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Abstract—Many applications are concurrent and commu-
nicate over a network. The non-determinism in the thread
and communication schedules makes it desirable to model
check such systems. However, a simple state space exploration
scheme is not applicable, as backtracking results in repeated
communication operations. A cache-based approach solves this
problem by hiding redundant communication operations from
the environment. In this work, we propose a change from a
linear-time to a branching-time cache, allowing us to relax
restrictions in previous work regarding communication traces
that differ between schedules. We successfully applied the new
algorithm to real-life programs where a previous solution is
not applicable.

Keywords-Software model checking; software verification;
networking; input/output; caching

I. INTRODUCTION

Networked software is complex. It is often implemented
using threads [26] to handle multiple active communica-
tion channels. This introduces two dimensions of non-
determinism: Both the thread schedule of the software, and
the order in which incoming requests or messages arrive,
cannot be controlled by the application. In software testing,
a given test execution only covers one particular instance of
all possible schedules. To ensure that no schedules cause a
failure, it is desirable to model check software.

Model checking explores, as far as computational re-
sources allow, the entire behavior of a system under test
by investigating each reachable system state [12], accounting
for non-determinism in external inputs, such as thread sched-
ules. Recently, model checking has been applied directly
to software [5], [7], [10], [13], [15], [16], [28]. However,
conventional software model checking techniques are not
applicable to networked programs. The problem is that state
space exploration involves backtracking. After backtracking,
the model checker will again execute certain parts of the
program (and thus certain input/output operations). However,
external processes, which are not under the control of the
model checking engine, cannot be kept in synchronization
with backtracking. Backtracking would result in repeated
communication operations, causing direct communication

between the application being model checked and external
processes to fail.

We propose a model-checking-aware cache that manages
communication between the model checker and its environ-
ment [2]. Our approach covers all input/output operations
on streams. Previous work using linear-time cache was
applicable to applications that produce a deterministic data
stream [2]. We introduce a new branching-time communi-
cation model, which allows for diverging communication
traces between different schedules. In cases where the linear-
time cache is applicable, our new approach delivers com-
parable performance. At the same time, we are capable of
handling a wider range of protocols and applications.

This paper is organized as follows: Section II introduces
our algorithm, while Section III formalizes it. Experiments
are given in Section IV. Section V describes related work.
Section VI concludes this paper and outlines future work.

II. INTUITION OF THE CACHING ALGORITHM

When analyzing a multi-threaded program, a model
checker explores all non-deterministic decisions in that pro-
gram. Alternative schedules are explored by backtracking
to a previously stored program state, running the program
again from that state under a different schedule.

In this paper, the term backtracking will denote the
restoration of a previous state, even if that state is not a
predecessor state of the current state. This definition allows
the term “backtracking” to be used for search strategies
other than depth-first search. Let “system under test” (SUT)
denote the application executing inside the model checker.
Execution of the SUT is subject to backtracking. External
processes are called peers and can implement either client
or server functionality, as defined in [27]. A request is a
message written (sent) to a peer, and a response a message
read (received) from it. I/O denotes such input/output.

A. Handling redundant actions after backtracking

Effects of I/O operations cannot be reversed by back-
tracking, as the environment of the system is affected.
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Figure 1. Cache layer architecture.

When model checking an application that communicates
with peers, peers are not backtracked. Two problems arise:

1) The SUT will re-send data after backtracking, which
interferes with peers.

2) After backtracking, the SUT will expect external input
again. However, a peer does not re-send previously
transmitted data.

Our approach executes a single process inside the model
checker, and runs all peers externally. It uses a cache to
relay data between the model checker and its environment
(see Figure 1). Redundant externally visible operations, such
as input/output, have to be hidden from external processes.
The cache layer intercepts any network traffic and represents
the state of communication between the SUT and peers at
different points in time. After backtracking to an earlier
program state, data previously received by the SUT is
replayed by the cache when requested again. Data previously
sent by the SUT is not sent again over the network; instead,
it is compared to the data contained in the cache. Whenever
communication proceeds beyond previously cached infor-
mation, new data is both physically transmitted over the
network and also added to the cache.

Peer processes may run on external hosts and require
features such as database access that a given model checker
cannot support. We assume that testing is automated and
starts from a well-defined initial state each time. However,
even when automated test frameworks are used, it may be
infeasible or inefficient to backtrack peer processes. Our
approach considers each peer as a black-box process and
exhaustively searches the state space of only one process at
a time. To verify all processes, model checking has to be
applied once to each type of process, with other processes
running as peers.

B. Non-determinism

In our analysis of non-determinism, we focus on observ-
able communication behavior. As far as the input and output
can be observed, we consider a system to be deterministic iff
a unique input sequence produces a unique output sequence.
For any two runs with equal inputs i, i′, the observable
outputs o, o′ match:

∀k,(∀ j < k · i j = i′j) → ok = o′k. (1)

In this definition, requests and responses have length 1.
Non-unit message lengths can be dealt with by observing

peer behavior, as specified in earlier work [2]. Definition 1
applies to a single communication channel. It assumes that
all data sent and received over that channel is totally ordered.
For a SUT communicating with peers, we consider a peer to
be deterministic if it sends a deterministic response on each
connection, according to Definition 1 (inputs correspond
to requests of the SUT to a peer, outputs correspond to
responses sent by the peer to the SUT).

In the SUT, I/O operations of multiple connections may
be interleaved, and thus the occurrence of all I/O operations
over all channels is only partially ordered. If a system is
deterministic according to Definition 1, then there exists a
total order of I/O operations on each channel even if no total
order exists over all operations on all channels.

