
Architecture-aware Partial-order Reduction to Accelerate
Model Checking of Networked Programs

Cyrille Artho, Yoshinori Tanabe, Etsuya Shibayama
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Watcharin Leungwattanakit, Masami Hagiya
University of Tokyo, Tokyo, Japan

Programs are often structured into a main thread
that delegates incoming requests, and worker threads.
A similar structure also exists in applications where
several processes have been merged (“centralized”)
into a single application. Such a transformation wraps
processes as threads. and is used to model check net-
worked programs. A direct implementation of wrap-
ping allows for interleavings between initialization and
execution of client threads. We present a partial-order
reduction which, when applies to such programs, elim-
inates exploration of such interleavings. —

Most software model checkers [4] cannot handle
multiple processes. To model check multiple processes
in a single-process model checker,centralization has
been proposed [3]. Centralization wraps several pro-
cesses in a single process. Using a TCP/IP model
library, networked applications can then be model
checked [1]. However, the large number of thread in-
terleavings limits scalability. Therefore, it is useful to
optimize state space search as far as possible.

After centralization of an application, wrapper code
runs as the main thread. The wrapper first starts the
server process as a separate thread, and waits for its
initialization to complete. After that,initialization and
execution of each client is performed. This creates
possible interleavings: After the first client is ready,
it may already execute, even though the main (wrap-
per) thread is still initializing other clients. The model
checker may analyze such interleavings, even though
initialization of clients (in the main thread) does not in-
terfere with execution of other clients. In simple pro-
grams, the model checker recognizes the redundancy
in these interleavings. For more complex cases, the
built-in partial order reduction fails. This observation
led to a custom partial-order reduction. It takes this
architectural property into account by only allowing

schedules where the main (wrapper) thread finishes be-
fore client threads execute.

Using JPF version 3 [4] on small centralized pro-
grams [1], the gains achieved were not significant, be-
cause few client threads are used. However, in a more
recent case study based on a different approach to ana-
lyzing networked software [2], a more complex client
was analyzed. In that case, our manual optimization
resulted in a significant speed-up. More work remains
to be done whether centralized applications can be ac-
celerated as well in some cases.

In the talk, reachability-based partial-order reduc-
tion in JPF is introduced first. It works on top of
garbage collection. Second, custom partial-order re-
ductions will be explained. They can be implemented
either through program instrumentation or by extend-
ing the default search algorithm.

References

[1] C. Artho and P. Garoche. Accurate centralization
for applying model checking on networked appli-
cations. InProc. ASE 2006, Tokyo, Japan, 2006.

[2] C. Artho, B. Zweimüller, A. Biere, E. Shibayama,
and S. Honiden. Efficient model checking of ap-
plications with input/output.Post-proceedings of
Eurocast 2007, 2007. To be published.

[3] S. Stoller and Y. Liu. Transformations for model
checking distributed Java programs. InProc.
SPIN 2001, volume 2057 ofLNCS. Springer, 2001.

[4] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs.Auto-
mated Software Engineering Journal, 10(2):203–
232, 2003.


