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Abstract. Automated debugging attempts to locate the rea-
son for a failure. Delta debugging minimizes the difference
between two inputs, where one input is processed correctly
while the other input causes a failure, using a series of test
runs to determine the outcome of applied changes. Delta de-
bugging is applicable to inputs or to the program itself, as
long as a correct version of the program exists. However,
complex errors are often masked by other program defects,
making it impossible to obtain a correct version of the pro-
gram through delta debugging in such cases. Iterative delta
debugging extends delta debugging and removes a series of
defects step by step, until the originally unresolved defect is
isolated. The method is automated and managed to localize a
bug in some real-life examples.

Key words: Fault localization, automated debugging, auto-
mated repair, mining, delta debugging

1 Introduction

Testing is a scalable, economic, and effective way to uncover
faults in software [29,31]. Automated testing enables effi-
cient verification of software as it evolves. However, in the
case of failure, defect localization (debugging) is still a largely
manual task.

In the last few years, several automated debugging tech-
niques have been developed to facilitate fault-finding in com-
plex software [25,41]. Delta debugging (DD) is one such
technique [28,43]. It takes two sets of inputs, one which yields
a correct result and another one which causes a failure. DD
minimizes their difference while preserving the successful
test outcome. DD can be applied to the program input or the
source code of the program itself, using two different revi-
sions of the same program. The latter variant treats the source
code as an input to DD. It therefore includes a compile-time
step, which produces mutations of the input (the program to

be analyzed), and a run-time step, in which the outcome of
that mutation is verified by testing.

The minimized change set obtained by DD constitutes an
explanation of a test failure. The scenario considered here is
where a test fails for the current version. If an older correct
version exists, DD can be used to distill the essential change
that makes the new version fail on a given test, and thus re-
duce a large change set to a minimal one [43].

DD is applicable when there exists a known version that
passes the test. For newly discovered defects, this may not
be the case. For such cases, we propose iterative delta debug-
ging (IDD). The idea is based on the premise that there exists
an old version that passes the test in question, but older ver-
sions of the program may have other defects introduced ear-
lier that prevent them from doing so. By successively back-
porting fixes to these earlier defects, one may eventually ob-
tain a version that is capable of executing the test in question
correctly [4].

IDD yields a set of changes, going back to previous re-
visions. The final change, applied to the oldest version after
removal of earlier defects, yields a revised old version that
passes the given test. At that point, the same algorithm that is
used to back-port fixes to older versions can also serve to port
the found bug fix forward to the latest revision (or a version
of choice). Our approach is fully automated. We have applied
the algorithm to several large, complex real-world examples
in different programming languages and types of repositories.
Even though it was not known a priori whether a working re-
vision could be found, we have found working revisions in
some cases.

This paper is organized as follows: Section 2 introduces
the idea behind IDD. DD and IDD are described in Sections 3
and 4, respectively. The implementation and experiments car-
ried out are described in Sections 5 and 6. Related work is
discussed in Section 7. Section 8 concludes, and Section 9
outlines future work.
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Fig. 1. Iterative delta debugging.

2 Intuition Behind IDD

Developers have used change sets for debugging before. When
a regression test fails on a given version, one way to diagnose
the problem is to compare the current version to an older ver-
sion, which is known to pass the test. If a good old version
is not known a priori, then it might be found by mining older
versions from the history of revisions. Iterative Delta Debug-
ging (IDD) automates this process:

1. A test fails on the current version. It is supposed that there
might be an older version that passes the test.

2. By successively going back to older versions, one tries to
obtain a version that passes the test.

3. One tries to distill a minimal difference between the “good”
and the “bad” version, which constitutes the change that
introduced the defect.

Step 2 tries to isolate two successive revisions, one that passes
a test, and another one that fails. Step 3 attempts to minimize
the difference between these two revisions. In that step, we
assume that delta debugging (DD) is used to minimize a given
change set while preserving the given test outcome [43].

If a version passing the test (a “good” version) is known
a priori, then the search for the latest defective version can
be optimized by using binary search instead of linear search.
This idea has been implemented in the source code manage-
ment tool git, which is used to maintain the Linux kernel
sources [37].

The process becomes more complex in the general case,
when the “good” version is not known, and a test might not be
executable on older versions. Assume there exists a test that
fails on the current version. We will call this outcome fail. A
correct result is denoted by pass. Besides these two outcomes,
there may also be different incorrect outcomes of the test,
denoted by err. A set of changes between two versions of a
program is referred to as a patch.

A test case may not be applicable to older revisions due
to missing features or other defects that prevent the test from
executing properly. In this case, IDD utilizes DD to apply the
necessary changes from a newer version to an older version,

prev_version = current_version = latest_version();
patch = {}
original_result = current_result = test(current_version);
while (current_result 6= pass) {

current_version = predecessor(current_version);
current_result = test(current_version ⊕ patch);
if (current_result 6= original_result) {

patch = DD(current_version, prev_version);
}
prev_version = current_version;

}
return patch;

Fig. 2. IDD algorithm in pseudo code.

to allow a test to run. Figure 1 shows how IDD builds on DD.
IDD starts from a version that fails (version 4 in Figure 1).
Unlike in the original scenario for DD, a version that passes
is not known a priori. IDD successively goes back to previous
versions and assesses whether the same failure persists. If the
test outcome differs, DD is applied to the last failing version
and the older version. This identifies the source code change
that made the old version behave differently. One IDD iter-
ation thus either (a) skips a version where the outcome does
not change, (b) finds a correct version, or (c) eliminates a
older defect (err) that covered a newer one.

In the example in Figure 1, version 3 produces case (c): It
does not pass the test, and even fails to reproduce the behavior
of version 4. DD is then applied to versions 3 and 4. The
resulting minimal change, patch a, can then be applied as a
patch to version 3. Patching fixes the earlier defect in version
3 and produces a new version 3′. Version 3′ fails again in the
same way as version 4 did. In Figure 1, the change set (patch)
that is back-ported is shown by a thick arrow pointing to the
correct, changed code.

The iterative process of IDD continues by applying this
patch to older versions (such as version 2) before running
the test. In the example, when applied to version 2, IDD pro-
duces version 2′, on which the test is run. That version be-
haves differently from 3′, so DD is applied again to find the
minimal change required to fix the program. This produces a
new patch b (the change between 3′ and 2). This patch usu-
ally contains changes of the previous patch a. The resulting
new version is therefore called 2′′. After version 2 is repaired,
IDD continues. The patched version 1, 1′′, passes, and IDD
terminates successfully in this example.

IDD will eventually find a version that passes the test, or
run out of older versions (see Figure 2). IDD is fully auto-
matic as long as the test process does not require human in-
tervention. The process starts from a version where the test
in question successfully compiles, and produces a known,
well-defined output. (Even though that output is erroneous,
it is important to use it as a measure against changes.) IDD
successively tries older revisions, and uses DD as a subrou-
tine upon failure. DD produces a minimal change set from a
newer (working but not fully correct) revision. This change
set is back-ported to the older version, reproducing the previ-
ously observed test outcome.
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IDD is best applicable to a source code repository con-
taining many small, versioned (or tagged) changes. The sizes
of changes committed mainly depends on the development
policy. Some development practices, such as Extreme Pro-
gramming [7], advocate frequent, incremental changes. Each
change is tested immediately, and committed to the develop-
ment version of the source code. This strategy results in small
change sets and facilitates automated analysis. Conversely,
large changes, such as changes resulting from merging two
versions, typically contain many unrelated changes and affect
large parts of the code base.

3 Delta Debugging on Source Code

Delta Debugging (DD), as introduced initially, analyzes a flat
change set, typically consisting of line-based or character-
based changes [43]. If changes are independent, DD yields
a one-minimal change set, meaning that the property of inter-
est is no longer preserved if any one element is removed. DD
typically requires a linear number of steps (in the size of the
input), but may not produce an optimal output if changes are
interrelated. Furthermore, the performance of DD is not opti-
mal if a data is hierarchical. In that case, a search that divides
the state space according to the hierarchical structure is much
more efficient [28]. This section explains the application of
both algorithms to program code.

3.1 Delta debugging

Delta debugging uses bisection to minimize the difference be-
tween two versions of program input while preserving the
behavior that the first input generates. It can also be applied
to the program source code itself. When applied to program
source code, DD typically operates on a description of the dif-
ference between two revisions. The difference set generated
by the Unix tool diff provides this change set readily. The
usage of diff also has the advantage that variations of the
change set can automatically be applied by patch, followed
by compilation and execution of the program.

Delta debugging evaluates changes in contiguous subsets
only, and ignores many possible subsets of a change set. Since
the size of a power set is exponential in the size of the orig-
inal set, an exhaustive evaluation of all possible change sets
is intractable. In the following discussion, a “successful” or
passing test is a test whose outcome corresponds to the de-
sired value, such as the same kind of test failure observed in
a previous revision.

Figure 3 illustrates DD on a simple example. The change
set includes eight elements, the presence or absence of each is
illustrates by a “1” or “0”, respectively. Let the first element
by the leftmost bit in the change set, and the eighth element
be the rightmost bit. Initially, the empty change set is tried.
The test, when executed unchanged, fails. DD then attempts
to isolate the reason of the failure. The assumption is that
if the test passes with only the first half of the change set

Step Change set Test verdict
1 00000000 fail
2 11110000 fail
3 11111100 pass
4 11111000 fail
5 11110100 pass
6 00000100 pass

Fig. 3. Delta debugging illustrated.

being active, then the reason for the failure must lie in the
first half of the change set. Conversely, if the test fails with
the second half of the change set disabled, then at least a part
of the second half of the change set is necessary for the test to
succeed. This is what happened in the example in Figure 3:
The test still fails after the initial bisection of the state space.
Therefore, at least one element of the last four elements in the
change sets is necessary to achieve the desired outcome.