C. From linear time to branching time

Previous work used a linear-time cache structure to store
communication data, and matched each response to its
preceding request by polling the corresponding peer pro-
cess [2]. The assumption was that operations on a given
communication channel are totally ordered and repeatable.
Specifically, two properties have to hold for a linear-time
cache to be applicable:

1) Deterministic peer responses, as per Definition 1: For
each communication channel, for a given sequence
of requests, the corresponding sequence of responses
is deterministic. This entails that if a given trace is
replayed against a peer, the peer will exhibit the same
behavior that was previously observed. Peers may be
multi-threaded and communicate among each other as
long as they are deterministic.

2) Consistent application behavior: For each thread and
each socket, the same requests are issued regardless
of the thread schedule. This assumes that as far as
the output sequence of the SUT can be observed,
the two output sequences o, o′ of a SUT on a given
communication channel always match:

∀ j ·o j = o′j. (2)

The first requirement (Definition 1) is less restrictive. If only
one possible response for each request sequence (input to
the peer) is analyzed, all runs analyzed still correspond to
possible real executions, although alternative peer responses
(outputs) may be missed. In some cases, our approach
remains applicable but becomes unsound, as certain failures
may only be provoked by particular peer responses that
are not observed. In other cases, a given peer execution
may not be repeatable due to non-determinism, even for the
same request/input to the peer; for such peers, a cache-based
approach is not applicable [4].

The second restriction (Definition 2) is more limiting. If
the behavior of the SUT after backtracking deviates from
previously observed behavior, then the linear cache model
is no longer adequate. Model checking has to be aborted in
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Figure 2. State space in the model checker (left) and cached communication data (middle/right).

such cases [2]. In our experiments, we have found that the
restriction is usually hit within a few seconds of state space
exploration. For many types of programs, the old approach
can therefore only cover a small percentage of the entire
state space.

This work replaces the linear-time cache with a branching-
time cache. By doing so, we can drop the second restric-
tion. Relaxation of the first restriction would correspond
to permitting non-determinism in peer processes, or the
existence of a global state involving the entire system state
of all communicating processes [2]. Such systems can be
model checked by controlling all processes involved in one
model checker, for example, by merging several processes
into a single process [1], [25]. Usage of our technique in
these cases corresponds to an abstraction of the environment
where the SUT is verified under one possible environment,
rather than all variants.

We further assume that peers do not only respond deter-
ministically, but also within bounded time. This restriction
could be overcome by peer inspection [2]. The implemen-
tation given here works in conjunction with servers that run
continuously, but could be adapted to servers that terminate
after a certain number of requests have been served.

Our new cache model allows model checking of programs
where data sent by a particular thread may depend on the
order in which threads are executed. This is the case when
threads send data that is shared among other threads in the
SUT. If the content of a message depends on the thread
schedule, the content will be different under some schedules.
Therefore, backtracking the SUT and re-executing some op-
erations will produce diverging results. A linear-time cache
would have to abstract from this difference and ignore it. A
branching-time cache can model “alternate realities” where
communication data does not match previously recorded
events. This allows non-deterministic SUT to be model
checked using our approach. For non-deterministic peers,
our approach may miss some possible peer responses, as
mentioned above.

D. Example

As an example, consider a web server where the main
thread accepts connections from clients and dispatches each
request to a worker thread. The same page, which contains
a counter, is downloaded twice. The two responses therefore
differ in the value of that counter. Assume that for efficiency,
request handling is not atomic (although the counter incre-
ment is). Both worker threads contain two operations:

1) Parse the GET request, retrieve and increment the
counter value. The counter value is manipulated in
a single atomic operation. Request parsing is thread-
local, and therefore included in this step for brevity.

2) Return the response.

The order in which the requests are processed by the server
is not determined. This causes the response to depend on
how many requests have been served before (in total).
Specifically, either the first worker thread, t1, or the second
one, t2, may return a page containing counter value 1 or 2.
Figure 2 illustrates the problem. On the left hand side, the
state space exploration in the model checker is shown. GET
denotes request processing, while w1 and w2 denote sending
(writing) a response containing counter value 1 or 2.

Program execution generates two totally ordered traces.
The linear-time cache model, shown in the center of Fig-
ure 2, associates one communication trace with each worker
thread. States 1–10 of the state space exploration tree can be
analyzed successfully using this model. Each trace contains
the GET request and its response. In states 11–19, the order
in which threads process the requests differ. As t2 now
processes its request first, it will send response w1, which
differs from the cached response. The linear-time cache flags
this as an inconsistency and cannot continue state space
exploration [2].

Our new branching-time cache model treats communica-
tion data differently. Instead of a set of linear communica-
tion traces, it contains a single tree of events. Each event
sequence is cached starting from a common root node. Sub-
sequent events are shared until communication data diverges.



In our example, the GET requests are identical and shared
in the cache (see right side of Figure 2). The responses,
however, differ, and are held in two different branches
of the tree. Whereas the linear-time model associates a
communication trace (including pointers to the request and
response positions) to each connection object, the new model
shares communication data between connections. However,
pointers to the cache tree are still identified by connection.

Note that the branching-time cache data structure concerns
only the SUT, not its peers. If such a web server with a
counter is used as a peer, then its response is not consistent
across requests, and hence non-deterministic. Our approach
is then not applicable in general. However, our approach still
allows the SUT to be model checked against one response
trace of the peer.

III. FORMALIZATION OF THE CACHING ALGORITHM

This formalization supersedes previous work [2] and
redefines all algorithms using a branching-time model. Peer
responses are required to be deterministic.

A. Stream abstraction

Communication stream data is cached as a set of im-
mutable data elements, called nodes, in a mutable tree data
structure. Each tree stores all observed communication traces
on a given channel (see data structures in Algorithm 1).
Our assignment operator := allows updates of variables and
functions.

