
Model-based Testing of Stateful APIs with Modbat

Cyrille Artho∗, Martina Seidl†, Quentin Gros‡, Eun-Hye Choi∗,
Takashi Kitamura∗, Akira Mori∗, Rudolf Ramler§, and Yoriyuki Yamagata§

∗National Institute of Advanced Industrial Science and Technology (AIST), Amagasaki, Japan
{c.artho,e.choi,t.kitamura,a-mori,yoriyuki.yamagata}@aist.go.jp

†Johannes Kepler University, Linz, Austria
martina.seidl@jku.at

‡University of Nantes, Nantes, France
quentin.gros@etu.univ-nantes.fr

§Software Competence Center Hagenberg, Hagenberg, Austria
rudolf.ramler@scch.at

Abstract—Modbat makes testing easier by providing a user-
friendly modeling language to describe the behavior of systems;
from such a model, test cases are generated and executed.
Modbat’s domain-specific language is based on Scala; its features
include probabilistic and non-deterministic transitions, compo-
nent models with inheritance, and exceptions. We demonstrate
the versatility of Modbat by finding a confirmed defect in the
currently latest version of Java, and by testing SAT solvers.

Keywords—model-based testing; software test tools; domain-
specific language; extended finite-state machines; component-based
systems; exception testing

I. INTRODUCTION

Model-based testing derives test cases from an abstract
model of the system under test and/or its environment [1].
The tool Modbat presented in this paper supports model-
based testing by providing a domain-specific language (DSL)
to define high-level models in a user-friendly way. Extended
finite-state machines (EFSMs) combine a high-level model
with extra variables and transition functions [1]. Test cases
are generated as sequences of method calls to the application
programming interface (API) of the system under test (SUT).
Results can be checked using assertions, or stored in model
variables, to be used in subsequent calls.

Our DSL significantly reduces the notational overhead
compared to other tools [2]. Exceptions are managed on the
model level, which increases the clarity of the model. Non-
determinism in a system, for example from communication
delays in a network, is also directly handled in the model. This
makes Modbat particularly suitable to test state-based systems
with potential non-determinism, such as networked applica-
tions [2], [3]. A model can easily be visualized by generating
a graph representation using graphviz [4] for a quick overview
of all states and transitions. Component-based systems can be
modeled using multiple state machines, which are executed
in an interleaving way to simulate (stepwise) parallel actions
on components. Finally, Modbat provides debugging support
on multiple levels by writing error traces into a log and also
offering test replay and off-line code generation.

This paper is organized as follows: Section II gives an
overview of Modbat. Sections III and IV outline our two
demonstrations, on the Java collection classes and the API of
a SAT solver (written in C). Section V compares Modbat with

Test model

Compiled

model

Error

traces

Offline

tests
Model library

M
o
d
b
a
t

S
c
a
la

 c
o
m

p
ile

r

SUT

Figure 1. Architecture and workflow of Modbat.

related work. Section VI discusses Modbat’s potential impact
on software testing and concludes.

II. MODBAT’S ARCHITECTURE AND SYNTAX

Modbat models are written in an internal (embedded)
DSL [5] using Scala [6] as host language. We have chosen
Scala because of its flexible syntax [7] and because it runs on
the Java VM, which makes it easy to test programs written
in Java, Scala, C, and other languages [2]. The DSL mixes
deep embedding [5], which defines its own data structure for
the abstract syntax tree of the model’s state machine, with
shallow embedding for model variables and test actions. This
makes the language very concise for the state machine and at
the same time allows accessing the full range of Scala and
Java libraries from the model.

On an architectural level, the workflow consists of two
steps (see Figure 1): First, the model is compiled against the
model library provided by Modbat. The model library defines
the DSL in terms of type conversions and custom operators
for the deeply embedded part of the DSL, combined with
code that can access Modbat’s API in test actions, which are
written as Scala or Java code. Second, tests are generated.
At run-time Modbat loads the model and explores it using a
random search, executing the SUT in tandem. The sequence of
transitions executed between the initial and final model states
constitutes a test run. After each test run, the model and the
SUT are reset to their initial state. Upon failure, Modbat emits
the error trace showing the execution history.

