predefined but detected
at run-time based on accesses to shared memory between threads.

acting as a bridge between Java PathFinder executing the SUT,
and peers communicating with the SUT (see Figure 1). This
allows the peers to interact with partial executions of the
SUT, while net-iocache maintains consistency between
the different components. An important characteristic of this
approach is that it is process-modular; it analyzes only one
(client or server) process as the SUT in Java PathFinder, while
the other components run outside. This results in a much better
performance than if all processes were included in the software
model checker [4].

B. Blocking and Non-blocking Input/Output
The conceptually simplest way of communicating with a

disk or network is the use of blocking input/output (I/O). In
a blocking operation, the current thread is suspended until
the operation has either completed successfully or failed. This
mode is suitable for relatively fast devices or if processing
cannot continue until the result of the operation is known.

In modern servers, many clients are served in parallel. Thus,
having the server process suspend itself until a message is
transmitted would not be useful. Because of this, multiple
worker threads [1] are commonly used in a server, such that
other workers can continue processing while a given worker
thread is suspended. The most common server architecture
using blocking I/O therefore consists of one server main
thread, which accepts incoming client requests, and one server
worker thread per active client connection [8].2 Excluding
possible auxiliary threads (for example, for bookkeeping), this
architecture therefore uses a total of n+ 1 threads to serve n
clients. Even with multi-core, hyper-threaded processors being
the norm in these days, this architecture has the following
shortcomings:

1) The number of processor cores may be lower than the
number of active connections.

2) A thread is frequently suspended waiting for I/O.
Both problems require the operating system to switch between
threads on a given processor core, introducing overhead.
Because of this, non-blocking I/O operations are used preva-
lently in high-performance servers. Unlike its counterpart, a
non-blocking operation completes (practically) immediately;
however, the result of the operation may be incomplete. In
practice, this means that non-blocking connect and accept
operations may fail to obtain a working connection; non-
blocking read and write operations may transmit no data
at all, or only incomplete data. Instead of checking multiple
communication channels individually, selectors can be used to
poll multiple channels at once in a single operation, obtaining a
set of channels where data is available. The use of non-blocking
I/O therefore requires a wider array of operations with the
following additional, significant implementation complexity:

1) Application code needs to include extra loops, and buffer
management code, to retry transmission if a previous
attempt was incomplete.

2The accept operation in the main thread blocks, but this does not affect
ongoing client operations. Dispatching requests to a worker thread is considered
to be sufficiently fast to usually not require more than one thread.
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Figure 2. API for the blocking and non-blocking connect function.

2) A single worker thread may handle multiple client
transactions simultaneously, which makes it harder to
separate data between clients and increases the chance
of accidental data corruption due to faulty code.

To summarize, non-blocking I/O can utilize processing cores
better, but requires careful analysis. This makes it all the more
important to bring software model checking to such systems.

C. The java.nio Library

Java offers non-blocking I/O as part of the java.nio
package. For communication over a network, three components
of that package are essential [11]:

• Buffers are containers for data.
• Channels represent connection entities. These include

server-side ports that can accept an incoming connec-
tion (ServerSocketChannel) and connection han-
dles to send and receive data over an active connection
(SocketChannel).

• Selectors can query multiple channels at once on their
availability. Channels to be queried are registered using
selection keys.

Our work models these components (packages java.nio and
java.nio.channels). As net-iocache does not model
file I/O, and as our work is not concerned with Unicode encod-
ing, packages java.nio.charset and java.nio.file
are elided.

In this library, the semantics of blocking and non-blocking
operations are of particular interest. The application pro-
gramming interface (API) of java.nio allows to switch
between blocking and non-blocking modes at any time; for
example, the blocking mode can be used if the result of
an operation is needed to continue. Most operations have
the same interface in both modes, with one particular ex-
ception: class java.nio.channels.SocketChannel,
which represents a connection handle, has a special API to
connect to a server in non-blocking mode.

In the following discussion of SocketChannel, it is
assumed that an instance of that class has already been created
using SocketChannel.open. In that case, the library
user may either connect in blocking mode (the default), or
change the mode using setBlocking. A blocking connection
attempt waits until a connection is established; a non-blocking
attempt may fail to establish a connection. In that case, the
failed connection attempt may not be retried in the same
way, but must be finished by invoking finishConnect
instead [11]. Implicit in this requirement is a state change in

Host JVM

Java PathFinder

Model classes

JPF−level virtual machine

Native peer classes

SUT

Figure 3. Design of Java PathFinder.

the connection object to a pending state (see Figure 2). In that
pending state, the blocking mode may again be changed. In non-
blocking mode, finishConnect may again be unsuccessful,
and it can be retried until it succeeds; in blocking mode,
finishConnect completes as expected.