A node n is an object containing a description of its
payload data, defined by function data(n). Each node has
either type read or write, as indicated by typeof(n). Nodes
are connected in a communication tree: Each node contains
a possibly empty set of children, defined by childNodes(n),
and each node can only be the child node of one node:

∀n,n1,n2 · (n ∈ childNodes(n1)∧n ∈ childNodes(n2))

→ n1 = n2

(using reference equality). All child nodes of a given parent
carry distinct data:

∀n,n1,n2 · (n1 ∈ childNodes(n)∧n2 ∈ childNodes(n)

∧data(n1) = data(n2)) → n1 = n2.

There always exists a root node root that carries no data.
A path path(n0,nk) is a sequence of nodes 〈n1, . . . ,nk〉
connecting a lower node nk with the child n1 of its ancestor
n0:

∀i,1 ≤ i ≤ k ·ni ∈ childNodes(ni−1).

The first node, n0, is intentionally omitted in the path.
A node pointer refers to an existing node. For simplicity,

we apply a Java-like notation that does not explicitly distin-
guish between references and actual objects. Communication
of the SUT is recorded as a tree of nodes that starts
at a child of the root node; path(root,ncurr) returns all

communication events from the initial state to the most
recent communication event ncurr in the current program
state.

Programs operate on a set T of communication trees t,
each tree having a unique root node and separate child nodes:

∀t1, t2 ∈ T,∀n1 ∈ t1,n2 ∈ t2 ·n1 = n2 → t1 = t2.

A tree is associated to each connection object s (a socket in
a given programming language). Function tree(id) identifies
which tree to use for a given connection. For connections to
a server, identifier id is comprised of address and port; for
distinguishing between incoming client connections, we use
a global counter c, as explained in Section III-C. We assume
that multiple connections to the same server peer elicit the
same deterministic behavior each time, and that connections
to different addresses or ports, or incoming connections,
reflect different behavior on each channel. For brevity, we
do not cover connections on different ports.

Finally, function response(w) : r takes, for a given tree, a
write pointer and returns its corresponding read pointer. It
allows us to track the size and contents of each response [2].

The program state of the SUT consists of a global heap
and several threads that each carry their own program
counter and stack. We augment this information by the run-
time data structures of our cache. The resulting extended
program state is managed by the model checker and subject
to backtracking. It includes a pair of node pointers 〈r,w〉 for
each connection object s, and a global connection counter c.
The extended program state is updated during backtracking,
while other cache data that is not directly controlled by the
model checker changes when I/O operations occur [19].

B. Example execution scenarios

In the first example (see Figure 3), a web server that
returns a web page containing a counter is model checked.1

The linear-time cache captures communication as two sepa-
rate sequences (for reading and for writing). A mapping of
message boundaries associates requests to responses [2]. The
branching-time cache models a connection by a single tree
of alternating read/write nodes (rather than two sequences).
The right hand side explains how the state space shown in
the tree in Figure 2 is explored. Exploration of the first half
of the state space causes the two requests to be processed
in the same order by the two worker threads, even though
the interleavings of requests and responses differ. After half
of the state space is explored, a schedule where requests are
processed in reverse order is executed. Only the branching-
time cache can model both outcomes.

1The view shown here is more detailed than in Figure 2. The linear-time
cache is shown with a slightly different notation than in previous work [2],
making the example easier to read for server-side verification. The read
trace is shown above the written trace; the start of the written trace is in
cell 2, allowing to place requests and responses in neighboring table cells.
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During the exploration of states 1–5 (see Figure 2), both
threads process their requests and send their response. This
fills the cache data, and sets the r/w pointers as shown; circles
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each cache model are generated. After backtracking to state
2, communication events in states 6–10 match cached data.
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In states 11 and 12, the order in which both worker threads
process the requests (and update the counter) is reversed:
Worker thread 2 is scheduled first. In state 13, it sends “1”,
instead of “2” as seen before.
In the linear-time cache model, the data mismatch (“X”)
causes the linear-time cache to abort the search. In the
branching cache, a new write node (“1”) is appended, and
the remaining state space is explored successfully.

Figure 3. Example: A web server returning a page containing a counter is model checked.
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The client closes the connection, and the model checker
backtracks to the beginning. Upon re-opening a connection to
the server, cached data is re-used. As the behavior of the client
later deviates from previously cached data, the linear-time
cache aborts due to a state mismatch (“X”). The branching-
time cache accommodates for the diverging behavior by using
a new physical connection to the peer server. This allows the
cache to obtain the response for a different request.

Figure 4. Example: model checking a client that non-deterministically sends two possible requests.

The second example illustrates response pointers. Here,
a client is model checked. The peer (a server) initially
responds with a prompt. The client then randomly sends
one of two possible requests. Model checking the client
will verify both of these outcomes (see Figure 4). Initially,
response maps the root node to the initial prompt. After the
client has sent its first request, that response is also cached.
Assume the model checker backtracks at this point. Re-
opening the connection after backtracking re-uses cached
data, resetting read and write pointers to the root node.
Initially, behavior matches, but as soon as the client transmits
different data, it diverges from the previous observation. The

branching cache handles this case correctly by using a new
physical connection to retrieve the correct response for this
diverging communication trace.

C. Execution semantics

Model checking of a program using our cache uses cached
data when available and the underlying standard library
when progressing beyond previously cached messages. The
result of that library function is denoted by lib_xy(. . .),
where xy represents the library function [19]. We omit
handling of non-deterministic I/O failures here. Possible I/O
exceptions can be modeled directly in the network library,
outside the cache [18].