A. Example: Java’s ArrayList

Figure 2 shows the syntax of Modbat’s DSL on a partial
model of Java’s ArrayList. Each Modbat model extends
modbat.dsl.Model, which defines the DSL. Variables

import modbat.dsl._

class SimpleListModel extends Model {

 val SUT = new java.util.ArrayList[Integer]()

 var n = 0

 def add {

 val ret = SUT.add(new Integer(choose(0, 10)))

 assert (ret)

 n += 1

 }

 def remove {

 require(n > 0)

 SUT.remove(choose(0, n))

 n -= 1

 }

 def bounds {

 choose(

 { () => SUT.remove(-1) },

 { () => SUT.remove(n) }

)

 }

 "main" -> "main" := add weight 10

 "main" -> "main" := remove

 "main" -> "main" := { assert (SUT.size == n) }

 "main" -> "main" := { SUT.clear; n = 0 }

 "main" -> "main" := bounds throws("IndexOutOfBoundsException")

}

Figure 2. Simple list model.

include a reference to the SUT and model variables to track
the model’s view of the SUT to verify its results. In this case
the model only keeps track of the expected size of the list.
The model code can also define a number of functions (in the
middle) that can be referenced from the declared transitions
(at the bottom). This example uses only one model state,
main, because most actions are available in any state.1 To use
random data, the model calls Modbat’s choose functions,
which return a random number and a random element in a list
of functions, respectively.

The example shows that test code can be kept in a separate
function or be directly written as an anonymous function. We
can also modify the weight of a transition function; by default
its value is 1. In this example, we emphasize adding elements
by giving more weight to add so calls to clear do not
repeatedly empty the list before several elements can be added.
Finally, we can easily declare that an exception must occur in
a given transition. In this case, calls to remove with index
−1 or n access an entry outside the valid range, so the SUT
is expected to throw a corresponding exception.

B. Key Features of Modbat

Modbat’s light-weight DSL has been inspired by a prepro-
cessor to ModelJUnit [8]. Compared to similar tools, it is more
concise and expressive for models that are based on transition
systems [2], especially for non-deterministic actions like non-
blocking network input/output, where the result of an operation
depends not only on inputs but also on the physical state of
the network [3]. As models are Scala classes, they inherit all
variables, functions, and transitions in a natural way, which
makes Modbat ideal for testing libraries implementing several
related data structures or protocols. Furthermore, the current
version of Modbat introduces observer state machines, similar
to abstract state machines in Spec Explorer [9].

1It is also possible to use multiple states in the model, such as empty and
non-empty, and to define transitions with pre- and postconditions.

Table I. ITERATOR METHODS.

Method Description

hasNext true if forward iterator has more elements
next returns the next element and advances the cursor
remove removes the element that was returned (optional method)

Table II. ADDITIONAL LIST ITERATOR METHODS.

Method Description

add e inserts the specified element (optional method)
hasPrevious true if reverse iterator has more elements
nextIndex returns the index of the next element
previous return the previous element, moves the cursor backwards
previousIndex returns the index of the previous element
set e replaces the element that was returned (optional method)

In this demonstration, we take advantage of being able
to use multiple models in parallel. Unlike in other tools [9],
the number of parallel models does not have to be fixed a
priori. Instead, models are instantiated dynamically with func-
tion launch, which initializes a new (possibly parametrized)
model. Newly launched models become active at the end of
the current transition.

III. SCENARIO 1: JAVA ITERATORS

The Java library contains collections, data structures for
data types such as lists, sets, and maps [10]. Iterators provide
a way to access elements of a collection one by one.

A. Semantics of the Iterator API

Iterators can be instantiated on an underlying collection
through the methods iterator and listIterator. The
former provides a simple forward iterator (see Table I), while
the latter provides a bidirectional iterator (see Table II) [10].

Java iterators do not allow a concurrent modification of the
underlying collection while iterating on it. Any modification
of the underlying collection invalidates all previously created
iterators on it. Invalid iterators produce an undefined result
for calls to hasNext and similar methods,2 and throw a
ConcurrentModificationException if attempts are
made to access or modify data through them. Through experi-
ments we confirmed that this exception is usually only thrown
upon a successful modification of the underlying collection.