The Java library does not permit the sequence of con-
nection operations to deviate from this prescribed us-
age; incorrect library calls result in exceptions such as
ConnectionPendingException [11].

D. Java PathFinder Architecture

Java PathFinder (JPF) implements a Java Virtual Machine
(JVM) that is capable of backtracking the program state to
an earlier version, to explore multiple outcomes of a non-
deterministic decision. JPF is itself written in Java and runs on a
standard JVM (“host JVM”). By managing the outcome of each
Java bytecode instruction, JPF can execute any Java program
that does not include native (machine) code, or any indirect
dependency on native code. Unfortunately, most interesting
functions such as I/O, depend on native code.

Native code executes outside the JVM, so its side-effects
cannot be managed by JPF. Any native code therefore needs to
be replaced with a model class.3 The model class implements
the same interface as the class to be replaced, but is written
entirely in Java. It also executes on the JPF-level VM (see
Figure 3). Model classes can be used to represent native code
that does not affect the environment.

Non-determinism can be modeled using choice generators.
A choice generator in JPF creates a set of possible outcomes,
each of which is explored as a possible successor state.

Code that interacts with the environment needs to do so
by calling the corresponding native function on the host JVM.
Such code is implemented as native peer classes and runs in
a separate namespace. It gets called from the JPF-level VM
and then calls the underlying host JVM.

A model class executes on the JPF-level VM; its state is
therefore backtracked together with the SUT. The native peer
classes execute on the host JVM and are thus not subject
to backtracking. In designing net-iocache, data structures
that should be “persistent” across backtracking therefore need
to be written as a native peer class while data that should be

3JPF throws an exception and stops verification when it encounters native
code that is not supported by a model class.
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synchronized with the SUT has to reside in a model class.
Note that it is not necessary to replace all classes within a
given library to make the library compatible with JPF; only
classes with native code, or dependencies on native code, need
replacement.

III. RELATED WORK

In addition to earlier work on net-iocache mentioned
above, several other approaches exist to verify distributed
systems. In the context of software model checking, a global
approach analyzes all components inside the model checker.
This means that all processes are executed in tandem.

The earliest tool of that type is Verisoft [12], which verifies
a target implementation consisting of multiple processes.
Processes are executed in a debugger to control the SUT and
handle the application state space. However, threads inside a
process are not supported, and the state of file descriptors and
sockets is not maintained. The former limitation is fundamental
as the thread schedule of the SUT is not controlled by Verisoft,
and Verisoft relies on re-executing a program to a given point
to restore a given system state. Therefore, modern applications
composed of multiple threads are not directly applicable. Other
tools such as CHESS [13] or inspect [14] support multiple
threads and can therefore control and execute the state space
of multiple processes systematically. The platform used in our
work, Java PathFinder [3], has the advantage that it does not
only control program states, but also stores and compares them,
enabling certain types of optimizations that are not applicable
in a stateless search [15].

Other multi-process software model checkers use virtual
execution environments [16]. Although a debugger still controls
the processes, the use of virtualization technology allows the
software model checker to create and restore SUT checkpoints.
This makes the analysis of multi-threaded software possible,
but the usage of virtualization on the level of the operating
system executing the SUT brings a high overhead.

Finally, program transformation can convert multiple pro-
cesses to threads and create a self-contained, single-process
application. This transformation, called centralization, allows
distributed systems to be analyzed by existing tools that have
not been designed for such tasks [17], [18], [19]. Compared
to our work, that approach analyzes all components of the
system together. That analysis brings with it a large state space
but is more comprehensive than our modular approach, which
investigates one process at a time.

Another way to analyze distributed systems in a modular way
is to replace peer components by stubs, small pieces of code
that produce the desired outcome for communication with peers
under a given test scenario. Tools like Netstub exist to facilitate
the creation of such stub implementations [20], including even
attempts to synthesize a stub model from a given execution.
Netstub supports event injection for code using java.nio.
Our approach distinguishes itself in that live data, not code,
is used to represent the behavior of peer components. In our
work, peer components execute against the SUT, whereas they
are replaced by stubs in Netstub.

IV. DESIGN AND IMPLEMENTATION

This section describes the design and key aspects of the
implementation of java.nio in net-iocache, including
a first attempt that was not sufficient to handle all cases.

A. Layered Approach

The previous version of net-iocache implements the
necessary classes in java.net and java.io to handle
socket-based network communication with blocking I/O [4], [5],
[6]. This implementation polls peer processes proactively for
a response each time data has been sent. Using this technique,
a data structure reflecting the request/response pairing of
messages is created [4]. This approach hides the exact recorded
interleaving of incoming messages from the SUT. Instead,
the thread schedule generator of JPF generates all possible
schedules of operations that consume the data (or send it), thus
ensuring full coverage of all possible message interleavings
and program behaviors.