Without loss of generality, we assume that messages have
size 1. Requests and responses may consist of multiple
messages of size 1. Operations always work on a given tree
t, which is omitted in the following definitions for brevity.
Node pointer r denotes read data (“responses”), while node
pointer w denotes written data (“requests”).2

Function pollResponse (Algorithm 2) checks if a re-
quest elicits a peer response. Responses are polled proac-
tively, to correctly treat programs where responses are
processed by an independent thread. The received unread
response is added as a sequence of nodes to the cache.
Whenever a program reads from the same connection later
on, function response determines the content of the cached
response. It delimits the size of the response, and, by
defining a path from the current read node to the end of the
response, its content. Function response is always defined
for all write nodes up to the position where a request has
been cached:

∀n ∈ path(root,w) · typeof(n) = write → response(n) 6= /0.

It is important to note that pollResponse is only called for
new, distinct write events. As responses are assumed to be
deterministic, the response to previously cached write events
is already known. Newly written data is therefore always
added to the tree as a new leaf node, before pollResponse

is called. Hence, the peer response can be added after the last
write event, as a sequence of new leaf nodes. Note that the
read pointer is unchanged, as the SUT itself has not seen the
read data yet; instead, read data will be taken from the cache
during subsequent calls to read. Tree data is extended by
function addNode (Algorithm 3), which adds a new node
with data d and given type (read/write) as a child node to a
given parent node.

Once the model checker has performed some backtrack-
ing, write events may not match previously cached data.
Therefore, function write behaves in two possible ways,
as shown in Algorithm 4: if previously recorded commu-
nication data matches current data, then the current write
node pointer is advanced accordingly. It may be necessary
to skip a number of read nodes when searching for a
matching write node down the tree. As peers are assumed
to be deterministic, if a node has a child node which is a
read node, that read node is the only child node. After all
read nodes are skipped, one of the child nodes may be a
matching write node. If no matching communication data
exists, communication is recorded as a new branch in the
communication tree, as the peer response can no longer be
predicted from cached events. If the current write node is not
a leaf node, a new connection to the peer has to be opened,
and previously recorded data has to be replayed. Otherwise,

2In the case where a server is model checked, written data from the SUT
is seen by the peer as a response, and data read from the peer corresponds
to a previously sent request from a client. In this paper, usage of “request”
and “response” corresponds to the view of the SUT.

Algorithm 1 Data structures.
map tree : (integer ∪〈address×port〉) 7→ commTree
integer c : global connection counter
map binding : socket 7→ commTree
communication tree t : contains immutable pointer to node root,

mutable node pointers r, w, mutable map response
map response : node 7→ node
object node : immutable object containing data, type ∈ {read,write},

set of node pointers childNodes

Algorithm 2 Function pollResponse.
currNode := w (previously written data is new unique leaf node)
while lib_nextByteIsAvailable do

d := lib_read(. . .)
currNode := addNode(d, currNode, read) (add read event as new leaf node)

response(w) := currNode (response of new request)

Algorithm 3 Function addNode(d, currNode, type).
newNode := newNode(d, type)
childNodes(currNode) := childNodes(currNode)∪newNode

return newNode

Algorithm 4 Function write; d = payload to be written.
while ∃n ∈ childNodes(w)·typeof(n) = read (skip any unique read child nodes)

w := n
if ∃n ∈ childNodes(w) ·data(n) = d then (data matches previously written data)

w := n
return

if childNodes(w) 6= /0 (if w is not leaf node)
open new physical connection for current logical connection
replay path(root,w)

call lib_write(. . . , d)
w := addNode(d, w, write)

call pollResponse()

Algorithm 5 Function read.
do

p := path(r, response(w))
r := first read node in p

while r = /0 (if no data available, suspend current thread until update of response)

return data(r)

Algorithm 6 Function open.
if call is accept (incoming connection from client)

create new socket object s
t := tree(c)
increment c

else (connection to server)
t := tree(address+ port)

if t 6= /0 (re-use existing tree)
r := w := root (of tree t)

else (first time for model checker to use this connection)
t := new communication tree
open new physical connection to peer
response(root) := root
r := w := root
call pollResponse() (certain protocols return data without a request)

binding(s) := t (bind s to t; subsequent operations on s will access t)



a physical connection that corresponds to the current write
node already exists, and is used instead.

Replaying communication works as follows: If the peer is
a server accepting an infinite number of connections, a new
connection is opened. For other cases (clients), a new client
process is launched with the same argument as the original
client. Replaying data involves sending data of each write
node in the given path, and comparing received data to stored
data. If data does not match, the peer is not deterministic,
and model checking is aborted.

The cache proactively polls the peer process after a
write event. A cached response is assumed to be complete.
Function response defines the content of a response given
the current write position (write node pointer). Available
read nodes must lie on the path between the current read
node and the given response. Operation read, shown in
Algorithm 5, uses this path to ensure that the sequence is
taken as a response. If the response node has been reached,
no data is available, and the current thread is suspended.

A given node has either a single read node or only write
nodes as children. Sequences of read nodes alternate with
branching sequences of write nodes. This structure exists
because read nodes are only added when a response is polled
from the peer; a response is only polled when the peer has
written new data, which corresponds to a leaf node in the
tree. We assume that pollResponse retrieves a determin-
istic and complete response. An incomplete response still
constitutes a valid scenario but omits certain schedules.

Opening a connection affects the management of ac-
tive connections. Connections from a client (received via
accept) are considered to be anonymous, while connec-
tions to a server (via connect) are identified by address
and port number. We assume that a connection to a server
on the same destination will always produce a deterministic
result. Each accepted connection from a client is assumed
to exhibit distinct behavior. As a shorthand for this, let
a distinct connection be a connection to a distinct server
destination, or any client-side connection. Each distinct
connection is mapped to its own communication tree.