In the next DD step (3), the subset of the last four el-
ements is again bisected, and the last two elements are ig-
nored. As the test passes, they can be safely dropped from
the change set. Now, the algorithm backtracks and analyzes
the subset containing elements 5 and 6. A direct implemen-
tation of backtracking would again analyze the change set of
step 2. As that one is known to fail, it can be skipped. The
change set in step 4 therefore contains elements 1–5; the test
fails, confirming that element 6 is necessary. Step 5 confirms
that element 5 can be dropped; further backtracking analyzes
the first half of the change set, which does not contribute to
the test outcome in this example. The final set contains only
one change, and is one-minimal w. r. t. set inclusion.

3.2 Delta debugging applied to program executions

The original DD algorithm, called ddmin [43], operates on
individual characters or lines of a failure-inducing input to a
program. Besides success or failure, it also considers indeter-
minate outcomes. An outcome is undetermined if a program
crashes, loops forever, or produces a different kind of faulty
outcome that cannot be directly classified.

The ddmin algorithm analyzes indeterminate outcomes
further, sometimes yielding better results than the DD algo-
rithm described above in this paper. In its original version [43],
the number of test invocations may be quadratic in the size of
the input, in the worst case. Like many other implementa-
tions of DD, our algorithm considers any kind of indetermi-
nate outcome as a failure. This reduces the worst-case per-
formance to 2n− 1 invocations in the size of the input. We
found that this simplification works relatively well on pro-
gram code, as the resulting algorithm still produces a one-
minimal result, and avoids the quadratic worst-case scenario.
However, it shares the weakness with ddmin of not analyz-
ing all combinations of pairs, triples, and larger change sets.
This is often a problem for program source code, where dif-
ferent parts (such as the declaration and use of a variable)
are interdependent; see Section 6 for a detailed discussion of
experimental results.
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Function addition Function removal
+ #if 0
+ static int
+ foo (void *data) {
+ int x;
+ x = 42;
+ }
+ #endif

- static void
- bar(int y) {
- int x;
- x = y;
- if (y)
- bar(--x);
- }

Fig. 4. Different use cases for delta debugging.

It is simple to derive the complexity of our algorithm: For
an input of size n, a test may either succeed (preserve the de-
sired outcome) or fail. If a test is successful, the state space
search terminates. A failed test will lead to a bisection of the
state space, and require two recursive invocations, on inputs
of size n

2 each. In the worst case, with all tests failing, re-
cursion proceeds logn times until, at the end of recursion,
changes of size 1 are analyzed. This results in n invocations
on deltas of size 1, n

2 invocations on deltas of size 2, etc.,
through all logn recursions. The total number of invocations
is equal to

n+
n
2

+
n
4

+ . . .+
n
n

= 2n−1.

3.3 Analysis of program code

DD assumes that each element of a change set is independent
of all others. As the format of the Unix diff tool is line-
based, DD works best on data where one line is independent
of any other line, such as a flat configuration file. Obviously,
program source code does not conform to this property. For
local code changes, though, DD provides a good approxima-
tion of the minimal change set. DD fails in cases where the
hierarchical structure of program source code conflicts with
line-by-line analysis of changes. In typical programming lan-
guages, a class scope surrounds declarations of functions and
methods, which contain declarations of local variables and
code. Higher-level syntactic entities cannot be removed with-
out removing everything within their scope, or else the result-
ing program is no longer syntactically valid. Due to its line-
based nature, when trying to eliminate the addition of a new
method, DD tends to eliminate statements and declarations
but not necessarily the entire method scope. When dealing
with a change consisting of the removal of an entire function,
that change cannot be broken down into smaller parts.

Figure 4 shows some of these problems. The two exam-
ples are shown in “unified diff” format, as produced by diff
-u, with file names and line numbers omitted. On the left
hand side, a C function is added to the code, on the right hand
side, a function is removed. DD analyzes the given changes in
conjunction with many other changes, spanning hundreds of
lines. Bisection of the state space may happen at any location,
and may not coincide with function or method boundaries.

Incomplete functions will not compile, so a bisection of
the state space produces invalid code whenever the syntactic
structure of the target language is violated. Because of this,
DD can only manage to remove unused functions if bisection

hits the boundaries of its declaration. In Figure 4, for DD to
succeed in removing the changes shown, bisection needs to
match the syntactic hierarchy. For the function addition on
the left side, DD should hit the function boundaries and the
scope of the preprocessor #if/#endif construct. In other
cases, DD only manages to remove the code inside the func-
tion, and, if it works from bottom to top, the declaration of lo-
cal variable x. On the right hand side, where a function is re-
moved, the situation is even worse. A reduction of the change
set corresponds to the elimination of a function removal from
the change. In other words, if one starts with such a change as
given, a reduction of the change set adds back code that was
previously removed. As statements cannot be compiled with-
out an enclosing function declaration, bisection needs to hit
the function boundary exactly, or none of the changes can be
removed. This example shows why DD is of limited useful-
ness if large parts of the code, especially function declarations
and interfaces, change.

3.4 Hierarchical delta debugging

The problem of having to conform to a syntactic structure
also occurs when applying DD to hierarchical data, such as
XML. Previous work has implemented hierarchical delta de-
bugging to produce correctly nested changes of XML doc-
uments [28]. In that work, it was shown that a hierarchical
approach avoids generation of changes where opening and
closing tags are mismatched. Because of this, the hierarchi-
cal approach tends to be faster and yield smaller change sets
than the original DD algorithm [28].

When this idea is applied to program source code, the hi-
erarchy of changes on a local scope corresponds to the hier-
archy of syntactic elements. On a global scope, dependencies
between callers and callees also have to be considered [45].
This information requires knowledge of the programming lan-
guage, and is difficult to generalize across programming lan-
guages.

Luckily, the changes produced by the diff utility are hi-
erarchical: Change sets consist of changes to individual files,
which are in turn broken up into so-called “hunks”, which
contain a number of line-based changes. Figure 5 illustrates
this hierarchy using the “unified diff” format. In real code
repositories, some changes are entirely local in the scope of a
single file or a block of code where it occurs. Extending DD
to include the hierarchy of the generated patches can there-
fore improve precision of DD in these cases, as shown in the
experiments in Section 6.

In this work, the patch file hierarchy provides boundaries
for the state space bisection. Instead of bisecting the state
space in the middle, based on the number of lines involved,
bisection proceeds hierarchically, across files, hunks, and lines.
First, sets of changes across files as a whole are analyzed. If
a change for an entire file cannot be ignored, a more fine-
grained search proceeds on hunk level, then on line level.

Taking advantage of the patch file hierarchy improves the
recognition of local code changes, but it does not take care
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Patch Hierarchy
Index: file1
@@ -42,2 +42,3 @@
context

+ addition
context

@@ -84,4 +85,3 @@
context

- removal
+ addition
- removal
context

File
Hunk

Line

Hunk

Line
Line
Line

Fig. 5. The hierarchy of a change set produced by diff -u.

First call to DD Second call to DD
+ foo (NULL);
. . .
+ static void
+ foo (void *data) {
+ int x;
+ x = 42;
+ }

+ static void
+ foo (void *data) {

+ }

Fig. 6. Recursive dependencies.

of interdependent changes. Addition or removal of a func-
tion may be taken care of by multiple iterations of DD: Once
all calls and references to a function are removed, then the
function itself may be removed as well. Unfortunately, even
hierarchical DD cannot deal with certain changes affecting
multiple files. For example, in cases where the signature of a
function changes, its definition and all instances of its usage
have to be changed simultaneously. A bisection-based algo-
rithm such as DD cannot isolate such changes and produces
overly large change sets.

3.5 Recursive dependencies

Delta debugging may be called multiple times on a given
change set, if recursive dependencies are present. For instance,
a change set may include the addition of a new function and
a call to that function. The function itself cannot be removed
without removing the call as well. If DD analyzes the func-
tion first, it may remove the function body but not the func-
tion itself. If DD subsequently removes the function call, then
another invocation of DD on the result of the first one may
also remove the function itself.

Figure 6 shows this example. Assuming DD works from
bottom to top, it is able to remove the function body of foo
during the first time, and the invocation of that function. An-
other execution of DD is needed to remove the function itself.

When using DD iteratively, subsequent invocations of DD
on different revisions eventually remove recursive dependen-
cies that were present in earlier steps. While a fix-point re-
cursion at every step would produce a smaller change set, we
found that code elimination in subsequent iterations works
well, so we do not call DD multiple times on one revision.
An exception to this is the final revision, where a fix-point

iteration is performed. This is a design choice, the results of
which are shown in Section 6.

4 Iterative Delta Debugging

IDD starts with a test failure in a new revision. The goal is to
find an older revision that passes the given test. Whenever the
outcome of a test changes in a different way than succeeding,
e. g., by executing an infinite loop, delta debugging is used
to create a minimal patch that preserves the former outcome.
Iteration proceeds until no older revisions are available, a re-
vision where the test passes is found, or a timeout is reached.