Our first idea was to layer non-blocking I/O on top of
blocking operations in the Java library. This is possible
in principle because even the “classical” blocking library
in java.io has one non-blocking operation, available,
which returns a lower bound on the number of bytes that can
be read from a data stream without blocking [11]. Based on
this observation, it is possible to build a working, although
less efficient, version of java.nio using only Java code. In
JPF, this would require only model classes but no native peers,
allowing 100 % code reuse of net-iocache. Such a library
could even be used as a compatibility toolkit for an older
version of the JVM that does not support java.nio yet.

The design works as follows: read operations first check
available to read only available data. Data to be written
over the network is written to a worker queue instead. This
ensures immediate completion of the operation; a worker thread
would regularly poll that queue and write the data physically
over the network. Accepting incoming connections is done in
a similar way with an extra thread accepting connections on a
(predefined) port, and queuing accepted (ready) connections
in a shared data structure. Finally, connections to a server are
made using a blocking call; in the given test environment, the
test server is assumed to be always available.

Table I shows a summary of such an implementation
in Java-like pseudo code. Note that conn refers to the
underlying socket of the given SocketChannel instance;
buf (buf.clone) is (a copy of) the underlying buffer in
ByteBuffer; in is the underlying input stream of socket
conn; writer is the queue of (Socket, byte[]) entries
to be written; and pendingAcc is a queue of incoming
connections.

The pseudo code shown here covers all the successful cases
(complete operations). Partially completed or failed operations
can be emulated using choice generators in JPF. Exceptions
also need to be thrown if the connection is in an incorrect state.
These features will be explained below.

Channel selectors are built by polling connections (using
available) instead of using a real selector. This provides
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Table I
LAYERED IMPLEMENTATION OF JAVA.NIO .

Non-bl. Emulation using blocking I/O (java.net, java.io)
operation
read int read(ByteBuffer sink) {

int n = conn.available();
return in.read(sink.buf, 0, n); }

write int write(ByteBuffer src) {
writer.enqueue(conn, src.buf.clone());
return src.remaining(); }

accept SocketChannel.accept() {
return pendingAcc.poll(); }

connect boolean connect(SocketChannel dst) {
conn.connect(dst);
return true; }

the same result at a lower performance: A select call on n
file descriptors is O(1) while the emulation is O(n). Because
the overall state space exploration is exponential in complexity,
the small overhead of polling a few file descriptors was not
expected to be significant.

B. Limitations of Layered Approach

The layered approach is very appealing, because it is elegant,
independent from JPF and net-iocache, and it decouples
non-blocking operations from actual I/O. Early versions of
our work could indeed be tested both on the normal JVM and
on JPF. Unfortunately, at some point the limitations of this
approach became apparent and insurmountable.

First, the code in Table I includes several background
threads that poll the physical network resources in use or
to be used. Such background threads, when running on JPF
as model classes, are subject to JPF’s scheduling and model
checking. Because JPF executes one thread at a time using an
interleaving semantics, a blocking accept operation could
potentially endlessly stall verification by blocking JPF itself.
As JPF executes the SUT synchronously, it would be waiting,
possibly indefinitely, for the accept operation to complete.
Existing work [4] solves this problem by managing incoming
connections and peer processes on a native level.

Therefore, threads inside net-iocache that manage
communication with peer processes must execute as native
peers. The need to manage connections on the level of native
peer classes breaks the total independence from JPF and also
requires code to be split into model classes and native peers,
losing the simplicity of the approach.

Furthermore, our tests using various client/servers revealed
another subtle problem when analyzing applications that
depended on the correct simulation of possible end-of-file
(EOF) return values. In blocking mode, it is never possible
to read zero bytes unless a socket is closed (the end-of-
file case).4 Therefore, previous versions of net-iocache
returned EOF in case nothing could be read from a socket
input stream (i. e, no response to a sent request arrived within a
certain time). Unfortunately, for a non-blocking read operation,

4Instead, the read operation blocks until data is available.

reading zero bytes is a common occurrence of a partially
completed operation. Because net-iocache internally polls
peer processes and caches their responses, it is not possible
to transparently layer a library that needs to check if EOF is
reached. Hence, EOF must be detected on the native level and
forwarded to the model to be distinct from the “nothing could
be read” case.

