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Abstract

Static analysis is usually faster than dynamic analysis but less precise. Therefore it is often
desirable to retain information from static analysis for run-time verification, or to compare
the results of both techniques. However, this requires writing two programs, which may not
act identically under the same conditions. It would be desirable to share the same generic
algorithm by static and dynamic analysis. In JNuke, a framework for static and dynamic
analysis of Java programs, this has been achieved. By keeping the architecture of static
analysis similar to a virtual machine, the only key difference between abstract interpretation
and execution remains the nature of program states. In dynamic analysis, concrete states are
available, while in static analysis, sets of (abstract) states are considered. Our new analysis
is generic because it can re-use the same algorithm in static analysis and dynamic analysis.
This paper describes the architecture of such a generic analysis. To our knowledge, JNuke
is the first tool that has achieved this integration, which enables static and dynamic analysis
to interact in novel ways.
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1 Introduction

Java is a popular object-oriented, multi-threaded programming language. Verifica-
tion of Java programs has become increasingly important. Two major approaches
have been established:Static analysisanddynamic analysis.Static analysis ap-
proximates the set of possible program states. It includes abstract interpretation [8],
where a fix point over abstract states, which represent sets of concrete states, is cal-
culated. Static analysis scales well for many properties, as they may only require
summary information of dependent methods or modules. “Classical” static anal-
ysis constructs a graph representation of the program and calculates the fix point
of properties using that graph [8]. This is very different from dynamic analysis,
which evaluates properties against an event trace originating from a concrete pro-
gram execution. Using a graph-free analysis [15], static analysis is again close
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Figure 1. A new tool flow for fault detection using combined static and dynamic analysis.

to dynamic execution. In this paper, a graph-free static analysis is extended to a
generic analysiswhich is applicable to dynamic analysis as well.

JNuke [4] is a fully self-contained framework for loading and analyzing Java
class files. Originally JNuke was designed for dynamic analysis, encompassing
explicit-state software model checking [18] and run-time verification [1].

Static analysis can be very efficient for checking properties such as block-local
atomicity [3]. In the initial version, static analysis in JNuke could not handle recur-
sion and required algorithms to be targetted to a static environment [3]. This paper
describes the solution for recursion and furthermore allows sharing of algorithms
in a static and dynamic environment.

JNuke’s generic analysis framework allows the entire analysis logics to be writ-
ten such that they are agnostic of whether the “environment” is a static or dynamic
analysis. Both versions require only a simple wrapper that converts environment-
specific data into a form that a generic algorithm can use. Furthermore, the fact that
the algorithm itself is identical for static and dynamic analysis allows a novel kind
of combined analysis for fault detection, as outlined in Figure1. A static analyzer
looks for faults. Reports are then analyzed by a human, who writes test cases for
each kind of fault reported. Run-time verification will then analyze the program
using the dynamic version of the same algorithm, possibly confirming the fault as
a failure or counterexample. If a failure is not confirmed, even after multiple iter-
ations of creating test cases, given reports can be suppressed in future runs of the
static analyzer. Of course this particular application gives up soundness but facili-
tates fault finding. Current approaches only offer a manual review of reports. The
generic algorithm is shared by both tools, which is our contribution and enables
this tight integration of static and dynamic analysis.

Section2 introduces static analysis in JNuke. Generic analysis algorithms, ap-
plicable to both a static and dynamic context, are described in Section3. Section4
shows the viability of this approach based on experiments. Section5 concludes.

2 Static Analysis in JNuke

In JNuke, static analysis works very much like dynamic execution, where theen-
vironmentonly implements non-deterministic control flow. It thus implements a
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graph-free data flow analysis [15] where data locality is improved because an entire
path of computation is followed as long as valid new successor states are discov-
ered. Each Java method can be executed in this way. The abstract behavior of the
program is modelled by the user. The environment runs the analysis algorithm until
an abortion criterion is met or the full abstract state space is exhausted.

The iteration over the program state space is separated from the analysis logics.
A genericcontrol flow modulecontrols symbolic execution of instructions, while
the analysis algorithm deals with the representation of (abstract) data and the se-
mantics of the analysis. The control flow module implements a variant of priority
queue iteration [12], executing a full path of computation as long as successor states
have not been visited before, without storing the flow graph [15].

The generic control flow module first chooses an instruction to be executed
from a set of unvisited states. It then runs the specific analysis algorithm on that
unvisited state. That algorithm updates its abstract state and verifies the properties
of interest. After evaluation of the current instruction, the control flow module
adds all valid successor states to the queue of states to visit, avoiding duplicates
by keeping a set of seen states. When encountering a branch instruction such as
switch, all possible successors are added to the state space. Furthermore, each
possible exception target is also added to the states that have to be explored.