4.1 Iteration strategy

A given test case (or a set of test cases) is compiled, exe-
cuted, and evaluated by a shell script. This evaluation is suc-
cessively applied to older revisions, until a working version
of the code is found. In most cases, the outcome of a partic-
ular test does not change from one revision to the next one.
Instead, older revisions contain changes affecting other parts
of the program. Delta debugging is only necessary when the
behavior of the test case of interest changes. Such changes
include compilation errors or other changes preventing test
execution in the first place.

Iteration proceeds revision by revision. If a correct ver-
sion was known a priori, binary search such as implemented
in git could be used [37]. As by far the most time is spent
in the DD part of the algorithm, improvements in the itera-
tion across revisions would not improve performance signifi-
cantly.

Previous work implemented this sequential iteration strat-
egy but involved manual patch creation [6]. The usage of DD
for patch creation automates our method. Unlike in previous
work [6], patches are not accumulated, but replaced with a
new patch each time delta debugging (DD) is invoked.

IDD starts with an empty patch set, and uses patches gen-
erated by DD whenever the test case in question behaves
differently than previously observed. Each step of IDD, as
shown in Figure 2, is guaranteed to terminate. Given enough
time, IDD is therefore guaranteed to either find a “good” ver-
sion, or reach the initial revision of a project, where no more
change sets exist.

IDD assumes that each revision contains a set of related
changes. In each iteration, when test behavior is affected,
IDD either terminates (regarding the outcome as a success),
or undoes the changes. If multiple changes affecting a test are
present in a given revision, or if syntactic changes prevent a
patch from being applied, IDD may regard the outcome as a
failure. In such cases, IDD may miss a good revision because
several changes combined in one revision produce a different
outcome than individual changes. This problem in inherent in
large change sets: In general, automated methods cannot de-
duce if a large change set can be logically decomposed into
independent smaller changes.
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4.2 Forward porting

So far, the given algorithm attempts to locate a correct ver-
sion of the program by going back to older revisions. Patches
(minimized by DD) are applied whenever a test cannot be
executed in an older version. If the algorithm is successful,
it will eventually find a revision where the given test passes.
The final change set will contain a bug fix for the given test,
as well as all the “infrastructure” needed to execute it.

Unfortunately, that final change set applies to an old re-
vision, rather than the current one. If the bug fix applies to
a version that is much older than when the test was imple-
mented, the portion of the change set containing intermediate
changes may be large, and the change set might not applica-
ble to the latest revision. Of course, the primary concern is
usually to fix the latest revision of the software rather than an
old one. Therefore, after having found a successful revision,
IDD is again applied in reverse, going from the correct (old)
version to the current (new) one. DD is again invoked as a
subroutine whenever a patch cannot be applied. In this way,
the forward iteration generates a patch for the current version.

Forward porting always succeeds, although in the worst
case, a patch set containing the entire change set between
the correct version and the newest version may be generated.
Furthermore, it may not always be practical to wait until the
patch is fully forward ported when it becomes too large. In
our experiments, we therefore also considered the size of the
initial patch set fixing the defect (on an old version) versus
the size of that patch applied to the latest version.

This final patch constitutes an explanation of the test fail-
ure on the current version. In general, the patch cannot be
used to automatically repair the program. While the patch
causes a given test to succeed, it may adversely affect other
functionality in the program. Despite this, having a small can-
didate set of changes to consider when debugging narrows
down the search for the defect tremendously.

5 Implementation

This section discusses the implementation, including a more
fine-grained view of test compilation and execution, which is
at the heart of each individual step in IDD.

5.1 Compilation and test setup

Within each iteration of IDD, and each step of DD, IDD uses
a set of scripts to automate program compilation and testing.
In detail, this involves the following steps:

1. Updating the source code to a new revision. This step may
fail due to unavailability of the source repository (e. g.
due to a network outage) or because an older version is
unavailable. In the case of network outage, this step is
repeated until successful.

2. Patching the source code. Patching is a likely point of fail-
ure, as any major changes in the source code, including

formatting changes, make it impossible to apply a patch
to a version other than the one the patch was generated
for.

3. Configuration, preceded by the deletion of all compiled
files. Configuration may require re-generating a build file.
Deletion of all compiled files is necessary, as the patching
process may create files that do not compile. This may
result in the object file of the older version (which suc-
cessfully compiled) being used in a current test run, and
falsify test results.

4. Compilation. Also referred to as the build process, this
step generates the executable program and may fail be-
cause the given version cannot be compiled before or af-
ter the application of a patch. If a given version does not
compile even when unpatched, then it can be skipped.1

5. Test execution. Upon successful compilation, given test
cases are executed. Test execution failure may be detected
by a given test harness, e. g. if a known correct output is
not generated by the test case. However, it also frequently
happens that tests fail “outside” the given test harness.
There are two ways for this to happen:
(a) Catastrophic failure: Programming errors, such as in-

correct memory accesses, may lead to failures that
cannot be caught by the test harness. Therefore, the
test harness of the application has to be complemented
by an “outer” test harness that is capable of detecting
such failures.

(b) Incomplete test output verification: A given revision
may not contain the full code to verify the test output.
In that case, such a revision may erroneously report a
failed test as successful. The outer test harness has to
double-check that the lack of a reported failure actu-
ally implies success.

Any failure in the steps above (except for network problems
in step 1) is treated as a critical failure that requires the current
version to be fixed. The only exception is if a test fails in
exactly the same way as a previous revision, in which case it
is assumed that the test outcome has not changed. Otherwise,
any change in the result of test execution requires invocation
of delta debugging.

5.2 Test evaluation accuracy

It should be noted that IDD cannot guarantee that a correct
revision (which passes a given test case) is detected as such. If
DD removes code that does not contribute to a test failure, but
is vital for a test to pass, then IDD cannot recognize a future
successful test run as such anymore, as the functionality for
the test to pass has been removed by DD. Figure 7 illustrates
the problem on an example that could be run in C or in Java.

Let us assume that the test fails in the current revision,
i. e., runTest returns 0. This fact is preserved when line 4
that calls runTest is removed. Unfortunately, this removes

1 It sometimes occurs that a repository contains a version that cannot be
compiled, for instance, because a developer committed only a subset of all
necessary changes.
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void test1() {
int result;
result = 0;
result = runTest();
assert(result != 0);

}

Fig. 7. Example showing a potential code removal that would prevent a test
from passing.

the entire test functionality from the program. A different re-
vision where runTest returns 1 would not be recognized
as being correct. Even worse, if the code is compiled as a C
program, the initialization of result and the return state-
ment may be removed as well. This causes the return value of
the test function to be undefined. During execution, the value
probably corresponds to the contents of an element of a pre-
vious stack frame that occupied the same memory, but such
behavior is platform-dependent. The test harness has to be
augmented in order to prevent such deviations.

In order to maintain the exact behavior of failing tests,
static or dynamic slicing [21,41] could be used. Slicing would
ensure that DD does not remove any lines that contribute to
the value of the test result. However, slicing tools are not
portable across programming languages, and do not scale well
to large programs. We have therefore chosen a less stringent
approach. In addition to monitoring the output and log files
as closely as possible (using an external test harness), mem-
ory consumption and time usage are also checked for devia-
tions from the expected previous value. Furthermore, usage
of uninitialized data in C programs is prevented by inspect-
ing compiler warnings and the final change set generated by
DD. This process is currently not fully automated, but could
be automated by static analysis tools, and by using memory
checking tools such as valgrind [30]. For Java, the compiler
and run-time environment already enforce that memory can-
not be corrupted.

5.3 Implementation architecture

The iterative step of IDD, which applies a given patch across
several revisions, is implemented as a shell script using the
compilation and test setup described above as a subroutine.
The script iterates through existing revisions until a change in
behavior is detected. After that, it stops, and control is trans-
ferred to the DD program.

When used on a subversion code repository, IDD can take
advantage of the fact that all versions are globally and consec-
utively numbered. Stepping through older revisions is there-
fore trivial. When using CVS, though, global revision num-
bers are not available. They are recovered by pre-processing
the code repository. During this step, a revision counter is as-
signed to each revision that is more than five minutes apart
from the next one. Revisions being less than five minutes
apart are regarded as a single version that was committed us-
ing multiple CVS invocations.

DD is implemented as a Java program that takes a patch
set derived by the Unix diff tool as input (see Figure 8).

patch set

mutant
subset
patch

DD
Test

good faulty

diff

patch

Fig. 8. Implementation architecture of DD.

It parses the patch file and produces an internal representa-
tion of the state space of all possible patch sets. It then it-
erates over the state space of all possible change sets. Each
change set is produced as a modified patch, which is applied
to the faulty version using the patch tool. The resulting ver-
sion reflects a subset of all changes between the good and the
faulty version. Compilation and testing are then used to de-
cide whether the mutated version still produces the desired
outcome. DD continues its state space search based on this
outcome, until the state space is exhausted.

For the hierarchical implementation of DD on patches
generated from program source code, three levels exist: files,
hunks, and lines. In our implementation, this hierarchical de-
pendency is reflected by three classes extending an abstract
base class. The base class implements the actual hierarchi-
cal search algorithm. The subclasses contain code that cor-
rectly composes a representation of the current component
state (including subcomponents) as text in the patch format, a
parser for the respective component of a patch file, and in the
case of the lowest hierarchy level, direct calls to the bisection
state space search of DD. This implementation allowed us to
switch from a flat representation of patch files (a large set of
lines) to a hierarchical one.