C. Adaptation of net-iocache

From the limitations above, the adaptations of the preliminary
version of our model library follow. We still layer non-blocking
I/O on top of blocking I/O. We also still use choice generators
at a model class level to decide to what extent a non-blocking
operation should be carried out. This guarantees that we observe
the full state space of partially completed operations.5 This
choice maps the outcome of complete and partially complete
communication to different program states. Failed non-blocking
connection attempts are also tracked at the level of model
classes (see Figure 3) and tied to a program state. Whether an
operation completes or not is therefore not visible at the lower
level of native peer classes.

In the adapted implementation, non-blocking I/O is not
executed on top of java.net and java.io alone; instead,
we re-use facilities that net-iocache provides, in particular
its connection management and its ability to cache incoming
data from peer processes. Some adaptations in net-iocache
were also made to cover end-of-file semantics.

Communication buffers were exempt from the redesign; they
are only containers for data to be transmitted and therefore
can be modeled fully by model classes.6 We describe the other
aspects of the final design below.

1) Connection management: Connections and communi-
cation using java.nio (including non-blocking I/O) and
java.net (the traditional library) are managed in a uniform
way. A central class CacheLayer manages connections,
allocating a tree data structure for each communication channel
to store (possibly diverging) communication contents that are
discovered as the state space is explored [5]. The existing
connection management code could be reused.

The data structure storing communication data has
been extended to include an end-of-file event that allows
net-iocache to distinguish between non-blocking read
operations returning no data and the actual end of a connection.
End-of-file events are converted to return value −1 by the
cache layer main class; low-level internal events are thus not
visible to model classes.

2) Non-blocking accept: The background thread that
accepts incoming connections is removed from the model and
handled by the cache layer main class, executing as a native
peer on the host JVM. This prevents the thread from being
included in the state space analysis of JPF. On the functional
level, the only difference between non-blocking and blocking

5In practice, we restrict the choices to some boundary values for efficiency.
6The implementation of buffer classes in the standard Java library includes

native code for optimization reasons, which is why an equivalent Java model
class was needed.
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accept is that non-blocking accept may return null while
blocking accept always returns a socket unless an I/O fault
occurs. As a result, we can simulate non-blocking accept by
introducing a choice point with two branches representing the
two possible outcomes: the successful case (a socket channel
is returned) and the unsuccessful case (null is returned). On
the successful branch, a client process is launched, a blocking
native-level accept is called, and the obtained connection is
returned.

On the native level, accept is blocking. Because JPF
simulates different threads with an interleaving semantics, the
time spent in the native accept call is not observable by
the SUT, as no other SUT threads can execute during that
time. This means that successful blocking and non-blocking
accept calls can be simulated in the same way on the native
level, while the model class implements the different behaviors
of the two modes.

The result of the choice made to model a non-blocking
call has to be remembered between calls: a connection that is
unavailable may become available later, but the opposite is not
possible unless the available connection handle has been used
(in this case, by calling accept). Indeed, correctly updating
the internal state after every operation was one of the biggest
challenges of our work, and the source of a subtle defect
we found in an earlier version of our model, as described in
Section V.

Algorithm 1 shows the implementation of accept.7 The
method call in the first line performs some sanity checks. After
that, a call to isReady simulates a possible network delay. If
in blocking mode or in the successful branch of non-blocking
accept (i. e., isReady returns true), the remote client is
launched and a blocking accept on the native level of JPF
is executed. Otherwise, null is returned, representing the
unsuccessful execution branch of non-blocking accept.

3) Non-blocking connect: Non-blocking connect is
implemented according to the state diagram of Figure 2. In non-
blocking mode, a call to SocketChannel.connect(dst)
returns immediately, but may return false to indicate that the
socket channel is in a pending state and and not yet connected.
In blocking mode, SocketChannel.connect(dst) al-
ways succeeds unless an I/O error occurs.

We use three variables to manage the internal state of a
connection: ready (similar as in accept), a state variable
connState that reflects the internal state of a connection (see
Figure 2), and variable pendingConnAddr to remember the
address of the pending connection. The underlying blocking
connect call by net-iocache is only made if meant to
succeed (see Algorithm 2), similar to accept above.

4) Non-blocking communication: The implementation of
read and write operations follows the pattern above in that
possibly incomplete outcomes of non-blocking operations are
modeled using choice generators. According to the result, the
operation is then executed completely by net-iocache. A

7For brevity, we elide details such as declaring methods as public, and
the full range of exceptions thrown.

