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ABSTRACT
Version conflicts are common in a component-based system,
where each component is developed and managed indepen-
dently. Changes during the life-cycle of components require
multiple versions to coexist. This creates a challenge in rep-
resenting multiple versions for program analysis tools and
execution platforms that are designed to handle only one
version. In this paper, a project centralization approach is
proposed to manage the version conflict problem. Our tech-
nique shares common code whenever possible while keeping
the version space of each component separate. We formalize
and transform the project centralization into a graph color-
ing problem. A corresponding algorithm is also presented.
Experiments on real world software projects demonstrate
the effectiveness of our technique.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Software management

Keywords
Version conflict, component-based system, distributed sys-
tem, dynamic software update, program analysis

1. INTRODUCTION
Component-based software allows easier reuse and pro-

vides the flexibility of dynamic integration. A component
with the same functionality can be developed by different
groups with different implementations. Continuous change
is necessary for a component to maintain its functionality
and satisfy new requirements [14]. If multiple versions of a
component interact, however, incompatibilities may cause a
version conflict. This may happen when an application up-
dates some of its components to a new version while other
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older versions of that component are still in use [17]. A ver-
sion conflict also occurs when a single Java VM is used to run
the distributed system consisting of multiple component-
based applications, to reduce the runtime overhead and re-
source duplication [5]. Such an approach is also used for
verifying and analyzing distributed applications [22, 1, 16].

Version conflicts get exacerbated in distributed systems,
where installations are duplicated over many peers. Each
component-based application is updated asynchronously in a
“rolling update”, creating multiple versions of the component
in the system. Dumitraş et al. [7, 8] point out that most
update failures are not caused by a software defect, but by
version conflicts during the update procedure.

The analysis of multiple versions of software creates a
challenge for many analysis tools and execution platforms
of managed languages like Java and C#, which are designed
to handle only one version. To analyze a distributed system
in verification tools like Java PathFinder (JPF) [25], applica-
tions can be merged to run on a single virtual machine [22, 1,
16]. However, the Java Virtual Machine [15] does not allow
loading multiple versions of a class that have the same name
but different implementations in a single class loader, mak-
ing such approaches unable to work for component-based
applications with multiple versions [5].

Project centralization [16] is a general technique to man-
age component-based applications with multiple versions.
It represents the code repositories of all components using a
single code repository. Centralization shares common code
whenever possible while keeping the version space of each
component separate so that each transformed component
exhibits the same run-time behavior as the original one.

In this paper, we formalize project centralization to re-
solve version conflicts for component-based applications. We
first present our simple algorithm published earlier [16]. Af-
ter discussing its limitations, we propose and formalize a
graph-based representation for project centralization. Based
on this, we transform the version separation problem into a
graph coloring problem. Furthermore, we provide a cor-
responding algorithm to compute the optimal solution and
the heuristic solution based on existing graph coloring al-
gorithms. We evaluate the effectiveness of these algorithms
in terms of storage and time by performing experiments on
seven real-world Java projects. While our implementation
supports Java bytecode [9], the concepts presented in this
paper generalize to other managed programming languages
and runtime platforms.

This paper is organized as follows. Section 2 formal-
izes project centralization and summarize our previous ap-
proach [16]. Section 3 elaborates our D-graph representa-



tion for projects and transforms project centralization into
a graph coloring problem. Section 4 evaluates our proposed
approaches. After discussing related work in Section 5, Sec-
tion 6 concludes and proposes future work.

2. PROJECT CENTRALIZATION
The concurrent usage of different versions of a compo-

nent is common in component-based systems. Project cen-
tralization resolves possible version conflicts by separating
the version space of each component, while sharing common
code among different systems. In this section, we formal-
ize project centralization and discuss our previous project
centralization algorithm [16] and its limitations.

2.1 Project Centralization Example
We will use a running example in this paper (see Fig. 1).

Each project consists of a set of classes. A directed edge
between two classes represents their dependency. For exam-
ple, we draw a directed edge from class A to C in Project1
because class C references A. In Fig. 1(a), Project1 and
Project2 can share most of their classes except for C, where
different versions are used. Compared to Project2, Project3
holds a different version of class Main and a new class Unique.

Project centralization transforms multiple projects into a
single one, in which each project preserves its version space
while sharing common code whenever possible. Fig. 1(b)
shows the centralization result for projects in Fig. 1(a). All
projects share class A. Project1 renames its classes to P1.C,
P1.B, and P1.Main to separate the version space. Simi-
larly, Project2 and Project3 share classes C and B, and
Project2 renames its class Main to P2.Main. Classes Main
and Unique in Project3 are left unchanged. The centralized
result preserves the behavior of each project.

2.2 Formalization
A Java class is uniquely identified by its name (includ-

ing package name) and implementation. For a class cl , we
use cl .name and cl .code to denote its class name and im-
plementation, respectively. Given two classes cl1 and cl2,
cl1 and cl2 are equivalent, denoted by cl1 = cl2, if they
form a Type-1 clone pair [21], where cl1.name is identi-
cal to cl2.name, and cl1.code and cl2.code are also identical
except for variations in whitespace, layout and comments.

Definition 1. A project is a set of classes, in which each
class has a distinct name. Given a project p, we write #p
as the number of classes in p, and denote a class cl in p by
p.cl . Two projects p and q are identical, if they hold the
same set of classes.