When bisecting the state space given by a change set, bi-
section starts within the top-level hierarchy and recursively
proceeds until the leaf nodes are reached. If these leaf nodes
contain multiple (nested) components, state space bisection
may proceed at the lowest level. The presence of nested com-
ponents has to be tested recursively as well, as it may be the
case that, for example, a single file contains a single hunk
consisting of multiple lines. In that case, only one component
is present on the level immediately below the current one, but
at levels further down in the hierarchy, multiple elements may
still exist.

5.4 Caching previous test executions

The usage of the Unix diff and patch tools eliminated the
need for a custom representation of the difference between
two program versions. This made the DD algorithm very el-
egant, except for the cache structure, which was difficult to
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implement for hierarchical DD. Caching adds a subtle inter-
action between recursion hierarchies of completed, partially
completed, and incomplete parts of the search space. To en-
sure that the state space is bisected correctly even in the case
of a nested hierarchy, about 400 unit tests were used. These
tests covered many corner cases, but two additional incorrect
corner cases were found by inspecting the output when an
initial version of the tool was run.

The state space search starts with an empty change set
and then subsequently enlarges that change set until a one-
minimal change set with the desired test behavior is found.
Before a test is actually invoked, though, a cache containing
all previously visited states, along with their test outcome,
is consulted. This avoids revisiting certain states when back-
tracking: Whenever a test outcome in the initially investigated
half of the bisected state space is successful, the recursive
algorithm backtracks and analyzes the other half of its sub-
states. The state immediately after backtracking corresponds
to the state before the previous bisection step. In pathologi-
cal cases, where every second element of a change set can be
eliminated, one invocation for each change set of size 2 can
be avoided through caching. This eliminates n

2 tests, n being
the size of the input (initial change set). Caching comes at the
cost of having to keep a copy of a bit string representing each
DD state. This requires O(n) storage space per state, for up
to 2n− 1 states. Implemented naïvely, cached DD therefore
provides at most a linear gain in time for a quadratic cost of
storage. In practice, the memory overhead for caching was
never noticeable. While at a given point in time, some cached
states may not be reachable anymore and could be discarded,
we never needed to reclaim used memory and have not im-
plemented this.

6 Experiments

This section describes how the experiments were chosen, which
test cases were analyzed, and conclusions drawn from the re-
sults.

6.1 Selection of experiments

A major challenge for this work was to find suitable exper-
iments. It is desirable to validate a tool on actual faults re-
ported by users or developers, rather than artificial (seeded)
faults created for the purpose of a case study. While seeded
single faults share some characteristics with real ones [2],
such a relationship is not confirmed for more complex faults
spanning multiple locations. Furthermore, this project, which
mines the history of all revisions for potential repairs of soft-
ware, was inspired by a real application problem. Therefore,
we decided not to use any fault seeding, to avoid a bias to-
wards small, localized faults. Small changes resulting in sin-
gle faults or small sets of faulty components can be analyzed
relatively well by existing approaches, but such faults can
also be found more easily by a human. Success is less likely

on long-standing faults where automation may direct a devel-
oper towards the root of the problem.

In software quality assurance, a regression denotes a de-
fect that is absent in an older version but introduced in a
newer one. In other words, a regression fault occurs when
a change in the software results in a feature not function-
ing correctly anymore. The approach presented here works
best on regression faults, and scenarios where human defect
analysis cannot determine the problem cause. Therefore, suf-
ficiently large projects were chosen that warrant automated
debugging, and are mature enough to contain many old ver-
sions that can be mined for changes. Except for the JNuke
project, where we had direct access to a local copy of the
source repository, we used projects hosted on the popular
development platform sourceforge.net. From projects
hosted on that web page, the following technical constraints
had to be fulfilled to make the use of our tool feasible:

– The full history of all revisions had to be available for
anonymous access. This was only the case for about 20%
of all projects on a given platform. In some cases, the
repository was available as a CVS repository, but it was
not documented which module to check out; this prob-
lem does not occur with SVN, where all branches can be
checked out at once.

– Tests had to be fully automated and repeatable, including
any configuration files needed to run the test. This cri-
terion ruled out any applications using a graphical user
interface or processes running in the background without
generating any directly visible output.

– The application had to be sufficiently self-contained to al-
low automated compilation throughout its life cycle. This
was a major problem in particular with large Java or C++
applications. A long list of dependencies on external li-
braries or tools ruled out about half of all projects on a
given platform. For large projects, dozens of external li-
braries are common, and automated downloads of these
often fail at a given time because one of the servers is
not available. In other cases, incompatibilities between
the platform used for experiments, and the development
system the project was created on, prevented analysis.

Projects fulfilling the criteria above were mined for re-
gression defects by consulting their bug tracker database. The
bug tracker contains defect reports submitted by end users,
and has no standardized way of marking a defect as a regres-
sion bug. Reports were therefore studied manually in search
of likely regression defects. This classification itself was done
according to the subjective experience of the submitter and
not always correct, as experiments showed. Reading the bug
reports actually proceeded very quickly, as the majority of
bug reports contains no code or example input, and thus are
not suitable for automated testing.

After initial case studies [4], the scope of the experiments
was enlarged by choosing the 50 most popular projects from
sourceforge.net in the programming languages Java,
Ruby, Python, and Haskell. Given the constraints above, a
handful of successful candidates emerged. In particular, for
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Ruby, Python, and Haskell, no candidates that fulfilled all
the criteria above could be found. The main reason for this
is that in these communities, other servers usually host the
source code; sourceforge.net is used to represent the
project on that web page, but not to host its code or bug
repository. For Java and C++, the odds of getting access to
a working SVN repository were much better, which is why
Java in particular has the largest share of projects used for ex-
periments. For each eligible project, the 50 most recent open
bug reports were scanned for candidate test cases that could
be reproduced automatically on our machine. Overall, sev-
eral hundred bug reports of about 20 projects were evaluated,
out of which 13 case studies were chosen. These case stud-
ies were marked as potential regressions in the bug database,
or had defects related to features of which the implementa-
tion had undergone major changes, making them a possible
regression. Only a few different projects remained in the final
selection because the need for sample input and output data
effectively narrowed the selection of projects down to tools
that are used non-interactively with a well-defined input and
output.

Table 1 lists the case studies taken for the experiments.
The first three columns show the project name and a brief
description of the purpose of the application, together with
the kind of defect that was analyzed. The next three columns
show the implementation language, the size of each project
(in the version that analysis started at), and the type of revi-
sion control system used. The penultimate column shows how
long it took for a human to report the defect, from the time
when it was introduced into the system. This could of course
only be analyzed post mortem, after IDD had found a good
version. For defects that could not be confirmed as regres-
sions, and where no good version could be found, “*” is in-
dicated. For the bytecode instrumentation problem in JNuke,
a bug that was originally fixed after a code review, but not
tested against, was back-ported for this case study. In that
project, 212 days had passed between the initial bug fix and
the test that confirms the fault. Finally, the time it took for
a human developer to repair the defect is shown in the final
column; as can be seen, some problems took up to two years
to be repaired, so it can be said that these defects are hard to
analyze. For JNuke, the project had not been under develop-
ment for some time when it was ported to another platform,
where the defects showed up; so the time to fix would not
provide a meaningful metric here.

6.2 Uncrustify

Uncrustify is a source code formatting tool for various pro-
gramming languages including C, C++, and Java [16]. In ad-
dition to formatting code, changing whitespace, Uncrustify is
also capable of changing the code itself. For instance, one-
line statements following an if statement do not have to be
surrounded by curly braces. Uncrustify can be used to add
these optional braces, facilitating code maintenance.

The bugs registered in the sourceforge bug tracker under
numbers 1691150, 1723794, and 1739348 were used as case
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Fig. 10. Result of using hierarchical IDD on Uncrustify.

studies. These bugs were not reported as regression bugs, so
it was not certain that mining old revisions could yield a bug
fix. However, given the rapid addition of new features to Un-
crustify during that time, these bugs seemed to be good can-
didates.

6.2.1 Placement of comments

This bug describes how C++–style one-line comments (start-
ing with //) are sometimes moved to the wrong code block
when they are converted to C-style comments (enclosed by
/* and */ ), if, at the same time, optional curly braces are
also added for if and while statements. While the bug re-
port described three other issues, we focused on comment
placement with our test.

Figures 9 and 10 show the result of running IDD on that
case. The sizes of the change sets at each step before (above)
and after reduction by DD (below) are shown. The difference
between the two points for the same revision number (hori-
zontal axis) corresponds to the reduction of the change set by
DD. Note that a large reduction, resulting in a small “out-
put” patch, tends to lead to a smaller “input” patch at the
next DD iteration. Where the given patch could be applied
directly, no attempt was made to reduce it further, so each
point in the curve is equivalent to an invocation of DD during
back-porting. The sudden growth of the change set at revi-
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Table 1. Overview of case studies.

Project name Description Defect Impl. Code size Repository Time to Time
lang. [KLOC] system detect to fix

Comment placement * 125 d

Uncrustify Source code formatter C++ functions C++ 20 Subversion * 4 d

Conditionals * 1 d

Infinite loop 60 d 690 d

Java PathFinder Java model checker Cyclic deadlock Java 70 Subversion * 282 d

Lock counter * 733 d

Jar file parser 22 d *

JNuke Java VM/run-time analyzer Class loader C 130 CVS 542 d *

Bytecode instrumentation 0 d (212 d)

itext PDF manipulation library Unicode problem Java 180 Subversion * > 49 d

Compatibility * 122 d

hsqldb Database Deadlock Java 250 Subversion 193 d 10 d

NullPointerException 24 d 0 d

sion 509 corresponds to a refactoring where the large number
of command line options was specified differently in source
code. DD could not eliminate this refactoring. As older ver-
sions supported fewer and fewer options, the expected growth
in the patch set was sometimes compensated by the shrinkage
of the part of the patch that concerned command-line options.