Algorithm 1 Implementation of accept in net-iocache.
boolean ready; // remember choice for non-blocking accept

boolean isReady() {
ready = ready || Verify.getBoolean();
// use choice generator to simulate (end of) network delay;
// each I/O attempt may result in a resource becoming available
return ready;

}

SocketChannel accept() throws IOException {
checkConnectionState(); // throw exc. if not connected

if (isBlocking() || isReady()) {
ready = false;
return new SocketChannel(nativeAccept());
// reset ready flag, launch the remote client process,
// and call native-level blocking accept

} else return null;
// simulate possible failure of non-blocking accept

}

Algorithm 2 Implementation of connect.
boolean ready;// remember choice for non-blocking connect
boolean isReady() { ... } // same as in accept

boolean connect(SocketAddress dst) throws... {
checkConnectionState(NOT_CONNECTED);
// throw exception if not initialized or in wrong state
pendingConnAddr = remote;
connState = PENDING;
return tryConnect();

}

boolean finishConnect() throws IOException {
if (connState == CONNECTED)
return true;

checkConnectionState(PENDING);
return tryConnect();

}

boolean tryConnect() throws IOException {
if (blocking || isReady()) {
bl_Connect(pendingConnAddr);
return true;

} else return false;
}

void bl_Connect(SocketAddress dst) throws... {
socket.connect(dst);
ready = false;
connState = CONNECTED;

}

read of length 0 results in no actual operation; a non-zero read
is executed natively in blocking mode.

Algorithm 3 shows the implementation. The first few lines
in read perform some sanity checks. After that, a call to
isReadable simulates the (end of) a possible network delay.
Finally, communication data is read from the cache layer. Note
that much of the complexity is hidden in the call to in.read,

174



Algorithm 3 Implementation of read.
boolean isReadable() {

readable = readable || Verify.getBoolean();
// use choice generator to simulate (end of) network delay

}

int read(ByteBuffer buf) throws IOException {
checkConnectionState(CONNECTED);
int count = buf.remaining();
if (count == 0) return 0; // no space in buffer

if (!blocking && !isReadable()) return 0;
// simulate possible delays for non-blocking read

synchronized (readLock) {
byte[] bytes = new byte[count];
count = in.read(bytes); // fetches data from cache

// CacheLayer.read may return –1 (EOF)
if (count > 0) {
buf.put(bytes, 0, count);
readable = false;

}
}
return count;

}

which takes cached data that has been stored after polling the
peer side following a previous write operation [4].

Write operations are handled in the same way as read
above, except that no end-of-file can occur.

5) Selector-based operations: As mentioned above, a
select operation is implemented iteratively by checking each
channel one by one. Our design uses the current (logical) state
of the model class, reflecting the results of any previously
made non-blocking calls. This eliminates a need to apply
a choice generator in the selector class as well. Queries to
isReady either return an existing available state or may
instead make data available, simulating the possibility of data
becoming available prior to the select operation. A part of
the implementation of select is shown in Algorithm 4. Internal
checks that set the key state are all analogous to the code
shown in checkAcceptable: If a key is set up to query
that particular feature, the underlying channel is checked. On
a positive result, the key state is updated accordingly.

V. EXPERIMENTS AND DISCUSSION

A. Testing java.nio in net-iocache

The main challenge in a correct implementation of the
java.nio API is the fact that most operations can be invoked
in blocking and non-blocking mode; the mode can be switched
between operations. This creates a very large state space for
possible uses of the API. A good test coverage would require
many manually written unit tests. Instead, we used only few
unit tests to cover some short test sequences involving corner
cases. Longer test sequences were generated with Modbat, a
model-based test tool [9].

We briefly introduce the key features of Modbat here. Modbat
uses an extended finite state machine [21] as its underlying
model. State transitions are labeled with actions that are defined

Algorithm 4 Implementation of select.
int select(long timeout) throws IOException {

for (SelectionKey key : registeredKeys) {
key.readyOps(0); // reset the key ready ops
key = checkAcceptable(key);
key = checkReadable(key);
key = checkWritable(key);
if (key.readyOps() != 0)

readyKeys.add(key);
}
return readyKeys.size();

}

SelectionKey checkAcceptable(SelectionKey k) {
if ((k.interestOps() &

SelectionKey.OP_ACCEPT) != 0) {
if (k.channel().isReady())

k.setFlag(SelectionKey.OP_ACCEPT);
}
return key;

}

open  configureBlocking

bound

bind

err

accept:
NotYetBoundExc.

closed

close
non-bl. accept

(failed)

connected

bl. accept
non-bl. accept
(successful)

closeclose

 read

accept:
ClosedChannelExc. 

 close

Figure 4. API model for ServerSocketChannel.

as program code (functions implemented in Scala [22]). This
program code can directly execute the system under test (in
our case, parts of the Java API). In addition to that, Modbat
also supports exception handling, by allowing a declaration of
possible exceptions that may result by (failed) actions. Finally,
Modbat supports non-blocking I/O by allowing the specification
of alternative target states to cover both the successful and
the failed (incomplete) outcome of non-blocking I/O.