Many Java bytecode instructions do not affect control flow. Therefore our al-
gorithm does not store the current state if an immediate successor instruction is
eligible. A state is only stored if it is target of a branch instruction. This reduces
memory usage [15] but may visit a state twice: If an instructionib is the target of
a backward jump, such as in awhile loop, it is only recognized as such when the
branch instruction is visited, which usually occurs afterib has been visited before.
However, this overhead is small since it only occurs during the first iteration.

It is up to the specific analysis algorithm to model data values. Currently, only
the block-local atomicity analysis for stale values [3] is implemented. This anal-
ysis tracks the state of each register (whether it is shared and therefore possibly
stale) and includes a simple approximation of lock identities (pointer aliasing [20]).
It does not require any further information about the state of variables, and thus
chooses to execute every branch target. Due to the limited number of possible
states for each register, the analysis converges very quickly.

3 Generic Analysis Algorithms

As described in the introduction, the goal was to usegeneric analysis algorithms.
These algorithms should work equally in both astatic environment(using abstract
interpretation) and adynamic environment(using run-time verification). The prob-
lem is that the environments are quite different: the VM offers a single fully detailed
state. Abstract interpretation [8], on the other hand, deals with sets of states, each
state containing imprecise information that represents several concrete states. The
challenge was to reconcile the differences between these two worlds and factor out
the common parts of the algorithm.
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Figure 2. Running generic analysis algorithms in a static or dynamic environment.

A generic analysis represents a single program state or a set of program states
at a single program location. It also embodies a number of event handlers that
model the semantics of byte code operations. Both static analysis and run-time
analysis trigger an intermediate layer that evaluates the events. The environment
hides its actual nature (static or dynamic) from the generic algorithm and maintains
a representation of the program state that is suitably detailed.

Figure2 shows the principle. Run-time verification is driven by atrace,a series
of eventse emitted by the run-time verification API. An event represents method
entry or exit, or execution of an instruction at locationl . Conventional run-time
analysis analyzes these events directly. The dynamic environment, on the other
hand, uses the event information to maintain acontext cof algorithm-specific data
before relaying the event to the generic analysis. This context is used to maintain
state informations that cannot be updated uniformly for the static and dynamic
case. It is updated similarly by the static environment, which also receives events
e, determining that successor states atl are to be computed. The key difference
for the static environment is that its updates toc concernsets of states S. Sets
of states are also stored in components used by the generic algorithm. Operation
on states (such as comparisons) are performed through delegation to component
members. Therefore the “true nature” of state components, whether they embody
single concrete states or sets of abstract states, is transparent to the generic analysis.
It can thus be used statically or dynamically.

The abstract domain is chosen based on the features required by the generic
analysis to evaluate given properties. Both the domain and the properties are im-
plemented as an observer algorithm in JNuke. Future algorithms may include an
interpreter for logics such as LTL. Interpretation of events with respect to temporal
properties would then be encoded in the generic analysis while event generation
would be implemented by the static and dynamic environment, respectively.

3.1 Context data

Context datac has to be applicable to static and dynamic analysis. The dynamic
environment maintains a single (current) contextc, while the static environment
maintains one context per location,cl . In a static environment, certain data may
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not be defined precisely; for instance, in a field access, the static environment often
cannot provide a pointer to the instance of which the field was accessed. There are
two ways to deal with this problem: The generic analysis must not require such
data, or the static layer must insert artificial values. The latter was used for mod-
eling staticlock sets,where the static layer uses symbolic IDs to distinguish locks,
rather than their pointers. On each lock acquisition, the lock set incl is updated
with a new such lock ID. The generic analysis may only read locks or perform non-
destructive, abstract tests, such as testing set intersections for emptiness. Due to
polymorphism (in the implementation) of the actual set content, the generic analy-
sis therefore never becomes aware of the true nature of the locks. The environment
also maintains contextual information for each lock, such as the line number where
it was acquired. Again, polymorphism allows lookup from locks to line numbers
without revealing the content of the lock.

In general, the environment must create suitable representations of state infor-
mation used by the generic analysis. The generic analysis only operates on such
data. The environment thus acts as a proxy [11] for the virtual machine, if present,
or replaces that data with appropriate facsimiles in static analysis. These facsimiles
have to be conceptually isomorphic with respect to concrete values obtained dur-
ing run-time analysis. Distinct objects have to map to distinct representations. Of
course, true isomorphism is only achieved if pointer analysis is absolutely accurate.