IDD could not find a version passing the given test. Un-
fortunately, revisions 200 and older could not be checked out
with the given subversion (svn) client. This problem was in-
dependent of our IDD implementation; even a fresh checkout
of that old version failed. After this experiment had been car-
ried out [4], the defect was eventually fixed by the developer,
four months after the bug had originally been reported.

6.2.2 Other case studies

In addition to the experiment previously performed [4], two
other case studies were taken. In these cases, the bugs were
not long-standing issues, but it was possible to evaluate them
with the same test harness that was used in the earlier case
study, giving two more cases to test our approach on.

Incorrect handling of C++ functions with no parameters
Bug 1723794 addresses a cosmetic problem where functions
in C++ are not formatted consistently. The defect affects func-
tions with an empty list of parameters. The semantics of the
compiled code are not affected, but the bug was still repaired
quickly, within four days.

Brackets around boolean conditionals Bug 1739348 relates
to an erroneous syntactic change: Boolean expressions in brack-
ets were enclosed in additional brackets. For instance, expres-
sion !(a || b) became (!(a) || (b)). This change
affects the semantics of the expression and is of course highly
undesirable in a code reformatting tool. This bug is much
more critical than the earlier ones, so it is not surprising that
it was addressed within one day.

For both C++ functions and boolean conditionals, IDD
was able to evaluate the given test without having to back-port
any code. Again, revisions 200 or older could not be checked
out. Therefore, these two newer defects are not regressions,
as no older version of the code could be found that passed
these tests.

6.3 Java PathFinder

Java PathFinder (JPF) is a Java model checker that analyzes
concurrent Java programs for assertion violations, deadlocks,
and other failures [39].

6.3.1 Infinite loop

In a new version of the tool, a major architectural change
caused JPF to run into infinite loops for certain programs. Be-
cause the execution of a correct version takes a few minutes,
the program has to be run with a timeout of ten minutes to en-
sure that the version is indeed faulty and not just a bit slower
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Fig. 11. Result of using IDD on Java PathFinder.

than the correct one. The long test execution time makes a
manual search for the problem very tedious, and inspired this
work.

A much older version of JPF, 3.0a, which is not main-
tained in the same repository, produces a correct result. How-
ever, using that version for identifying a change set would
not be useful, because the entire architecture of JPF has been
redesigned since version 3.0a was released. Hence, IDD was
applied to different revisions of the source repository contain-
ing all revisions of version 4. The goal was to find a revision
in the new repository that could pass the test. Perhaps the bug
was introduced after the architectural changes that took place
prior to the migration to a public source repository. In that
case, IDD could find it.

We have applied IDD using revision 475 of version 4 as
a starting point. IDD iterated through older revisions up to
version 353, which passed the test (see Figure 11; both ver-
sions of IDD are shown in one plot here). In this case, no
changes had to be back-ported to that revision. Therefore, the
visible part of the graph shows the size of the patch fixing
the defect. Delta debugging was unable to identify a very
small change set to fix the newer, defective versions. Dur-
ing forward-porting, the initial patch of 386 and 171 lines,
respectively, grew successively. Sometimes, a later iteration
of DD took advantage of previously resolved dependencies
and shrank the patch again. However, at the end, an unwieldy
patch of more than 1,000 lines remained for standard IDD,
and a patch of 272 lines for hierarchical IDD.

This is still too large for the patch being meaningful to a
human programmer. The generated change set still includes
refactorings amidst functional changes, and while it fixes the
given bug, it breaks other features of JPF. Because of this, we
did not follow up with this bug fix further to actually repair
JPF. After this initial case study [4], the problem was eventu-
ally fixed, more than two years after it had been introduced.

6.3.2 Additional case studies

Failure to detect cyclic deadlock Bug 1727279 describes a
failure of JPF to detect a cyclic deadlock between two locks.
In later versions, internal failures in the maintenance of the

lock state of the virtual machine cause errors. The fault was
eventually repaired by a change that addressed at least eight
unrelated issues, according to the log file of the source code
repository. Because of this, it is unclear whether the defect
repair was just subsumed by other changes or specifically in-
tended, as this particular issue was not mentioned in the log,
and the bug tracker still reports this problem as being open.

Incorrect internal lock counter A different defect, reported
as bug 1523912, relates to an incorrect lock counter in the vir-
tual machine. The defect evolved over time into a case where
JPF failed to report an error for a faulty program. Eventually,
the defect was repaired when a large change set from the de-
velopment branch was merged.

Both additional case studies turned out not to be regres-
sions, as no working earlier version could be found. There-
fore, IDD was not able to synthesize a fix.

6.4 JNuke

JNuke is a tool platform written in C to analyze Java pro-
grams [5]. It includes a Java virtual machine, static and dy-
namic analysis components, and a bytecode instrumentation
tool [3]. The class loader of the virtual machine includes a jar
file parser as a component; that parser was analyzed in a first
experiment [4]. This publication includes two large IDD runs
that have been completed recently, on two unrelated compo-
nents: The code pretty printer of the class loader, used for
testing, and the bytecode instrumenter.

6.4.1 Jar file parser

In the first experiment on JNuke, IDD was applied to find
the reason of a memory access problem in the jar file reader
under Mac OS X (10.4) that was not found under Linux. This
is a typical case in which IDD can be applied: Code that is
often tested on one platform (in this case, Linux) but rarely
on another one (Mac OS). Such tests may pass on the main
development and test system, but fail on a different platform.
As the system is periodically tested on the other platforms,
some known good versions exist, but regression defects may
go undetected for some time. IDD is used to identify the most
recent good version.

As Figure 12 shows, IDD was very successful here. The
test could be run without any adaptations on older versions,
until it passed at revision 1872. The graph shows the size of
the patch fixing the problem. Hierarchical IDD even found
a minimal patch of just two lines, identifying the fault pre-
cisely. This example is a case where IDD would have found
the test quickly enough to be useful for replacing human ef-
fort in debugging.

6.4.2 Class loader

In this experiment, a buffer overrun in the class loader pro-
duced a failure on Mac OS X (10.4) that was not detected
under Linux. This case differs from previous cases in that
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Fig. 14. Result of using hierarchical IDD on JNuke: class loader.

the failure could be located using traditional debugging tech-
niques and memory analysis tools [30]. Because the defect
was not discovered for a very long time, it was still consid-
ered to be an interesting candidate for an experiment.

When considering the plots in Figures 13 and 14, two
“phases” of the experiment can be picked out: In an initial
phase (revisions 2604–1950), hierarchical DD produces a very
small patch, whereas the line-based version produces patches
with sizes up to 1000 lines and more. In a second phase (re-
vision 503 and lower), both approaches fare about the same.
The experiment was stopped at revision 295, because intro-

duction of the formatting tool indent affected the entire
code base at this point, generating a patch of about 25,000
lines, which was too large for DD to handle.

The fact that the code base had undergone several years
of evolution manifested itself in a compilation problem on
slightly older revisions. Revision 2740, where the defect was
encountered, could be run and tested normally with a newer
version of gcc than the one that was used at development
time. In revisions 2604 and lower, a code artifact that is no
longer tolerated by newer versions of gcc prevented success-
ful compilation. In this case, the DD part of our algorithm
therefore did not target functionality, but syntax. The change
responsible for the compilation error consists of only two
lines. While hierarchical DD could efficiently isolate the file
and change in question, the non-hierarchical version did not
hit reasonably small change sets that were also syntactically
valid. As a consequence of this, hundreds of lines of unneces-
sary changes were kept and moved back throughout revisions
2604–1950. At that point, application of the patch resulted in
another invocation of DD. Because the “offending” code in
question was no longer part of the repository at that point, the
patch to compile on a newer gcc had become entirely obso-
lete. The first DD invocation that attempted to use an empty
change set therefore succeeded, eliminating the entire change
set. The same effect was encountered on the hierarchical run
at a different revision, and again later for a similar syntac-
tic problem. As the performance of DD mostly depends on
the locality of a change set, the nature of the problem (com-
pilation or test failure) is immaterial. Hierarchical DD was
therefore much better for this initial problem.

When going back to earlier revisions (503 and lower),
though, actual functional changes had to be back-ported in
order to keep the necessary infrastructure to execute the unit
test in question. In that part of the experiment, both variants
of DD fared about the same. The hierarchical variant was
slightly better at first, but the “flat” DD generated a slightly
smaller patch in the last few revisions.

This may seem counter-intuitive at first. However, one
should be reminded that the given hierarchical implementa-
tion uses an approximation of the change hierarchy, and that
changes may be interspersed throughout files. If a file affected
by a patch is unchanged, a hierarchical implementation may
reach a local fix point (for that file) fairly quickly. This is be-
cause once a file and a change set are stable, a hierarchical
bisection will always analyze the same subsets of changes. In
contrast to that, the state space bisection of non-hierarchical
DD sometimes includes parts of several files. State space bi-
section starts across files, working its way down to smaller
intervals. These intervals hit slightly different sets of lines
within a file in each invocation, because the size of the over-
all patch set changes from one revision to another, even if the
part affecting one file is constant. This fact sometimes allows
the non-hierarchical variant to reduce the change set more
than the given hierarchical implementation can.