We have modeled the usage of the key classes
ServerSocketChannel (see Figure 4) and
SocketChannel (see Figure 5) with Modbat. Both
APIs have in common that a channel object first needs to
be created by calling open. Our models take the resulting
state as the initial state. In the server case, the created object
represents the ability to accept incoming connections; the
object therefore also needs to be bound to a port and IP
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address before a connection can be accepted. In the client
case, the connection can be established directly by supplying
the IP address and port of the server as a function argument.
However, the client API is slightly more complex in general in
the sense that finishing a pending connection attempt requires
a different function than the initial attempt (see Section II),
and there are more possible exceptions.

In the figures, dashed transitions correspond to the successful
(completed) case of a non-blocking operation that would
otherwise have to be repeated (non-blocking accept) or
end up in a pending state (non-blocking connect). Red,
accordingly labeled edges correspond to exceptions resulting
from actions that are not allowed in a given state. In these cases,
the edge label denotes the exception type, where “Connection”
is abbreviated to “Conn”, “Channel” to “Ch”, and “Exception”
to “Exc.”. Some nodes have a self-transition that denotes a
possible switch from blocking to non-blocking mode using
configureBlocking (“confBl.”). A self-loop may also
denote a retry of a previously failed non-blocking action; in
the successful case, the dashed alternative transition is taken
to the connected state. Finally, there is a self-transition in the
connected state that reads from the newly connected channel
before the connection is closed again.

When testing the server API, a client that connects to
the open port is launched as defined by the test model (to
ensure that the test proceeds); when testing the client side, a
counterpart server is running in the background.

Modbat uses a random walk through the model, taking one
of all available transition with each step. Given the availability
of alternative choices and outcomes, this quickly generates
thousands of distinct test cases.8 We first executed the test
cases against the standard Java implementation, using it as a
reference implementation. This ensures that no false positives
are reported by the test model. We then used the given test
model in a second test run, against our network model for JPF.

As we used Modbat to reduce the need for manually written
unit tests, some of the defects were found against work in
progress. However, we also found one interesting defect in our
model that would probably have gone unnoticed by manual
testing. The necessary test sequence requires switching from
non-blocking mode back to blocking mode (see Algorithm 5
for a simplified version). It furthermore requires another
operation after the key step (finishing a previously unsuccessful
connection attempt) has succeeded. The reason for this is that
in the faulty model, the key operation returns the correct result
but fails to update its internal state. So only tests involving an
extra test operation can find this defect. Such tests tend to be
rarely written by human developers [23], which is why existing
manually written unit tests have not covered that behavior.

After our implementation passed the test sequences generated
by Modbat, we were confident to apply our network model
library to real client-server systems.

8An exhaustive analysis of such a model is only possible up to certain
bounds due to the infinite state space of the model.

Algorithm 5 Test sequence for blocking finishConnect.
conn = SocketChannel.open();
conn.setBlocking(false);
conn.connect(remoteAddr); // returns false (fails)
conn.setBlocking(true);
conn.finishConnect(); // returns true (succeeds)
conn.finishConnect(); // expect AlreadyConnExc.

B. Performance Analysis

Regression testing scripts were created to easily set up
automatic tests of new client/server systems. After minimal
details of the client and server are given, the tests can be run in
various ways. The two major variations are testing the client as
the SUT with the server as the peer, and vice versa. In addition,
parameters can be passed to the client and server programs
for varying runtime behavior such as the number of network
connections created. The detailed model checking logs created
by JPF are automatically timestamped, saved, and compared
with the log file from a previous execution (if available) to
check against unexpected changes in the output.

Our test application for regression and performance testing
is the alphabet client/server system. In this system, the SUT
(the server) waits for a number from a client (peer). After a
number n, followed by a newline character, has been received,
the nth character of the alphabet is sent back as a response. The
server terminates after a preconfigured number of clients has
been served, each of which requests a predetermined number
of messages. Unlike the old version of the server [4], the
new server that is based on java.nio is single-threaded; its
ability to accept and serve multiple connections at the same
time lies in the fact that selector-based I/O is used to handle
operations on each channel (accept, read, write) without
blocking. Instead of blocking when no input is available on
one channel, execution immediately proceeds with the next
available channel. The complexity of the state space therefore
stems from possible combinations of successful and failed I/O
attempts, not from thread interleavings.