While directly modifying the collection invalidates all of
its iterators, it is possible to modify data, if the iterator
itself provides a set of optional methods (add, set, and
remove). Such modifications are intricately linked with it-
eration: remove and set both require a preceding call to
either next or previous. Furthermore, calls to remove or
add require another iterator step before remove or set can
be called again. We discuss this property in more depth below.

B. Model of the Iterator API

Our list model closely mirrors Java’s collections but uses
simpler data structures to ensure correctness. We use random
data as items to be added and also add a function to validate
internal model invariants. Modbat’s support for inheritance is
very useful here because ArrayList implements a strict

2This was confirmed by Oracle as a response to a bug report filed by us:
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8129758.

Implementation

under

test)

Iterator

model

model

ListIterator

Iterator

model

model

Collection
(system

Figure 3. Orchestrating collection and iterator models.

main

 add
set, remove: IllegalStateException

modifiable
 next, previous

 remove, add

 next, previous, set

Figure 4. Model of the bidirectional iterator showing the applicability of
set and remove before and after calls to other methods.

subset of all operations in LinkedList.3 Our generic list
model uses the following data structures: testData (the
SUT); data, a fixed-size array that models the list contents;
n, which counts the number of elements; and version,
which counts the number of changes to the collection. We use
preconditions to distinguish between cases where a method
can be used successfully, and cases where we expect an
exception to be thrown. Modbat’s direct support for exceptions
in transitions allows us to express these features succinctly [2].

Iterators and list iterator models are instantiated by transi-
tions in the list model that launch a new child model instance,
and link it to the resulting iterator that is obtained from
the SUT. Each model may affect the collection and/or an
iterator (see Figure 3). The iterator models remember the
version of the list so the occurrence or absence of a
ConcurrentModificationException can be modeled
based on whether the version counts of the collection and of
the iterator match. Furthermore, we use a state “modifiable” to
model whether calls to set and remove are permitted; these
calls require a previous call to next or previous, without
any other modification in between (see Figure 4).

Other requirements are captured using preconditions and
postconditions. We choose to model valid and invalid usage
contexts using mutually exclusive preconditions, and verify the
correct result using exception declarations and postconditions
(see Figure 5; details can be found online [11]).

C. Defect Found in Java 1.8

When running the test model against Java’s list
implementation, some tests fail on ArrayList: Af-
ter a failed remove(-1), the Java library marks the
list as modified; subsequent calls to next throw a
ConcurrentModificationException (see Figure 6).
Other types of failed modifications (such as remove with
n ≥ 0) do not mark the list as modified. All other data
structures behave consistently in all cases. Modbat finds the
problem quickly; Oracle has confirmed the issue as a defect.4

3Some operations are not provided by ArrayList because they cannot
be implemented efficiently on arrays.

4https://bugs.openjdk.java.net/browse/JDK-8114832

def valid = (version == dataModel.version)

def next { // simplified for brevity

 require (valid)

 require (pos < dataModel.n-1)

 val res = SUTit.next

 pos += 1

 assert (dataModel.data(pos) == res)

}

Figure 5. Transition modeling valid uses of next.

ArrayList<Integer> list = new ArrayList<Integer>;
Iterator<Integer> it = list.iterator();
try {

list.remove(-1); // attempt removal
} catch (IndexOutOfBoundsException) {} // fails
it.next(); // expected: NoSuchElementException

// but throws ConcurrentModificationException

Figure 6. Error trace for Java’s ArrayList. We obtain an iterator on
an empty list, and then try to remove a non-existent element at index
−1. This operation does not modify the list, but the next operation throws
a ConcurrentModificationException, which is wrong. The trace
shown here is minimal, but the issue is more serious for non-empty lists,
because the spurious exception prevents further access to data.