This behavior does not indicate that the hierarchical algo-
rithm per se is not ideal. However, its implementation has to
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Fig. 15. Result of backward iteration on JNuke: bytecode instrumentation.
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Fig. 16. Hierarchical IDD, backward it. on JNuke: bytecode instrumentation.

fully reflect dependencies of changes on a semantic level, in
a given programming language, in order to be most effective.

6.4.3 Bytecode instrumentation

The last experiment targets a defect that was found through
code inspection, but not verified by a unit test until much
later in the project. If the defect had not been found by in-
spection, it may have persisted in the system for over 600
revisions, occurring over the time span of about six months.
After that time period, it is likely that the localization of the
defect would have taken a significant human effort.

For this experiment, the defect that was introduced in re-
vision 1306 and repaired immediately after, was applied to
revision 1890, which was the first one containing a unit test
that confirms the problem.

The results are presented as two plots here, to make it eas-
ier to read the information. Figures 15 and 16 show the back-
porting phase of IDD. Various refactorings and other code
changes required adaptation of older revisions to the newer
test case. Both versions of DD produced a large change set,
resulting in more and more frequent patch conflicts, which
in turn required more calls to DD. The graph shows how this
problem was exacerbated over time, with data points that cor-
respond to DD calls clustering on the left, on older revisions.
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Fig. 17. Result of forward iteration on JNuke: bytecode instrumentation.
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Fig. 18. Hierarchical IDD, forward it. on JNuke: bytecode instrumentation.

The patch set to be pack-ported reached more than 1,000 lines
at the time when the good revision (1305) was hit.

Forward porting (see Figures 17 and 18) allowed for a
successive reduction of the patch size. One reason for the im-
mediate drop in patch size in the hierarchical version of DD
is that certain guards against possibly unwanted changes can
be dropped for forward-porting. For instance, memory cor-
ruption in C programs may occur after a patch is reduced.
In the backward porting phase, this has to be avoided be-
cause memory corruption may prevent a test case from ever
succeeding. When forward porting a patch, certain memory
problems, such as the use of initialized variables, are permis-
sible if they are a consequence of incompletely eliminated
spurious changes [4].

6.5 PDF library (itext)

Project “itext” is a PDF library written in Java, which can
generate PDFs and also display documents in that format.
While most bugs reported online either had not automated
way of being reproduced, or concerned the graphical user in-
terface of the tool, one bug relating to an incorrect handling
of UTF-8 encodings was used as a case study (bug 2792227).
It is one of a few cases where a defect was taken by a pro-
grammer and encoded as an automated unit test, intended to
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both automate testing and serve as an example for future unit
tests.

IDD was not able to find a working version. Analysis
was hampered by the fact that the test driver was set up to
abort upon the first test failure. This required IDD to repair
a number of other tests when going back to older revisions.
As Figures 19 and 20 show, relatively large patches were
generated between revisions 4079 and 4000. At older revi-
sions, the problematic unit tests were no longer present in the
repository, and only a small patch containing the test code
of the new test had to be back-ported. This allowed IDD
to progress efficiently and analyze over 800 older revisions,
down to revision 3174. After that, the subversion (svn) client
was not able to proceed, because a directory had been added
and deleted again over the course of time, causing an inter-
ference between patch generation (through svn diff) and
a subsequent use of that patch. At the time of writing, the
bug has not been repaired yet, after over one month of being
encoded as an automated test.

6.6 Hyper-SQL database (hsqldb)

Hsqldb is a popular light-weight database written from scratch
in Java. This makes it a suitable candidate for IDD, as there
are no dependencies on third-party libraries. Furthermore, a
non-persistent in-memory database mode is supported, allow-
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Fig. 21. Result of using IDD on hsqldb: Read lock not released

ing for easily automated testing. Three issues from the bug
database were chosen. Two were encoded as SQL scripts that
execute the test, and one was implemented as a small appli-
cation.

6.6.1 Backward compatibility problem

The first bug, number 2795205, refers to a change that breaks
backward compatibility. As various applications already rely
on the old (non-standard) behavior, the developers changed
the query parser to accommodate for this. IDD was unable
to find a working older revision, but the given test applica-
tion could be applied to all existing older versions of hsqldb
without having to back-port any functionality.

6.6.2 Read lock not released

The second case (bug 2887855) refers to a case where a read
lock is not released, causing subsequent queries on the same
table to block indefinitely. The problem was a symptom of a
design change in the query engine, confirmed by the devel-
oper to be “currently normal”. With work on the engine con-
tinuing, the bug was addressed as part of a subsequent larger
change.

This bug was known to be a regression from the previ-
ous stable release, and IDD was able to find the exact change
in question. The change set found was relatively small, and
allows a human to understand the problem. Unfortunately, it
was not suitable to forward-port that change set to a newer
version. Frequent refactorings interfered with the patch mech-
anism, causing very large patch sets to be forward-ported
where a manual intervention could have ignored certain changes
such as class renamings easily (see Figure 21). The problem
affects both the non-hierarchical and the hierarchical delta de-
bugging approaches. The bug fix was forward-ported across
32 versions in this case, after which it became clear that the
resulting patch would be very large, and complete forward-
porting would take a large amount of time.
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6.6.3 NullPointerException

The last case, bug 2887964, was easily diagnosed, but still
included as a case study because it was also a known re-
gression. As expected, a good version could be found. For
the hierarchical approach, the resulting synthesized bug fix
could be forward ported efficiently, resulting in a relatively
small patch. Only a small part of the synthesized bug fix ac-
tually coincides with the change by the developer. The non-
hierarchical approach ended up being much slower and less
precise than the hierarchical one, as shown in Figure 22.

6.7 Reasons for iteration and DD failures

It is interesting to look at the reasons why the backward or
forward iteration could not proceed, and similarly, at what
kinds of problems were encountered during delta debugging.

Table 2 shows the reason why a given non-empty patch
could not be applied to a given revision. Four different cate-
gories of problems are listed:

1. Patch: The patch tool reported a conflict, so the patch
could not be applied. When using the patch tool outside
the context of this project, a human has to resolve a patch
conflict. As described in Section 5, a patch failure can be
regarded as an overall failure in the full patch-build-test
cycle, so delta debugging can also be used to treat such
problems.

2. Build: The given version could not be compiled success-
fully.

3. Test error: The test failed, or, in backward iteration, pro-
duced an outcome different from the existing failure. Such
a different erroneous outcome may be a different output
or a premature termination.

4. Timeout: The patched version exceeded its time limit,
usually because the patch generated an infinite loop.

Table 2 shows that patch failures make up at least 64 %
of all cases why the iterative part of IDD fails. While patch
problems can be caused by semantic changes in the program,
a lot of patch failures encountered in this work were due to
minor syntactic changes. As the patch format depends on pre-
cise context information in the affected part of the code, and
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Fig. 23. Effectiveness of DD

in the immediate vicinity of a change set, it is rather fragile. It
often happens that changes unrelated to the intended seman-
tic change prevent automatic patching. A simple renaming of
a variable often prevents a patch from being applied success-
fully. This calls for a next-generation patch tool, as outlined
in Section 9.

Finally, on the level of delta debugging itself, reasons for
a failure of individual DD steps also vary. Table 3 gives an
overview of why a subset of a change set produces an invalid
program.2 A generated program mutation may not compile
successfully, cause an assertion failure, a timeout, use cor-
rupted memory, or cause another, unclassified failure.3 Note
that memory corruption sometimes caused a C or C++ pro-
gram to crash in a certain way that it could not be classified
as such by our evaluation scripts, so some instances of mem-
ory corruption are listed as “other”.

An interesting observation is that build failures are much
more common for a Java program. Up to 97 % of all gener-
ated mutations for Java programs were rejected by the com-
piler, while for C and C++, this number was often lower than
90 %, and as low as 43 % for the JNuke/jar file parser case.4

In general, the hierarchical approach produces fewer build
failures, as some syntactically invalid versions are never gen-
erated. The fact that build failures make up about 90 % of
failed DD iterations overall shows that a more detailed syn-
tactic analysis prior to the bisection search has the potential
of improving the performance by an order of magnitude.

The average patch size reduction, shown in the final col-
umn, varies between projects, but is always better for hierar-
chical DD. As each successful test requires fewer successive
DD steps, it is clear that the average patch size reduction is

2 Note that the numbers do not add up to the final counts in table 4, as
successful runs are not included here.

3 Memory corruption may manifest itself in a segmentation fault for C or
C++ programs, or an array bounds exception in a Java program.

4 The reason for more frequent Java compilation errors is that the Java
compiler performs method-local data flow analysis and requires that return
values and values of each local variable always be defined. This generates
compilation error for programs for which the equivalent code would be ac-
cepted by a C or C++ compiler. For our work, this “fail fast” behavior was
beneficial for the overall accuracy and performance, as no Java programs
using uninitialized memory were created.
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Table 2. Reasons for failed backward and forward iterations.