Cached data of previously recorded client communication
is used after backtracking. Operation open re-uses the
appropriate communication tree (identified by destination) if
possible, and creates a new tree otherwise (see Algorithm 6).
Client-side connections are re-used after backtracking in the
same order in which they were created. This constitutes
an abstraction in that not all possible orders in which
clients can connect are accounted for. However, the model
checker still explores all possible communication schedules,
so the behavior of each worker thread for all possible client
requests is still explored. If all clients connecting from a
given destination are known to be identical, then client trees
can be shared by ignoring counter c.

Operation close is empty. Physical connections of a
communication tree are closed when that tree is no longer

referenced by any unexplored states in the model checker.
Keeping physical connections open allows connections to be
re-used after backtracking. Therefore, closing a connection
has no direct impact on cached data, but the appropriate
cached branch will be re-used after backtracking, or a new
one will be created, depending on data sent by the SUT.

D. Complexity

For defining complexity metrics, let the search frontier
consist of states of which successors still have to be ex-
plored. In depth-first search (DFS), the frontier consists
entirely of ancestors of the current state. In the linear-
time cache [2], the number of “logical connections” (cache
data instances) corresponds to the number of connections
to distinct destinations. Client connections are treated as
being equal. Each cache instance has a physical connection
associated to it, which is closed if the SUT closes the
connection. In DFS, pending connections in the search
frontier are part of the current state, so the limit of the
number of physical connections corresponds to the number
of connections in use by the current state. For other search
orders, the number of physical connections corresponds to
all distinct active connections in the search frontier.

For the branching-time cache, complexity is harder to
quantify. The number of logical connections (communica-
tion trees) corresponds to the number of distinct connections;
not all clients are treated as equal. For identical clients, the
branching-time cache may generate multiple copies of iden-
tical communication trees. In DFS, the number of physical
connections in a given program state equals the number of
distinct open connections. For other search strategies, the
number of distinct connections in the whole search frontier
may be larger, as the branching-time cache creates a new
physical connection for each case where communication
traces diverge. A large search frontier implies a potentially
large number of physical connections.3 After the entire
state space has been explored, the number of all physical
connections ever used corresponds to the number of all dis-
tinct communication traces ever generated, which is a lower
bound if the entire state space of the SUT is to be explored.
For a deterministic SUT, the number of physical connections
corresponds to the number of logical connections.

Table I summarizes the complexity metrics. For deter-
ministic SUT, our new branching-time cache has almost no
overhead compared to the linear-time cache model. There
is no overhead if clients are assumed to be identical. At
the same time, for non-deterministic SUT, our branching-
time cache avoids restarting peer processes and replaying
previous communication data. The number of (totally or
partially) distinct communication traces is typically much
smaller than the number of repeated communication traces.

3An implementation could temporarily close these connections and re-
activate them later by replaying previously transmitted data.



Table I
COMPLEXITY METRICS FOR THE LINEAR-TIME AND BRANCHING-TIME CACHE MODELS.

Metric Linear-time cache Branching-time cache
# logical conn. (cache data instances)

− at a given time # conn. to distinct dest. in all visited states # distinct conn. in all visited states
− after full state space exploration # conn. to distinct dest. # distinct conn.
− for deterministic SUT # conn. to distinct dest. # distinct conn.

# physical connections (to peers)
− at a given time # conn. to distinct dest. in search frontier # distinct comm. traces of all conn. in use in search frontier
− at a given time when using DFS # conn. in use in current state # distinct conn. in use in current state
− after full state space exploration # conn. to distinct dest. # distinct comm. traces on all conn.
− for deterministic SUT # conn. to distinct dest. # distinct conn.

We therefore claim that our extension of the linear-time
cache model to a branching-time cache keeps the favorable
performance characteristics of the original model, while
enabling analysis of a larger class of systems.

IV. EXPERIMENTS

We have implemented the cache layer described here as
an extension to Java PathFinder (JPF) [28]. Previous publi-
cations give an overview [2] and in-depth information [18]
of our implementation. For evaluation, we compared a “no
cache” setting, which obtains a new response from a fresh
connection after each backtracking step, to two caching ap-
proaches: the linear-time cache [2], and our new branching-
time cache. To facilitate automation, these experiments were
performed on a single computer. The latest implementation
of the cache is available as a JPF extension [22].

A. Example applications

Table II gives an overview of our benchmarks; some are
described in detail in previous work [1], [2]. For HTTP, the
protocol strings were shortened to speed up parsing. The
chat server sends the input of one client back to all clients,
including the one that sent the input. The original chat client
transmits its ID at the beginning of each message. This ID
causes a mismatch in the cached server output when the
order of server worker threads is reversed after backtracking.
This mismatch requires a minor manual abstraction when
using the linear-time cache, and inspired this work. New
applications include a WebDAV test client [17], and pws, a
web server written in Java [23]. That web server supports
CGI and dynamically generated page footers including the
system time, which introduces non-determinism in the SUT.
Logging code was removed because it caused too much
overhead for model checking. In our setup, we requested
a minimal page containing only the system date. This small
request/response pair resulted in a smaller run than for the
other HTTP server, where a larger message is processed.

B. Results

All experiments were run on an eight-core Intel Xeon
2.8 GHz CPU, with 16 GB of RAM, running Ubuntu
8.04.1 (Linux kernel 2.6.24) and Sun’s Java VM, version
1.6.0_01. We used JPF revision 963 with 2 GB of memory,

Table II
EXAMPLE APPLICATIONS USED.