The generic block-local atomicity algorithm [3] has the property that it is ag-
nostic to certain concrete values (such as the values of integers) but needs precise
information about others (locks). It thus provides a good example of a generic
analysis algorithm, as other ones are expected to show similar differences. In the
block-local atomicity algorithm, the static environment approximates the lock set,
representing it with proxy objects; the dynamic environment simply queries the
VM. The property check itself is completely independent of the environment, as it
refers to “shadow data” which reflects the status of each register, i.e., whether their
value is stale or not. In the static case, the semantics of sets of states are reflected
by approximating the set of all possible values in the operations on registers.

3.2 Interfacing run-time verification

Many run-time verification algorithms, such as Eraser [16], are context-sensitive
and not thread-local. Such an algorithm receives events fromall threads and meth-
ods. A run-time variant of such an algorithm therefore requires only a single in-
stance of the analysis. In such cases, creating a static variant is less interesting since
the dynamic algorithm, if used with a good test suite, yields excellent results [5].

Conversely, analyzing a context-insensitive (method-local), thread-local prop-
erty is more amenable to static analysis, but actually makes run-time analysis more
difficult. This is counter-intuitive because such properties are conceptually simpler.
However, in run-time verification, anew instanceof the analysis has to be created
on each method call and thread. Instances of analysis algorithms then correspond
to stack frames on the program stack. Each new analysis instance is completely
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independent of any others, except for a shared, global context (such as lock sets,
which are kept throughout method calls) and return values of method calls. The dy-
namic environment maintains the shared context and relays return values of method
calls to the analysis instance corresponding to the caller. Detailed knowledge of
run-time verification is not necessary for the remainder of this paper; more about
run-time verification in JNuke is described in the extended version of this paper [2].

3.3 Interfacing static analysis

Static analysis calculates the set of all possible program states. Branches (test
nodes) are treated non-derministically by considering all possible successors and
copying(cloning)the current state for each outcome. Junction nodes denote points
where control flow of several predecessor nodes merges [8]. In this paper, the op-
eration that creates a new set of possible states at this node will be calledmerging.

The key is that the generic algorithm is not aware that static analysis requires
copying and merging operations. To achieve this, the capabilities of the generic
analysis must be extended with theMergeableinterface. The extended class inher-
its the algorithm and delegates cloning and merging states to the components of a
state. By merging states, sets of states are generated. Computations of state com-
ponents must therefore support set semantics for static analysis. What is important
is that theanalysis logicsare unchanged: the generic algorithm is still unaware that
cloning, merging, and set operations happen “behind the scenes” and implements
its property checking as if only a single state existed. In some cases, static analysis
may converge slowly; convergence is improved by using a widening operator [8]
which can be implemented by the merge operation.

In dynamic analysis, only one program locationl is active (per thread), cor-
responding to a single program states. In static analysis, the sets of statesSl at
all program locationsl are of interest. Each set of statesSl is represented by an
instance of the generic algorithm. The type of operation performed to model the
semantics of each instruction remains the same for static and dynamic analysis.

In our framework, the successor states of one setSl are calculated in each it-
eration. The choice ofl is implemented by a control flow module, as described in
Section2. This covers intra-method analysis, leaving open the problem of method
calls. It is desirable that the entire statically reachable call graph is traversed so
each reachable method in a program is analyzed. Arecursionclass solves this
challenge. Itexpandsa method call by starting a new instance of the control flow
class. Figure3 shows an overview of these connections. The recursion class starts
with themain method and creates a new instance of the control flow class for each
called method. The control flow class performs intra-method analysis and dele-
gates method calls back to the recursion class, which also handles multi-threading
by exploring the behavior of threads when encountering a thread start point, e.g. a
run method. This way, the algorithm explores the behavior of all threads.

This leaves open the problem of self-recursion or mutual recursion. It is not
possible to model the effects of a recursive method that calls another method higher
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Figure 3. Interfacing static analysis with a generic analysis algorithm.

up in its stack frame using this algorithm. This is because the precise effect of that
method call depends on itself.1 Therefore the static analysis class has to implement
asummarymethod, which models method calls without requiring knowledge about
the effects of a method. Such a summary method can conservatively assume the
worst possible outcome or provide more precise information.

The effect of each evaluated method call is stored as a summary. Context-
sensitivity is modeled by evaluating each method call once for each possible call
context. If an analysis is context-insensitive, an empty call context is assumed,
having the effect that each method is only evaluated once.

In principle, every analysis algorithm can be split up into a generic algorithm
and its environment. Most data flow problems can be seen as set-theoretic or clo-
sure problems [14] and their nature will affect how the merge operation is imple-
mented. Precision of the analysis will depend on the approximation of pointer alias-
ing [20]. If accurate information about data values is needed or when environment-
specific optimizations are called for, the generic part of an algorithm may become
rather small compared to the size of its (static or dynamic) environment. However,
with the block-local atomicity algorithm, it has been our experience that the generic
algorithm does indeed embody the entire logics and thus is not just a negligeable
part of the whole. Notably, adapting a static algorithm for dynamic analysis is
greatly facilitated with our approach.