Project name Failure type

patch build test error timeout

Uncrustify
IDD 51 7 5

IDD-h 43 6 4

Uncrustify (other cases) IDD and IDD-h no need to back-port changes

Java PathFinder (infinite loop)
IDD 14 1 1

IDD-h 10 1

Java PathFinder (other cases) IDD and IDD-h no need to back-port changes

JNuke (jar file parser)
IDD 1

IDD-h 1

JNuke (class loader)
IDD 80 19 6

IDD-h 49 16 1

JNuke (bytecode instrumentation)
IDD 233 49 11

IDD-h 80 34 8 1

itext (Unicode problem)
IDD 15 7 6

IDD-h 12 7 6

hsqldb (backward compatibility) IDD and IDD-h no need to back-port changes

hsqldb (deadlock)
IDD 24 4

IDD-h 20 7

hsqldb (NullPointerException)
IDD 15 1

IDD-h 2
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Fig. 24. Effectiveness of hierarchical DD

inversely correlated to the number of times a build/test run
had failed in DD (see Table 3). However, the effectiveness of
DD is not correlated to the size of the input patch set. Small
input patches may be easily reducible due to the simplicity
of a change set, or hard to reduce further because irrelevant
changes have already been removed at a previous iteration.
The same holds for large patches. Figures 23 and 24 show
two scatter plots of input patch sizes (before the invocation of
DD at each step) and output patch sizes (after DD), for nor-
mal and hierarchical DD. A point placed further away from
the diagonal corresponds to a more effective patch size re-
duction. As can be seen, both small and large change sets can
sometimes be significantly reduced, and sometimes hardly re-
duced at all. It should also be noted that usually, a large part
of the input patch corresponds to the output of a previous DD
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Table 3. Reasons for failed build/test runs in DD, and effectiveness of DD.

Project name Failure type Patch size reduction

build assertion timeout memory other (average)

Uncrustify
IDD 43781 222 451 4666 20 %

IDD-h 31868 81 472 4091 23 %

Java PathFinder (infinite loop)
IDD 53516 271 964 23 %

IDD-h 12660 74 796 50 %

JNuke (jar file parser)
IDD 192 17 55 60 %

IDD-h 35 10 35 86 %

JNuke (class loader)
IDD 88994 513 1 68 39 %

IDD-h 23004 192 72 2 99 44 %

JNuke (bytecode instrumentation)
IDD 578064 12577 1755 7660 24744 12 %

IDD-h 119209 5269 1149 3562 13934 20 %

itext (Unicode problem)
IDD 10881 2 89 49 %

IDD-h 2934 101 53 %

hsqldb (deadlock)
IDD 191287 130 163 14 %

IDD-h 154988 69 165 19 %

hsqldb (NullPointerException)
IDD 106971 18 1 537 19 %

IDD-h 5533 61 43 %

invocation. That part of the change set can usually not be re-
duced significantly anymore.

6.8 Evaluation

Table 4 summarizes the outcome of all experiments. For both
the linear and the hierarchical DD algorithm, the table shows
the size of the patch required to back-port the test, the initial
patch repairing an old version, and the final patch for the cur-
rent version of the application. After that, the size of a bug
fix by a human is shown, where applicable. Columns with
no data indicate that no repair action could be synthesized.
Finally, the number of calls to the DD procedure, and the
number of build/test runs in DD, gives an impression of the
overall complexity and run-time behavior. DD invocations do
not include the final fix-point iteration, which adds 2–11 test
cycles and usually has a minor impact on the overall number
of iterations.5

5 We made the design choice of only having a fix-point iteration for patch
size reduction at the end of the entire IDD process. The reason for this was
that during the iterative phase, patch failures often occurred for parts of the

The fix-point iterations typically reduce the patch size by
about 10%, as shown by Figure 25. When hierarchical DD
was used on the Jar file parser patch for JNuke, the patch was
reduced from 8 to 2 lines, appearing as a very large relative
change in Figure 25. From these results, one may decide to
forgo the fix-point iteration, if the given patch is already pro-
viding a good explanation or fix of a defect.

From Table 4, it can be seen that in 5 out of 13 versions,
a “good” version passing the test could be found. Forward-
porting always succeeds, but in most cases produces a patch
that is much larger than one written by a human. In all cases
but one (JNuke/jarfile), the synthesized patch would have re-
paired the test in question, but caused problems with other
parts of the program. The overall success rate of about one
tenth is consistent with other automated repair techniques on
large programs [13] and show that automated repair actions
have a potential for future enhancements.

code that were not affected in the previous DD invocation. In these cases,
the next iteration would also aid the convergence of patch sets generated in
previous DD runs, where recursive dependencies prevented a removal of a
change in a single step.
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Fig. 25. Relative patch size reduction during fix point iteration

Unfortunately, it is difficult to classify the quality of the
generated patch: The lack of an overlap between the gener-
ated patch and the actual bug fix (such as in the first JPF and
the last two hsqldb case studies) does not mean that the auto-
mated fix is not useful. The automated patch attempts to re-
pair the program and maintain the status quo. In many cases,
the human-induced changes include adaptations to other re-
quirements, so a meaningful comparison is not possible.

As can be seen, the hierarchical version of IDD always
produces significantly smaller patches, although the differ-
ence varies. Furthermore, the hierarchical algorithm requires
between 1.3 and 18 times fewer build and test runs, a result
that is consistent with similar hierarchical approaches [45].

In the given experiments, the number of test cycles within
DD would have been prohibitively large in practice in all
cases except for the jar file parser of JNuke. The complex-
ity of our DD implementation is linear in the size of failed
build/test runs, suggesting a fairly good scalability of DD it-
self. However, when patches are generated repeatedly, as in
IDD, the overall complexity is not linear or quadratic: Larger
patches tend to be more vulnerable to patch conflicts in later
revisions. Therefore, once a patch has accumulated a num-
ber of features such as refactorings, name changes, etc., the
patch command tends to fail more often. As a result of this,
the DD subroutine is used more often, which tends to lead to
even larger patches. At some point, the problem exacerbates
itself to a level where IDD takes too much time to finish. A
better change set elimination algorithm improves the situa-
tion, which shows in the better performance of the hierarchi-
cal DD implementation. Furthermore, the time to compile a
project is also significant. In our experiments, each build/test
cycle took up to 30 seconds. Longer IDD runs can take sev-
eral days, or even months.6 In practice, the likelihood of a
success is highest for quickly detected defects, so DD would
typically be run for a few hours or days before it would be
aborted.

6 Intelligent caching of compiled artifacts could reduce this time by at
least a factor of 10. However, we did not find a system that supported all the
programming languages and revision control systems in question.

7 Related Work

Several solutions have been proposed to isolate defects, and
to automatically repair programs. Automated techniques range
from program analysis, and statistical methods, to methods
analyzing the run-time behavior of the program.

7.1 Program analysis

Static analysis techniques, such as slicing, can reduce the
amount of code that has to be analyzed [25,41,44]. Program
slicing uses a predicate and computes the subset of a program
that determines the outcome of that predicate. Like DD, slic-
ing attempts to compute a minimal set that has to be analyzed.
The major difference is that the full program, and not just a
change set, is analyzed with slicing.

Program slicing has been conceived as a static technique,
but can also be used at run-time. A simple yet accurate and
effective way of slicing is the usage of coverage information,
to show which code is executed by which unit tests [20].
Test coverage and failure information can also be gathered
in a distributed way to reduce the overhead on each execu-
tion [22]. The coverage of a single test shows if a statement
has been executed or not, and provides binary information.
Such information is precise but may result in a candidate set
that is rather large.

7.2 Statistical techniques

More recently, several quantitative, statistical techniques have
been proposed. While they do not work with 100 % precision,
they can typically narrow down the set of candidate locations
further than qualitative approaches.

When considering the program structure, a set of program
edits can be ranked based on structural heuristics [32]. Con-
versely, when it comes to test coverage, many approaches
have been proposed that consider a number of passing and
failing tests on a given program. They are known as spectrum-
based techniques and compare the coverage of tests with dif-
ferent outcomes [2,10,19,34]. The key difference to our ap-
proach is that spectrum-based techniques require several pass-
ing and failing tests to narrow down the cause of an error.
They are thus more geared towards an early selection of likely
fault locations, such as a ranking of modules or classes, and
less towards pin-pointing a fault in a particular test case. At-
tempts were made to use a more elaborate model of test exe-
cutions to improve the precision of spectrum-based location.
Such so-called “model-based” diagnosis approaches suffer
from scalability problems, though [27,42].

Until recently, spectrum-based localization techniques were
applicable to single faults only, but recent improvements made
them applicable to multiple faults [1]. Coverage-based tech-
niques consider multiple tests against one version of the pro-
gram; we consider one test against multiple variations of the
program. While coverage-based techniques are not applica-
ble to a single test, one may consider them as a heuristic to



Cyrille Artho: Iterative Delta Debugging 19

Table 4. Summary of experiments.

Project name Size of Size of Size of Number of Number of
back-ported test initial patch final patch calls to DD build/test runs

IDD IDD-h IDD IDD-h IDD IDD-h Human IDD IDD-h IDD IDD-h

Uncrustify (comments) 667 567 – – – – 50 63 53 52483 39170

Uncrustify (C++ functions) 0 0 – – – – 37 0 0 0 0

Uncrustify (conditionals) 0 0 – – – – 76 0 0 0 0

JPF (infinite loop) 0 0 344 169 1133 272 255 16 11 57140 15013

JPF (cyclic deadlock) 0 0 – – – – 1344 0 0 0 0

JPF (lock counter) 0 0 – – – – 555 0 0 0 0

JNuke (jar file parser) 0 0 55 19 20 2 2 1 1 335 117

JNuke (class loader) 586 635 – – – – 2 106 67 96870 26141

JNuke (bytecode instr.) 1448 1017 1395 700 2098 238 4 293 124 647490 148619

itext (Unicode problem) 94 86 – – – – – 27 24 12678 3597

hsqldb (compatibility) 0 0 – – – – 36 0 0 0 0

hsqldb (deadlock) 0 0 102 15 > 6000 > 4000 411 28 27 200579 164472

hsqldb (NullPointerException) 0 0 964 766 2030 239 107 17 4 110469 6012

prioritize other types of fault localization. Multiple tests may
be generated from an initial seed by “fuzzing” the input, ran-
domizing it to alter the test outcome [35,36].