Application Description
Daytime client Sends concurrent requests to time server.
Jget, ver. 0.4.1 Multi-connection download client (simplified).
HTTP client Test client for HTTP server (full HTTP).
HTTP server Multi-client HTTP server (simplified for Jget).
pws ver. 0.2.3 HTTP server with CGI. Logging code removed.
Alphabet Client requests the nth character from server.
Chat server Server sends messages of one client to all clients.
WebDAV test cl. Checks via HTTP if WebDAV server is running.
WebDAV server HTTP server, executed using WebDAV test client.

a limit that was never exhausted, and a time limit of one
hour. For the linear-time cache, a newer version than the
one used in previous work was utilized, to include some
recent optimizations. We left diagnostic output enabled.
Improvements in JPF accounted for the large reduction
in the state space compared to previous experiments [2].
We verified all applications against deadlocks, uncaught
exceptions, and assertion violations. Except for the WebDAV
client, no program contained a critical defect that would have
terminated the state space search, enabling a comparison of
the full state space under different approaches.

In the WebDAV test client, we found a fault that is
triggered under extremely heavy load [19]. A timer is started
prematurely (in the static initializer), and may time out
before it is reset later. At that point, the main thread may
refer to a timer object reference that has been set to null.
As the failure is unlikely to occur in practice, the defect has,
to our knowledge, not been found before.4

Table III shows each application with its settings, and the
results obtained when using either caching approach. The
run time of the model checker, memory consumption, the
number of states, and the number of bytecode instructions
executed are shown. Memory usage as reported by JPF var-
ied between runs, and was averaged over three runs. “New”
states refer to distinct program states, “revisited” states to
states that were visited several times after backtracking.
Performance of the new branching cache is comparable to

4In JPF, the occurrence of a timeout event is treated non-deterministically.
Both its occurrence and absence are checked, regardless of the actual time
that elapsed. Timers are therefore not modeled directly, but through the
non-deterministic actions that depend on timers.



Table III
RESULTS OF OUR EXPERIMENTS.

All applications are listed with the number of concurrent worker threads and the number of messages sent in each direction, per connection.
Three approaches are compared: I/O managed without response caching, by restarting peer processes; and the linear-time and branching-
time caches. Results include run time, maximal memory usage of JPF, the number of distinct states (in thousands), the number of states
re-visited after backtracking, and the total number of instructions executed (in thousands) during state space exploration.

App. # # No cache Linear-time cache Branching-time cache

th. msg. Time Mem. States [103] Instr. Time Mem. States [103] Instr. Time Mem. States [103] Instr.
[m:ss] [MB] new revis. [103] [m:ss] [MB] new revis. [103] [m:ss] [MB] new revis. [103]

Daytime 2 1 0:27 20 0.3 0.1 51 0:01 21 0.3 0.1 51 0:01 21 0.3 0.1 71
client 3 1 > 1 h 0:25 190 55.2 36.4 9593 0:36 224 55.2 36.3 21332

HTTP c. 2 1 3:01 69 0.9 0.7 115 0:10 185 0.9 0.8 116 0:12 222 0.9 0.8 115
HTTP s. 2 1 > 1 h 4:30 158 403.2 392.0 142529 1:47 245 132.1 130.5 19436

HTTP s./ctr 2 1 > 1 h Cannot be handled due to state mismatch. 2:13 246 137.0 135.4 21010
pws 2 1 > 1 h Cannot be handled due to state mismatch. 1:43 276 70.6 57.2 38094
Jget 2 1 13:03 155 4.8 4.8 305 0:15 133 5.2 5.2 383 0:16 247 4.8 4.8 305

Alphabet 2 1 1:10 21 0.3 0.5 26 0:01 22 0.3 0.5 25 0:01 22 0.3 0.5 26
client 2 5:29 34 1.1 2.5 140 0:02 33 1.1 2.6 136 0:02 33 1.1 2.5 140

3 14:56 33 2.8 6.7 410 0:03 43 3.0 7.2 409 0:03 44 2.8 6.7 410
4 31:59 36 5.8 14.4 917 0:06 53 6.2 15.5 925 0:05 54 5.8 14.4 917
5 59:32 34 10.4 26.8 1761 0:09 69 11.2 28.9 1780 0:09 72 10.5 26.8 1761

3 1 > 1 h 0:06 45 6.1 21.8 764 0:06 52 6.1 21.8 791
2 0:40 100 48.5 194.8 8953 0:37 142 44.7 179.3 8801
3 2:39 113 189.7 801.1 40165 2:20 233 167.7 703.5 37510
4 7:51 160 537.4 2330.1 122731 6:44 242 471.1 2028.3 113368
5 19:37 339 1267.6 5594.0 304339 16:50 369 1113.7 4883.4 282032

4 1 > 1 h 2:16 134 137.8 725.1 23351 2:12 242 137.8 725.1 24135
2 35:22 411 1948.4 11261.1 493525 30:55 478 1691.8 9741.6 457694

Alphabet 2 1 2:22 38 0.0 0.0 8 0:02 16 0.0 0.0 6 0:05 16 0.0 0.0 8
server 2 4:56 44 0.1 0.1 14 0:02 16 0.1 0.1 12 0:05 18 0.1 0.1 14

3 8:17 39 0.2 0.2 24 0:03 16 0.1 0.2 19 0:05 20 0.2 0.2 24
4 12:25 45 0.2 0.2 35 0:03 16 0.2 0.2 29 0:05 20 0.2 0.2 35
5 17:24 44 0.3 0.3 50 0:03 16 0.3 0.3 40 0:06 20 0.3 0.3 49