IV. SCENARIO 2: SAT SOLVER

A. SAT Solvers in Verification

SAT solvers are tools for deciding the satisfiability problem
of propositional logic. Formulas of propositional logic consist
of atomic variables x, y, . . . defined over the Boolean domain,
logical connectives like negation, conjunction and disjunction
with standard semantics, as well as parentheses necessary to
structure a formula. For example, (x ∨ ¬y) ∧ (¬x ∨ y) is
true if both variables have the same value. A SAT solver
tries to find an assignment for the variables of a formula
such that the formula is true under this assignment. By being
the prototypical problem for the complexity class NP, SAT
offers a powerful framework for encoding and solving many
problems stemming from verification, artificial intelligence,
etc. [12]. Often SAT solvers are not used only once in a
verification problem but in an incremental manner. Here a
satisfiable formula is enriched with additional constraints until
it becomes either unsat or the considered problem is found to
be satisfiable. Usually formulas are represented in conjunctive
normal form (CNF), i. e., as conjunction of clauses. A clause
is a disjunction of literals and a literal is either a variable or its
negation. Constraints are given in form of additional clauses.

For developing a competitive SAT solver that is able to
handle real-world formula instances, pruning techniques are
essential. These techniques have to be carefully integrated
into the incremental solving process in order to preserve the
correctness of the solver. Therefore, modern SAT solvers are
very complex pieces of software, and as it has been shown
they are not resistant to errors. Especially when SAT solvers
are part of the verification process, however, it is not acceptable
that a SAT solver is faulty, because otherwise the whole effort
put into the verification process is useless. Because of their
complex structure, competitive SAT solvers are not amenable
to full verification. Therefore, other techniques have to be
applied to ensure correctness and trust in SAT solvers.

cnf

unit

 create
clause

solve

 test
solver

binary

 choose lit

clause

 done

sat

 solve

unsat

 (solve)

inc

 (solve)

 done

ternary

 choose lit
 add
 clause

 done rest

 choose lit

 done

 choose lit

 check
assignment

 check
assumption

 add
 clauses

end

 exit

Figure 7. IPASIR model for incremental SAT solvers; coverage after 5 tests.

B. Model-based Testing of SAT Solvers

In previous work, we have presented model-based testing
for SAT solvers [13]. To this end, we considered a data model
describing expressive random formulas as input as well as a
model describing the usage of the API. We presented specific
solutions for the SAT solver Lingeling [14], which has always
ranked highly in the SAT solver competition because of its
sophisticated pruning techniques. In various experiments we
showed the power of model-based testing for the SAT solver
Lingeling [13]. Those models are very specific to Lingeling,
which provides an extensive API and many options, and hence
cannot be used for other SAT solvers directly. At that time no
standards for incremental SAT solver APIs existed.

This year the SAT competition offers a special track for
incremental solving, acknowledging its practical relevance. In
this track, submissions include incremental solvers as well as
applications which use incremental SAT solvers. To this end, a
standardized interface called IPASIR has been specified which
the participating SAT solvers have to implement and which
can be used by the applications [15]. We contribute to the
incremental track of the SAT solver competition by providing
a model-based tester for incremental SAT solvers.

We implemented this model-based tester with Modbat
by specifying the model shown in Figure 7. The transitions
between the states trigger the call of various solver API
functions specified by the IPASIR interface. First, the solver is
initialized, and then the input formula is generated (left hand
side). The input formula consists of unit clauses (clauses of
size one), binary clauses, ternary clauses and clauses of arbi-

trary size. It is important to ensure that the formula contains
clauses of size smaller than four because these clauses are often
handled in a different manner. The literals and their polarity
(negated/not negated) are randomly selected and given to the
solver under test. After enough clauses have been generated,
the solving function is called. As formulas are generated at
random, the outcome of the SAT solver cannot be predicted
by the model. The dashed transitions from state solve indicate
alternative outcomes (unsatisfiable formulas or a time-out)
overriding the default successor state sat, with unsat and
inc, respectively, using nextIf statements [2] that specify
pairs of predicates and successor states. If we use option
--dotify-coverage, Modbat indicates that the first five
tests generate only unsatisfiable formulas (see Figure 7).

The new model can be used for any solver implementing
the IPASIR interface. Therefore, it can be easily integrated
in the solver development process. For the competition we
suggest to measure the time a solver takes to finish a given
number of tests generated from a fixed random seed.