The experiment was run on an 8-core Mac Pro workstation
with 24 GB of physical memory, running Ubuntu 10.10 and
JPF 6 (change set 960:465508688048) running on Java
1.6.0_11. Table II shows the results. The first three columns
describe the system and its configuration; for reference, we
also ran the same experiment on a java.net-based variant
of the alphabet server [4] that uses multiple threads instead
of selector-based I/O. The central three columns list three key
numbers that show the size of the system: Execution time (in
minutes and seconds), the number of states, and the number
of bytecode instructions (in millions) executed in the entire
analysis.9 Finally, from net-iocache, cache hits/misses and
the number of connections to peer processes is shown. Analysis

9It should be noted that the cost of bytecode instructions is very non-uniform,
as an invoke instruction may execute native code that does not count towards
the instruction tally. Still, the number gives an indication of the state space
size.
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Figure 5. API model for SocketChannel.

runs with larger parameter settings than the ones shown did
not complete within one hour.

It can be seen from that table that the state space of the
variant using java.nio is growing much more quickly than
for the conventional thread-based implementation. The reason
for this is that each non-blocking I/O operation creates a choice
point, causing the state space to potentially double. Of course,
in practice most operations execute in a loop, so the state after
a failed I/O operation often matches with an existing state (as
the internal server state does not change and the operation will
be retried later). Indeed, as can be seen, a larger number of
messages (which affects the number of loop iterations) does
not always increase the overall state space, even though the
amount of transmitted data is of course affected.

To allow an analysis of larger systems, we also included
variants of our model where certain non-blocking calls were
modified such that they would always succeed. This essentially
limits the simulation of network delays to operations other
than the one indicated.

Finally, we also tested the capability of our model to find
defects. We seeded a defect involving an incorrect use of
selection keys in the alphabet server. We also added a check
against a zero-byte read to discover the outcome of our mutation.
Without the prior select-based check on data availability, the
non-blocking read may return zero data. JPF always finds
the defect in one second, regardless of the number of clients
(shown as “*” in Table II). The statistics suggest that even in
large settings, the fault is always detected after the third client
connects.10 As connections are independent of one another, the
fault also manifests itself with only one or two clients or one
message.

In the thread-based version, the size of the state space is
mostly influenced by different thread interleavings. As the
operation of one thread does not affect the global application
state of the alphabet server, the state space grows more slowly
than for the selector-based version. This means that despite
their efficiency in normal execution [7], [8], common selector-

10We verified this also for 99 clients.

based server implementations have a large inherent complexity
that makes them more challenging to verify automatically in a
software model checker.

C. Rupy HTTP Server

To test our tool against a real program, we chose the rupy
HTTP server, version 0.4.4, “probably the smallest Java nio
HTTP application server in the world” [10]. Despite its small
size (4,500 lines of code), it implements many features; its
non-blocking asynchronous design makes it ideal for high-
concurrency applications.

The architecture of rupy involves three types of threads:
a selector thread, which polls the open port and all current
connections; a number of worker/event handler threads, which
process HTTP requests; and a heart-beat thread, which controls
termination. Because the high number of active threads
combined with selector usage create a state space that is too
large for JPF to handle, we remove the code in the heart-beat
thread and add a hard-coded exit condition instead, which
makes rupy terminate after a fixed number of connections has
been served. We also stub out code related to date and date
formatting functions, which are currently not supported by JPF.

With this setup, we are able to analyze the complete state
space of rupy for one accepted connection (see Table III). While
the analysis for two accepted connections did not terminate
within one hour, a look at the log files revealed that many
null pointer exceptions were caught and logged in the event
framework. The intention of that code was to catch exceptions
related to I/O, not to internal defects in the code. We therefore
added an assertion to check against such null pointer exceptions.
With that assertion, the case with one connection passed with
the state space being increased by a mere two states. With
two active connections, though, the defect is found almost
immediately.

We identified a data race on the current worker thread event
as the root cause of the null pointer exception. We therefore
added synchronized statements wherever a shared object
Event was used, to protect accesses with a lock. With the
modified (fixed) version, the state space is actually smaller
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Table II
RESULTS ON VARIOUS CONFIGURATIONS OF THE ALPHABET

CLIENT/SERVER SYSTEM.

SUT Param. JPF performance Cache statistics
#c

on
n

#m
sg

tim
e

#s
ta

te
s

#M
in

s

#h
it

#m
is

s

#c
on

n

Alphabet 3 2 0:20 21,167 58 6,144 6 3
server 3 0:20 21,132 59 9,174 9 3
using 4 0:21 21,085 59 12,248 12 3
java.nio 5 0:20 19,319 55 14,025 15 3

4 2 14:32 1,024,777 2,689 253,690 8 4
3 14:39 1,027,160 2,719 382,641 12 4
4 15:01 1,030,336 2,752 512,256 16 4
5 12:54 878,633 2,378 553,835 20 4

Alphabet 3 2 0:05 3,515 10 714 6 3
server 3 0:05 3,515 10 1,071 9 3
using 4 0:05 3,515 10 1,428 12 3
java.nio; 5 0:05 3,523 10 1,785 15 3
accept 4 2 1:17 87,650 223 15,692 8 4
always 3 1:17 87,062 224 23,607 12 4
succeeds 4 1:16 86,146 224 31,448 16 4