3 1 48:49 43 0.4 0.7 64 0:03 16 0.3 0.6 47 0:07 30 0.4 0.7 64
2 > 1 h 0:04 29 1.1 2.2 169 0:08 32 1.1 2.2 208
3 0:06 47 2.4 4.7 382 0:10 49 2.3 4.6 472
4 0:06 59 4.3 8.6 719 0:11 67 4.2 8.4 893
5 0:08 63 7.0 14.0 1211 0:13 68 7.0 13.9 1506

4 1 > 1 h 0:10 51 4.8 14.5 1025 0:16 70 7.5 22.0 1825
2 0:21 60 20.9 62.7 4449 0:30 78 26.2 76.4 6944
3 0:45 95 49.8 149.4 11179 1:03 75 66.2 192.3 18330
4 1:24 113 100.9 302.5 23359 2:03 155 139.3 404.0 39722
5 2:23 118 183.0 549.0 43300 3:44 214 260.2 753.5 75739

5 1 > 1 h 0:36 59 36.3 145.0 9625 1:00 94 52.4 205.7 16394
2 3:19 96 235.8 942.9 62481 3:53 225 228.4 900.6 78032
3 9:45 200 684.0 2735.7 191300 11:22 347 678.9 2682.5 241945
4 23:47 429 1632.7 6530.4 471592 27:35 513 1637.6 6480.2 599098
5 54:18 545 3415.0 13659.7 1007965 58:42 845 3442.8 13638.9 1282426

6 1 > 1 h 4:20 218 261.8 1308.9 83824 8:01 260 418.0 2068.4 157405
2 42:43 543 2541.9 12709.0 807192 47:04 662 2360.6 11728.5 968774

7 1 > 1 h 36:35 493 1832.7 10995.7 687803 > 1 h
Chat 2 1 > 1 h 0:03 20 1.1 1.2 38 0:06 29 1.5 1.6 55

server, 3 1 0:12 57 24.2 44.0 815 0:24 58 46.5 81.1 1716
abstracted 4 1 8:20 234 1116.4 2846.7 50558 20:13 585 2718.0 6748.1 130546

Chat 2 1 > 1 h Cannot be handled 0:10 29 1.5 1.6 55
server, 3 1 due to state mismatch. 0:57 55 46.5 81.1 1716

full 4 1 24:25 595 2718.0 6748.1 130546
WD. c. 2 1 3:50 74 3.4 2.8 319 0:04 74 3.4 2.8 306 0:04 74 3.4 2.8 306
WD. s. 2 1 > 1 h 13:56 249 1446.2 1443.5 115493 13:30 348 1446.2 1443.5 113992



Table IV
CACHE USAGE.

The number of times a connection had to be restarted after
backtracking when no response caching was used, is compared
to cache hits/misses and number of peer restarts for the branching-
time cache. Without response caching, peers have to be restarted
whenever the model checker backtracks the SUT; cached requests
are then replayed up to the new current state of the SUT. With
response caching, most requests match previously recorded data,
allowing the response to be read from the cache. Note that
a single transition between states in JPF may include multiple
read/write operations of the same thread; hence, the number of
cache hits may be larger than the number of states reported by
JPF. Restarts/connection counts include the initial connection.

App. # # No cache Branching-time cache
th. msg. # (re)starts/ # hits # misses # (re)starts/

(re)conn. (re)conn.
Daytime 2 1 1056 10710 60 2

client 3 1 > 1 h 4788180 90 3
HTTP c. 2 1 4835 95940 533 2
HTTP s. 2 1 > 1 h 108732 142 2

HTTP s./ctr 2 1 > 1 h 109584 142 4
pws 2 1 > 1 h 4561 18 3
Jget 2 1 28701 3284 124 3

Alphabet 2 1 2644 254 2 2
client 2 12142 1318 4 2

3 32572 3698 6 2
4 69172 8098 8 2
5 128232 15370 10 2

3 1 > 1 h 9195 3 3
2 80115 6 3
3 326166 9 3
4 970551 12 3
5 2397147 15 3

4 1 > 1 h 280372 4 4
2 3991996 8 4

Alphabet 2 1 268 14 2 2
server 2 560 46 4 2

3 940 94 6 2
4 1408 158 8 2
5 1972 238 10 2

3 1 5559 232 3 3
2 > 1 h 953 6 3
3 2358 9 3
4 4663 12 3
5 8084 15 3

4 1 > 1 h 4795 4 4
2 23518 8 4
3 68601 12 4
4 157036 16 4
5 310039 20 4

5 1 > 1 h 52442 5 5
2 311092 10 5
3 1065266 15 5
4 2799980 20 5
5 6240634 25 5

6 1 > 1 h 543719 6 6
2 4039171 12 6

Chat 2 1 > 1 h 229 2 2
server, 3 1 11207 3 3

abstracted 4 1 873089 4 4
Chat 2 1 > 1 h 229 4 4

server, 3 1 11207 18 18
full 4 1 873089 96 96

WD. c. 2 1 8907 0 0 0
WD. s. 2 1 > 1 h 1900166 870 2

the old linear cache. At the same time, our cache can handle
complex programs such as the unabstracted chat server, and
HTTP servers returning dynamic information such as page
counts or the current time.

Table IV shows the effectiveness of our response cache.
Without caching, peer processes have to be restarted each
time when backtracking occurs. Restarting and replaying
previous communication causes an extreme slowdown.

Previous work shows that model checking with our I/O
caching approach is orders of magnitudes faster than model
checking using centralization [2]. By changing the cache
model from linear to branching time, we can handle a
large number of programs than before, while keeping the
performance advantage of caching.