In the provided demo, we test SAT solver PicoSAT [16].
We demonstrate the tests on the original version 961 and
a modified version, where we introduced a small bug in a
pruning technique called failed literal probing (in the faulty
version, a literal is not negated). The bug causes the program
to crash sporadically. With Modbat this bug can be found
quickly. Note that Picosat can be easily exchanged against any
incremental SAT solver implementing the IPASIR interface.

V. RELATED WORK

A variety of model-based testing tools with different fea-
tures and characteristics have been proposed up to now. In a
systematic review, Shafique and Labiche [17] identified a total
of 46 tools and 2 APIs providing support for model-based
testing. Micskei maintains an online overview of model-based
testing tools [18]; currently (according to the information last
modified in July 2014) the list contains 20 academic, commer-
cial and open source tools plus 13 tools that are not developed
anymore. Several tools have features and characteristics that
are similar to those of Modbat. To highlight and explain the
differences between Modbat and related tools, we selected
three widely-known tools for comparison: ModelJUnit [1],
ScalaCheck [19] and Spec Explorer [9]. We consider these
tools to be representative examples as we have practical
experience from applying them in previous projects and since
some of their features were a source of inspiration when
implementing Modbat. References to further tools are included
in the discussion of Modbat’s specific features below.

The underlying modeling approach has a big impact on
the implementation and features of the tools. Like in Mod-
elJUnit [1], Modbat’s models are based on extended finite-
state machines (EFSMs). Yet there is a wide range of different
modeling approaches used by different tools, for example, RT-
Tester [20] and MoMuT::UML [21] use UML, T-VEC [22]
uses models from Simulink, LOTOS, timed automata, etc.
Furthermore, TTCN-3 is a popular testing language to model
communication systems and protocols, and it is supported by
various tools [23].

Compared to other notations, EFSMs are simple but ex-
pressive, and can be readily integrated with existing test code

Table III. CHARACTERISTICS OF RELATED TOOLS.

Modbat [2] ModelJUnit [1] ScalaCheck [19] Spec Explorer [9]

Model specification

Scope input + output input + output input + output input + output

Characteristics
untimed untimed untimed untimed
non-deterministic deterministic deterministic non-deterministic
discrete discrete discrete discrete

Paradigm transition-based transition-based generator-based state-based + history-based
Interface internal DSL API API external DSL

Test generation Test selection criteria random + stochastic random + stochastic random + stochastic structural model coverage
+ data coverage

Technology random + search-based random + search-based random + search-based model checking
Test execution Online/offline both online online both

License base version open source, open source open source proprietary
extended version proprietary

because the DSL or API is hosted by a widely used execution
platform (in many cases, the Java VM) [7]. This advantage
makes such tools ideally suited to test software directly,
without any external test harness. Other tools like OSMO and
NModel also use state machines and take a similar approach
as ModelJUnit; the structure of the model is defined via
annotated methods [24], [25]. In general, these tools are related
to Modbat as they model both inputs and outputs, and have
a notation of discrete transitions without timing constraints.
However, models differ in whether the SUT (and its output)
is considered to be strictly deterministic, and whether the
model is centered on actions, random choices (specified by
generators), or states and transition histories. A key feature
distinguishing Modbat from other tools is its ability to deal
with non-determinism.

Model-based testing tools can be classified according to
whether they provide an API based on a well-known program-
ming language (e. g., Java, C#) or a DSL (which further can
be classified into an external or internal DSL) for describing
SUT models. An advantage of API-based approach is that
practitioners can use their familiar languages. Yet a DSL
provides an easy to understand, user-friendly interface for
testers writing and maintaining models as they making models
potentially less complex [26]. Describing SUT models with
Modbat’s DSL on top of Scala combines the advantages of
both approaches. Test selection criteria and search techniques
for space exploration of the tools differ as well; furthermore,
some tools generate off-line test code, which can be run
without executing the state space exploration again.