4 Experiments

The block-local atomicity algorithm [3] has been implemented as a generic algo-
rithm that can be used to compare the static and dynamic approach. It analyzes
method-local data flow, checking for copies of shared data(stale values)that are
used outside the critical section in which shared data was read [7]. This analysis
only requires reference alias information about locks, making it a suitable candidate
for both static and dynamic analysis. Table1 summarizes the benchmark programs
used to compare the static and dynamic version of the stale-value analysis [3].

The static analysis module includes asuppression listto avoid a few common
cases of false positives. The list contains three methods which return thread-local
information, corresponding to the hand-over protocol for return data [13].

1 A bounded expansion of recursion is possible, approximating the unbounded behavior.
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Benchmark Size [LOC] Description

Daisy [10] 1900 Multi-threaded (simulated) file system

DiningPhilo [9] 100 Dining Philosophers (3 threads, 5,000 iterations)

JGFCrypt [6] 1700 Large cryptography benchmark

ProdCons [9] 100 Producer/Consumer simulation (12,000 iterations)

Santa [17] 300 Santa Claus problem

SOR [19] 250 Successive Over-Relaxation over a 2D grid:

5 iterations, 5 threads

TSP [19] 700 Travelling Salesman Problem

Table 1
Benchmark programs.

Benchmark Run-time verification Static analysis

Reports Time [s] Mem. [MB] Reports Time [s] Mem. [MB]

Daisy 0 11.03 23.9 3 [ro, tl, tl] 0.17 1.9

DiningPhilo 0 9.45 20.4 0 0.02 0.3

JGFCrypt 0 1127.92 36.6 0 0.14 1.9

ProdCons 1 [buf] 4.35 7.0 1 [buf] 0.01 0.2

Santa 0 0.25 1.4 0 0.04 0.8

SOR 0 32.95 2.5 0 0.11 1.5

TSP, size 10 0 2.76 3.3 2 [exc] 0.09 1.1

Table 2
Benchmark results.

The experiments emphasize the aim of applying a tool to test suites of real-
world programs without user-defined abstractions or annotations. All experiments
were run on a Pentium 4 with a clock frequency of 2.8 GHz and 1 MB of level II
cache. Table2 shows the results of run-time verification and static analysis. In both
cases, the number of reports, run time, and memory consumption are given. About
25 small programs used for testing, which were correctly verified, are omitted.

Run times for dynamic analysis are still quite high, even though Java foundation
methods have been omitted from being monitored. A very effective optimization
would therefore exclude any methods that can be statically proven to be safe.

Given warnings are all false positives.2 In Daisy, they were caused by read-
only [ro] and thread-local [tl] values. For the ProdCons benchmark, the stale value

2 A more precise pointer analysis could suppress such warnings. Run-time verification would never
report false positives concerning thread-local data, such as in the five cases in Daisy and TSP, due
to fully accurate pointer information.
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comes from asynchronized buffer [buf] and is thread-local [13]. The two false
alarms for the TSP benchmark are caused by thread-local exceptions [exc].

The overall experience shows that the approach works as envisioned. Experi-
ments clearly indicate that static analysis is a lot faster, while being less precise.
The staggering difference in execution times for the two analysis types is easily
explained: for SOR, for instance, the dynamic version generates many thousands
of objects, on which a series of mathematical operations is performed. In the static
version, each method is only executed once, which by itself reduces complexity by
many orders of magnitude. In summary, given experiments show that the frame-
work is fully applicable to real-world programs, analyzing them both statically or
dynamically depending on whether one requires a fast analysis or high precision.

5 Conclusion and Future Work

Static and dynamic analysis algorithms can be abstracted to a generic version,
which can be run in a static or dynamic environment. By using a graph-free anal-
ysis, static analysis remains close enough to program execution such that the algo-
rithmic part can be re-used for dynamic analysis. The environment encapsulates
the differences between these two scenarios, making evaluation of the generic al-
gorithm completely transparent to its environment. This way, the entire analysis
logics and data structures can be re-used, allowing for comparing the two technolo-
gies with respect to precision and efficiency. Experiments with JNuke have shown
that the static variant of a stale-value detection algorithm is significantly faster but
less precise than the dynamic version. This underlines the benefit of using static
information in order to reduce the overhead of run-time analysis. The fact that both
types of analysis share the algorithm also allows for combining them in a tool that
applies run-time verification to test cases resulting from static analysis reports.

Future work includes evaluation of our combined analysis for fault detection,
and porting more algorithms to the generic framework. Furthermore, run-time ver-
ification in JNuke needs more commonly used classes and libraries, while static
analysis in JNuke is still limited by the lack of a precise pointer analysis.
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