V. RELATED WORK

Software model checkers [5], [7], [10], [13], [15], [16],
[28] backtrack a program to analyze various outcomes of
each non-deterministic decision in the SUT. Backtracking
may cause a repetition of previously executed operations.
This requires special treatment of communication opera-
tions, as described in the introduction, and more in depth
in a recent survey [3]. Peer processes may be included in
the resulting system [11], [20] or modeled by a (possibly
abstracted) environment process or stub [7], [10], [14].
Generation of the optimal abstraction can be automated [7],
[10]. Our approach requires no stubs but assumes deter-
ministic peer behavior. Soundness is lost if a peer is non-
deterministic [4].

A general solution to model checking multiple commu-
nicating processes is to lift the power of a model checker
from a process to operating system (OS) level, treating the
entire OS and all processes running within as the SUT. This
way, the effect of I/O operations are fully visible inside the
model checker, and the combined state space of all processes
is explored. An existing system that stores and restores full
OS states is based on user-mode Linux [21]. Compared
to that work, our approach analyzes a single process at a
time inside a model checker, while running other processes
normally, making it more scalable than such multi-process
model checking approaches.5

External processes can also be backtracked in tandem with
the system under test, for instance, by restarting them [11],
[16]. In existing implementations, one central scheduler
controls and backtracks several processes, effectively imple-
menting a multi-process model checker [16], [20]. Like all
approaches controlling multiple processes inside the model
checker, it incurs a massive state space explosion. In our
approach, restarting communication to peers corresponds to

5It seems possible to implement a multi-process model checker that
executes all thread schedules for only one process, while executing only
one schedule for all other processes. This would achieve a similar result as
our I/O cache, but has, to our knowledge, not been implemented so far.



backtracking of peers, but our cache eliminates backtracking
of peers whenever communication data matches.

Finally, the application of a corresponding program trans-
formation [25] also allows multiple processes to be model
checked in a single-process model checker. In that approach,
I/O is modeled in the transformed program and fully con-
trolled by the model checker [1], [6]. Recent work has
implemented this approach in a similar way, but sacrificed
full automation in favor of manual instrumentation of com-
munication operations [8]. That tool has another mode in
which it can run, replacing peer processes with stubs that
replay previously recorded communication [8].6 At a high
level, a stub that models a previously recorded trace works
like our cache. Data of the real network is mimicked by
a program (stub) as opposed to a data structure (cache).
Like in our approach, stubs assume that peer processes are
deterministic. In addition to that, for stubs, communication
of the SUT itself is not allowed to diverge from the behavior
the stub was recorded or written against. This is because the
functionality of a stub is fixed prior to execution. Our ap-
proach does not require a deterministic SUT, and eliminates
the need of an intermediary stub program. Furthermore, it
even allows model checking of applications where external
processes are not running on a platform that the model
checker supports.

Our approach supersedes previous work, which used a
linear-time cache. The linear-time cache requires a high de-
gree of determinism in the SUT [2]. Using a communication
model that allows for branching, alternative communication
traces, we can eliminate this restriction. We regard peers
as deterministic to allow the utilization of caching, but
we believe that this achieves an ideal trade-off between
exhaustive coverage of all systems, and scalability. In the
original linear cache [2], any divergence of the SUT behavior
causes the cache to abort. It is conceivable that the peer be
restarted and the cache be cleared in that case, discarding
any previous data. However, this would negate much of
the performance advantage of caching, which is why we
developed the branching-time cache.

The way the linear-time and branching-time caches deal
with communication data resembles the relation between
linear-time logic and branching-time logic [9], [24]. Even
though we do not model check temporal logic formulae, our
cache structure can deal with alternate sequences of events
in a way that is similar to how existential path quantifiers
in branching-time logic operate.7

6The recorder has not been released yet. We attempted to use NetStub
on a manually adapted chat server, but a defect in JPF thwarted our efforts.

7By default JPF checks against assertion violations, unchecked excep-
tions, and deadlocks. Temporal logic properties can be implemented as
property listeners, and verified in conjunction with other extensions such
as our network layer [28].

VI. CONCLUSIONS AND FUTURE WORK

When model checking communicating programs, pro-
cesses outside the model checker are affected by communi-
cation but not subject to backtracking. Because backtracking
is not applicable to external communication, input/output
operations cannot be executed directly. Their effects can
sometimes be subsumed by stubs; alternatively, multiple
processes can be executed inside the model checker. The
former is difficult to automate, while the latter suffers from
scalability problems.

We defined a caching semantics for network commu-
nication between the model checker and peer processes.
Whenever communication exceeds previously stored data,
or diverges from it, the cache transmits data physically
over the network. Only when necessary, new connections
are created and previously recorded traces are replayed.
This paper introduces a branching-time semantics for the
cache, which allows non-deterministic programs to be model
checked. For deterministic programs, our enhanced model
delivers similarly fast performance when compared to its
predecessor. Unlike most previous work, we can handle
implementations using standard network libraries without
any manual intervention, while eliminating some scalability
issues of some related approaches. We also have a fully
working and very scalable implementation of our algorithm
for the Java PathFinder model checker, which we applied
to several applications. During these experiments, we have
found a defect in a widely used application.

Current work focuses on model checking applications
communicating by TCP. This protocol is reliable in the sense
that message order is preserved, and messages are not lost.
However, we think that the concept can be modified and be
applied to unreliable protocols such as the User Datagram
Protocol (UDP). Such a modification should also allow us to
cover non-deterministic responses. We will also work on the
issue of slow responses, by implementing a tool that inspects
state of peer applications. Finally, it remains to be seen how
far our approach, which has so far been tried on service-
oriented client-server systems, is applicable to peer-to-peer
systems or multicast protocols.
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