Table III shows Modbat in comparison with the three
selected tool examples. The comparison mainly follows the
lines of Utting et al.’s taxonomy of model-based testing ap-
proaches [27], additionally considering the model specification
interface and the license. ModelJUnit [1] inspired the initial
version of Modbat [8] and takes a similar approach but is
API-based. With several new versions of Modbat, many more
features (test case generation for offline testing, debugging sup-
port, support for non-determinism, etc.) have been added. We
consider ModelJUnit as a representative example for similar
tools such as OSMO and NModel [25], [24]; the latter has
been superseded by Spec Explorer. ScalaCheck [19] is a tool
for property-based testing [28], primarily designed to generate
complex data with constraints, but it can also be used to model
transition systems and supports stateful testing. Like Modbat,
it is based on Scala and shares some of its features [19].
Spec Explorer [9] is another model-based testing tool that
provides a DSL to model state machines, although it also
enables mainstream programming languages (e. g., C#) as input

notation [29]. Spec Explorer is a commercial tool developed by
Microsoft. It is based on the Windows/.NET platform, whereas
Modbat runs on Java VMs available for many of the major
platforms. Other differences to Spec Explorer are Modbat’s
dynamic instantiation and the support for exception handling
on the model level.

VI. DISCUSSION AND CONCLUSION

ModelJUnit [1] helped to bring model-based testing to
early adopters of test case generation technology. Modbat
has been inspired by ModelJUnit [8] and has been created
to simplify some of the modeling tasks, such as specifying
transitions with their preconditions and checking the occur-
rence of exceptions in actions [2]. It has been successfully
used to model complex systems like SAT solvers [2], where
it replaced a custom test generator written in C [13], and
the Java network library, including non-deterministic actions
like non-blocking input/output [3]. This demonstration shows
Modbat on Java’s iterators, where we found a new previously
unknown defect, and on a new API for incremental SAT
solving. Modbat’s flexible DSL makes it possible to express
both models succinctly and clearly. This facilitates focusing
on the semantics of a system, which reduces the model
development time and the risk of introducing defects in the
model. We think that Modbat contributes to making model-
based testing more applicable to complex software, and we
hope that with an open source release of Modbat, model-based
testing will become more widespread.

Even with an elegant and expressive modeling platform,
writing a model that includes an output oracle requires an in-
depth understanding of the system. Good model design is not
always straightforward. In our experience, cognitive bias has
sometimes prevented us from modeling the full state space in
an initial version of the model [30]. We plan to add graphical
tool support, and more ways to visualize model traces and their
code coverage in the future, to mitigate this problem.

Modbat is available for download [11]. The material for
this demonstration can be found online [31].

ACKNOWLEDGEMENTS

Part of the work was supported by the Japanese Society
for the Promotion of Science (kaken-hi grants 23240003 and
26280019), by the Austrian Science Fund (FWF) through the
national research network RiSE (S11408-N23), by the Austrian
Ministry for Transport, Innovation and Technology, the Federal
Ministry of Science, Research and Economy, and the Province
of Upper Austria in the frame of the COMET center SCCH.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, USA: Morgan Kaufmann Publishers, Inc.,
2006.

[2] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and
M. Yamamoto, “Modbat: A model-based API tester for event-driven
systems,” in Proc. 9th Haifa Verification Conference (HVC 2013), ser.
LNCS, vol. 8244. Haifa, Israel: Springer, 2013, pp. 112–128.

[3] C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl, and M. Yamamoto,
“Software model checking for distributed systems with selector-based,
non-blocking communication,” in Proc. 28th Int. Conf. on Automated
Software Engineering (ASE 2013). Palo Alto, USA: IEEE Computer
Society, 2013, pp. 169–179.

[4] E. Gansner and S. North, “An open graph visualization system and its
applications to software engineering,” Software—Practice and Experi-
ence, vol. 30, no. 11, pp. 1203–1233, 2000.

[5] D. Wampler and A. Payne, Programming Scala, ser. O’Reilly Series.
O’Reilly Media, 2009.

[6] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A
Comprehensive Step-by-step Guide, 2nd ed. USA: Artima Inc., 2010.

[7] C. Artho, K. Havelund, R. Kumar, and Y. Yamagata, “Domain-specific
languages with scala,” in Proc. 17th Int. Conf. on Formal Engineering
Methods (ICFEM 2015), ser. LNCS, 2015, to appear.