7.3 Behavior-based defect analysis

In software, invariants and internal consistency checks are of-
ten specified as rules, encoded as assertions. In the absence
of such specifications, rules may be generated by observing
the behavior of program executions [15]. Rule sets generated
in this way can then be used to generate test cases for veri-
fication [12], or be verified using existing tests [14]. In this
way, inconsistencies in the implementation can be demon-
strated by test executions. Recent work has combined the ob-
servation of tests against such rules, and used coverage in-
formation on these rules to generate possible repair actions
for rule violations [13]. Other work considers repair actions
directly on data structures in memory, to repair broken invari-
ants and then generate program code that implements such a
change [24].

Unlike our approach, which takes existing code as can-
didates for possible repair actions, techniques that synthe-
sizes new code are also applicable for defects that are not
regressions. The weakness of current synthesis approaches is
that the types of repair actions that can be generated is still

limited. Another way to overcome the limitation of strictly
history-based approaches is to allow for mutations in repair
actions, using genetic programming [40]. The combination
of generating changes based on rules, with mining previous
revisions for potential fixes, constitutes future work.

7.4 Delta Debugging

Delta Debugging, as introduced by Zeller [43], reduces an in-
put or change set by applying the state space bisection tech-
nique described in Section 3 of this paper. Delta debugging
in its original version considers an input (or change set) to
be unstructured. It can therefore be applied to any kind of
non-binary data, including program source code. One project
applied delta debugging to a representation of thread context
switches of the execution of a concurrent program [11]. The
search strategy of DD remained unchanged, though. This also
applies to work that combines DD with program slicing [18].

7.5 Domain-specific implementations of hierarchical DD

Many kinds of data, such as XML data or program source
code, are not structured into disconnected, independent lines.
The original DD algorithm is not necessarily very precise and
efficient in such cases. Hierarchical Delta Debugging [28]
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breaks down change sets into hierarchical groups, thus im-
proving the effectiveness of the algorithm.

Algorithms for hierarchical debugging for data other than
XML have been developed in the meantime. A domain-specific
DD algorithm exploits the structure of the input data to re-
duce the number of invalid mutations generated, and usually
leads to much better convergence by taking advantage of the
hierarchical structure of the input.

In general, HDD tools operate on a model that is more
abstract than the underlying data. The model allows for di-
rect modification, but typically has to be converted back into
the original format when evaluating the result of a modifica-
tion. The experiments in this paper have shown that the qual-
ity of the underlying fault localization algorithm is of major
importance for IDD. Therefore, existing hierarchical DD al-
gorithms are surveyed in more depth here.

7.5.1 Original HDD algorithm

The original HDD algorithm for XML [28] operates on an ab-
stract syntax tree (AST). Concrete tool implementations and
experiments have been carried out for C programs and XML
data files. The C version builds on a parser for C that has been
extended to allow a modification of the resulting AST. The
XML version directly exploits the strict hierarchical structure
of XML, in the form of subtrees, nodes, attributes, and finally
characters. This work is similar to the approach used in this
paper, in that the nesting of data is exploited, in order to en-
hance the search. Non-hierarchical consistency constraints,
such as the fact that a variable used (in statically typed pro-
gram code) must be defined, were not exploited.

7.5.2 SMT formulae

The satisfiability of logical formulae is an everyday problem
when analyzing models of digital circuits [8]. Formulae are
typically encoded as a hierarchical structure, and tools op-
erating on them accept only well-formed input. The header
of the input includes redundancy, such as the number of ele-
ments to follow. A direct implementation of DD is not ap-
plicable in such a case, because a direct mutation of data
leaves the header and the payload inconsistent. A specialized
implementation of delta debugging for Satisfiability Mod-
ulo Theories (SMT) solvers has been proposed, which adapts
the modification of data such that the generated data is still
valid [38,9]. In this case, consistency conditions include the
graph structure, the type of nodes, and simplification rules
that eliminate redundancy.

7.5.3 Aspect-oriented Java programs

Dependencies in program source code, and changes therein,
are complex. In object-oriented systems, changes can be struc-
tured into atomic changes [33]. Change sets follow the struc-
ture of object-oriented code, from classes, methods, and fields,
down to the body of a method. The granularity stops at method
level and thus is fairly coarse. The Celadon tool extends the

set of atomic changes to include changes in aspect-oriented
software, and uses such a representation of changes for delta
debugging [44].

Celadon introduces ranking as a part of three-phase delta
debugging [45]. Phase 1 constructs an internal representation
of changes. Phase 2, which does not exist in other tools, ranks
changes according to code coverage information; such a rank-
ing is applicable when multiple tests are analyzed. Our work
focuses on analyzing one test, so a ranking is not applica-
ble here. In Celadon, coverage information is used to deter-
mine which changes affect how many unit tests [45]. Finally,
phase 3 corresponds to the actual invocation of DD. The im-
provement in phase 2 in Celadon is orthogonal to our contri-
bution of applying DD iteratively to a history of changes, and
could therefore be combined in future work.

7.5.4 Differences to our tool

Existing work that addresses DD on program source code [28,
45] is tied to a particular programming language. Changes on
a higher level can be represented and structured accurately.
Our work is language-independent and uses the hierarchy of
patch files for a finer-grained analysis. As a drawback, our
work suffers from the fact that patch structure may not re-
flect the hierarchy of underlying program changes accurately.
A versatile, fine-grained implementation is subject of future
work.

Table 5 shows an overview of the HDD algorithms con-
sidered here, in the order in which they have been discussed
in this section.

8 Conclusion

Delta debugging automates the task of identifying minimal
change sets. However, it requires a correct version, which
may not be known when a new defect is discovered. If an
old version that passes a given test exists, then a systematic
evaluation of older versions may discover it. Sometimes, it is
necessary to apply changes of newer versions to older ones in
order to allow a newer test to execute on an old version. Itera-
tive delta debugging automates this process and successively
carries changes from newer versions back to older ones, un-
til either a correct version is found or the process is aborted.
After that, the resulting patch may be forward-ported to the
current version, using the same algorithm. In this way, au-
tomatic synthesis of potential software repairs is sometimes
possible. Our methodology works successfully on some large
examples, but depends on the precision of the delta debug-
ging implementation used, and requires much time for large
change sets.

9 Future Work

Iterative Delta Debugging works in conjunction with delta
debugging, but requires a high-performance, high-precision
implementation of DD in order to be successful.
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Table 5. Overview of hierarchical delta debugging implementations.

Algorithm Domain Data format Model format

HDD C source code or XML data C source code or XML data Abstract syntax tree

HDD for SMT solvers SMT formulae SMT solver input Tree with consistency constraints

Celadon Aspect-oriented Java programs Source code Atomic changes

Patch-based HDD Text files Patch Patch file hierarchy

The current tool chain has been written as a prototype,
lacking several possible optimizations that could be imple-
mented. For instance, DD generates and compiles variations
of one revision by checking out a fresh copy of the neces-
sary files and compiling them from scratch in each iteration.
Whenever the build configuration does not change, most of
these steps can be cached. Recent revision control systems
like git [37] already cache the entire repository very effi-
ciently. Their design also allows for off-line commits, when
no central server is available, and encourages frequent small
changes. The resulting small change sets should make IDD
more effective.

Incremental compilation would also speed up the process,
but requires accurate build information. In our experiments,
the changes in the code were accompanied by changes (and
bug fixes) in the build configuration itself. Furthermore, some
files are compiled and executed prior to the actual build pro-
cess, to test for the behavior of the given platform. Due to this,
we chose a conservative implementation that always recom-
piles the entire application from scratch. A more precise anal-
ysis could not only compile a program incrementally, but also
deduce if a given unit test is affected by a particular change.
As an augmentation to delta debugging, code analysis such
as coverage [20] or slicing [25] could a priori eliminate the
need to verify variations where too much code is removed.
Code coverage and dynamic slicing on a known “good” ver-
sion can help to identify which statements are crucial for a
test to pass. Such statements should not be removed in the DD
process. For C programs, static analysis against memory cor-
ruption could further automate the suppression of programs
that do not generate consistent results.

The direction of applying hierarchical DD is definitely
promising, and delivers faster and better results than stan-
dard DD. However, the hierarchy of the patch file structure
does not exactly mirror the hierarchy of software source code.
Tools that analyze the syntax and call graph of programs [45],
or tools that represent software source code in XML format [17,
26] could be used to extract a hierarchical representation of
programming constructs. If XML data is used, then the ques-
tion of how to generate an efficient and expedient difference
representation is still open. Tools having their own format ex-
ist [23], and may be used in further case studies. Eventually,
such work may lead to a successor of the Unix patch tool,

which would be useful in a much wider context than debug-
ging alone.
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