5 1:18 85,447 224 39,625 20 4
5 2 45:48 3,234,209 8,034 503,554 10 5

3 45:35 3,180,206 7,972 760,629 15 5
4 46:01 3,230,047 8,156 1,015,688 20 5
5 46:54 3,225,251 8,223 1,254,225 25 5

Alphabet 3 2 0:04 2,308 7 444 6 3
server 3 0:04 2,300 7 666 9 3
using 4 0:04 2,259 7 888 12 3
java.nio; 5 0:04 2,249 7 1,115 15 3
read 4 2 0:35 40,466 107 6,688 8 4
always 3 0:36 40,374 108 10,125 12 4
succeeds 4 0:36 41,980 113 13,344 16 4

5 0:36 41,233 112 16,355 20 4
5 2 10:36 825,675 2,038 108,590 10 5

3 10:50 824,890 2,061 164,463 15 5
4 11:40 890,592 2,256 233,988 20 5
5 11:32 870,881 2,228 284,035 25 5

Alphabet 3 2 0:06 3,630 13 2,172 6 3
server 3 0:06 3,765 13 3,426 9 3
using 4 0:06 4,564 14 4,564 12 3
java.nio; 5 0:06 3,533 13 5,350 15 3
write 4 2 1:18 75,002 262 41,396 8 4
always 3 1:23 78,371 274 65,733 12 4
succeeds 4 1:22 77,822 275 86,144 16 4

5 1:12 67,664 241 95,980 20 4
5 2 33:33 1,983,290 6,886 986,068 10 5

3 35:23 2,080,656 7,246 1,555,407 15 5
4 35:38 2,073,928 7,280 2,071,668 20 5
5 29:34 1,707,459 6,018 2,155,315 25 5

Alphabet 3 2 0:03 4,113 1 2,736 6 3
server 3 0:04 6,433 1 5,009 9 3
using 4 0:06 9,391 2 8,282 12 3
java.net 5 0:07 13,059 3 12,393 15 3

4 2 0:34 62,515 14 53,205 8 4
3 0:55 107,849 25 109,501 12 4
4 1:27 171,367 40 193,993 16 4
5 2:07 257,083 62 313,911 20 4

5 2 6:23 612,340 175 670,041 10 5
3 12:29 1,190,399 347 1,555,940 15 5
4 21:28 2,100,138 622 3,064,573 20 5
5 35:38 3,461,419 1,038 5,453,376 25 5

Faulty * 2 0:01 9 0 0 6 3
alphabet 3 0:01 9 0 0 9 3
server 4 0:01 9 0 0 12 3
using nio 5 0:01 9 0 0 15 3

Table III
RESULTS ON VARIOUS CONFIGURATIONS OF THE RUPY WEB SERVER.

SUT Par. JPF performance Cache statistics
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n

Rupy 1 5:22 (no defect found) 223,129 890 0 74 1
(defect) 2 0:03 (defect found) 1,303 65 0 148 2
Rupy 1 2:34 (no defect found) 108,209 427 0 74 1
(fixed) 2 timeout

because fewer interleavings between threads are possible. In
the modified version, no more null pointer exceptions are found
by JFP within five hours. The developers of rupy confirmed
the bug and fixed it in a newer version.11

VI. CONCLUSIONS AND FUTURE WORK

Servers are often implemented using non-blocking, selector-
based input/output operations for efficiency. The verification
of these servers is important, yet there is little tool support to
analyze the outcome of non-blocking input/output operations
exhaustively. We present an approach that layers non-blocking
operations on top of net-iocache, which implements
blocking networking for the Java PathFinder model checker.

Taking advantage of the interleaving execution seman-
tics of Java PathFinder, we model each type of operation
(connect/accept, read/write, and selector usage) by
using a choice generator to determine the outcome of a
(possibly incomplete) non-blocking operation before executing
the result on net-iocache. As a result, we can handle
client/server implementations that use the java.nio library,
which allows us to verify complex asynchronous server
applications. Experiments show that non-blocking input/output
operations create a large, complex state space for the application
to be analyzed. We believe this also has an implication on the
mental burden of the developer, who has to write code that
manages partial operations in many possible states. This fact
makes automated verification tools all the more important. Our
tool successfully found a data race in an existing HTTP server,
which shows its practical usefulness.

Future work includes optimization of the state space (through
limitations on the number of simulated failed communication
attempts) and the implementation of a wider range of protocols
and case studies. In particular, we are looking for protocols
like FTP, where the information sent in one channel affects
the input of another channel.
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