[8] C. Artho, “Separation of transitions, actions, and exceptions in model-
based testing,” Post-proceedings of 12th Int. Conf. on Computer Aided
Systems Theory (Eurocast 2009), vol. 5717, pp. 279–286, 2009.

[9] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, “Model-based testing of object-oriented reactive
systems with Spec Explorer,” in Formal Methods and Testing 2008, ser.
LNCS, vol. 4949. Springer, 2008, pp. 39–76.

[10] Java Platform SE 8, Oracle, Santa Clara, USA, 2015,
http://docs.oracle.com/javase/8/docs/api/.

[11] C. Artho, “Modbat,” 2015, https://staff.aist.go.jp/c.artho/modbat/.
[12] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of

Satisfiability, ser. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, 2009.

[13] C. Artho, A. Biere, and M. Seidl, “Model-based testing for verification
backends,” in Proc. 7th Int. Conf. on Tests & Proofs (TAP 2013), ser.
LNCS. Springer, 2013, pp. 39–55.

[14] A. Biere, “Yet another local search solver and Lingeling and friends
entering the SAT competition 2014,” SAT Competition 2014, vol. 2014,
p. 2, 2014.

[15] T. Balyo, , C. Sinz, M. Iser, and A. Biere, “SAT-race 2015,” 2015,
http://baldur.iti.kit.edu/sat-race-2015/.

[16] A. Biere, “PicoSAT,” 2015, http://fmv.jku.at/picosat/.
[17] M. Shafique and Y. Labiche, “A systematic review of state-based test

tools,” International Journal on Software Tools for Technology Transfer,
vol. 17, no. 1, pp. 59–76, 2013.

[18] Z. MICSKEI, Model-based testing (MBT), 2014, http://mit.bme.hu/
~micskeiz/pages/modelbased_testing.html.

[19] R. Nils, “ScalaCheck, a powerful tool for automatic unit testing,” 2013,
https://github.com/rickynils/scalacheck.

[20] J. Peleska, “Industrial-strength model-based testing - state of the art and
current challenges,” in Proc. Eighth Workshop on Model-Based Testing,
2013, pp. 3–28.

[21] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, and H. Brandl,
“Momut::UML model-based mutation testing for UML,” in Proc. Soft-
ware Testing, Verification and Validation (ICST), 2015, pp. 1–8.

[22] “T-VEC,” http://www.t-vec.com.
[23] C. Willcock, T. Deiss, S. Tobies, S. Keil, F. Engler, S. Schulz, and

A. Wiles, An Introduction to TTCN-3, 2nd ed. Wiley, 2011.
[24] J. Jacky, M. Veanes, C. Campbell, and W. Schulte, Model-Based

Software Testing and Analysis with C#, 1st ed. Cambridge University
Press, 2007.

[25] T. Kanstrén and O. Puolitaival, “Using built-in domain-specific mod-
eling support to guide model-based test generation,” in Proc. 7th
Workshop on Model-Based Testing (MBT 2012), ser. EPTCS, vol. 80,
2012, pp. 58–72.

[26] S. Sobernig, P. Gaubatz, M. Strembeck, and U. Zdun, “Comparing
complexity of API designs: an exploratory experiment on DSL-based
framework integration,” International Journal on Software Tools for
Technology Transfer, vol. 47, no. 3, pp. 157–166, 2011.

[27] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, Aug. 2012.

[28] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of Haskell programs,” SIGPLAN Not., vol. 46, no. 4, pp. 53–64,
2011.

[29] W. Grieskamp, “Multi-paradigmatic model-based testing,” in Formal
Approaches to Software Testing and Runtime Verification. Springer,
2006, pp. 1–19.

[30] C. Artho, K. Hayamizu, R. Ramler, and Y. Yamagata, “With an open
mind: How to write good models,” in Proc. 2nd Int. Workshop on
Formal Techniques for Safety-Critical Systems, ser. CCIS, no. 419.
Queenstown, New Zealand: Springer, 2013, pp. 3–18.

[31] C. Artho, M. Seidl, Q. Gros, E. Choi, T. Kitamura, A. Mori, R. Ramler,
and Y. Yamagata, “Modbat tool demonstration,” 2015, https://staff.aist.
go.jp/c.artho/modbat/tooldemo/.