A project represents an abstract view of the class repos-
itory of a component. Each component is represented by
a project. Furthermore, the combination of all components
can be represented by one centralized project by merging
small projects. Two component-based applications may use
code from either the same project or different projects. In
both cases, code repositories of multiple components can be
represented as a centralized project, sharing common code.

Definition 2. Let p be a project. We define NAME(p) =
{cl .name|cl ∈ p} as the set that contains all class names in p.
For a class name cln ∈ NAME(p), we define GetClass(p, cln)
= p.cl , where p.cl .name = cln, as a function to get the
class named cln in p. Let P be a set of projects. We define
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Figure 1: Project Centralization Example

NAMES(P ) = ∪p∈P NAME(p) as the set containing all the
class names in P , and P ↑cln = {p ∈ P |cln ∈ NAME(p)} as
the set of all projects that contain the class named cln.

Definition 3. Let p be a project, and cln1 and cln2 be two
class names. Project renaming substitution p[cln1/cln2] is
defined as a project in which p substitutes its class name cln1

for cln2. Substitution includes class names and references
to them. A renaming substitution p[cln1/cln2] is a normal
substitution if cln1 /∈ NAME(p) and cln2 ∈ NAME(p).

Definition 4. Let p1 and p2 be two projects; p1 is equiv-
alent to p2, denoted by p1 = p2, if they can be renamed to
identical projects by normal substitutions. It is not difficult
to prove that this is an equivalence relation.

Definition 5. Project centralization transforms a set of
projects P into one single project pcentr such that ∀p ∈
P.∃p′ ⊆ pcentr . p = p′. We denote all the centralized results
of P that satisfy this condition by CENTR(P ).

Project centralization requires preservation of the class
version space for each project. Each component-based ap-
plication that runs as the original project can also run as the
centralized project with the same runtime behavior. The
projects to be centralized can either be different versions of
a component or different components.

Different from project centralization, process centraliza-
tion [22, 5, 1] simulates the runtime behavior of multiple
component-based applications by a single application with
equivalent runtime behavior. Process centralization does not
cover multiple versions of the same component. It assumes
that each class has only one version and no version conflict
exists. On the other hand, project centralization shares com-
mon code of component-based applications to save storage



while keeping the version space of each application separate
to avoid version conflicts. Project centralization enables pro-
cess centralization for component-based applications with
multiple versions of the same component.

Definition 6. Let cl1 and cl2 be two classes in a project
p. Class cl1 depends on cl2, denoted by cl2 → cl1 if cl1.code
references cl2.name.

The class dependency represents the class reference rela-
tion in a project. If two classes cl1,cl2 have a dependency
relation cl1 → cl2 and cl1 is renamed, all references of cl1 in
cl2 must also be renamed to preserve the implementation.

Let P be a set of projects to be centralized. We classify
the classes of a project p ∈ P into the following categories:

1. Unique Class. UNIQUE(p, P ) = {cl ∈ p|∀q ∈ P\p.
cl .name /∈ NAME(q)}. A unique class of project p ∈ P
has a unique name across all projects in P .

2. Conflict Class. CONFLICT(p, P ) ={cl ∈ p|∃q ∈ P.
cl .name ∈ (NAME(p)∩NAME(q))∧p.cl 6= GetClass(q,
cl .name)}. The name of a conflict class appears in
multiple projects, but with different implementations.

3. Shared Class. SHARED(p, P ) = {cl ∈ p|∃q ∈ P\p.
cl .name ∈ (NAME(p)∩NAME(q))∧p.cl = GetClass(q,
cl .name)}. A shared class of p shares both its name
and implementation with other projects in P .

In our example in Fig. 1(a), classes A and B are shared
classes in all projects. The cases for classes C and Main are
more complex: class C is a conflict class in Project1, but it
is both shared and a conflict class in Project2 and Project3.
Similarly, class Main is a conflict class in Project3, and it is
both shared and a conflict class in Project1 and Project2.

Definition 7. Let P be a set of projects to be centralized.
Centralized project pcentr is minimal (optimal) if pcentr ∈
CENTR(P ) and ∀p′

centr ∈ CENTR(P ). #pcentr ≤ #p′
centr .

Consider a general scenario of centralizing a set of projects
P = {p1, p2, . . . , pn}. There may exist multiple solutions
that satisfy Definition 5. Among these solutions, the op-
timal solution outputs the minimal number of classes. If
∀pi ∈ P .CONFLICT(pi ,P) = ∅, the optimal result is the
union of all projects in P ,

⋃n
i=1 pi. If conflicts are present,

∃p ∈ P.CONFLICT(p, P ) 6= ∅, the goal is to separate all
conflict classes in P while maximizing the sharing of classes.

2.3 Simple Algorithm and its Limitation
Separation of the class version for each project entails re-

naming the conflict classes and all their references. However,
such renaming may cause shared classes not to be shareable
anymore, as their internal references to other classes are re-
named differently across projects. Consider our example in
Fig. 1(a): Class B in Project1 and Project2 is identical and
could be shared as such. However, project centralization
renames class C in these projects to a different name to re-
solve a version conflict. After that step, B cannot be shared
anymore as it references C. Therefore, effects of renaming
conflict classes propagate through each project.

Given n projects containing m class names in total, our
previous algorithm [16] renames all the conflict classes of
the first n − 1 projects and propagates the renaming effect
by traversing class dependency relations of each project. Its

complexity is O(m2∗n) and it does not always output an op-
timal solution. The previous algorithm does not distinguish
between a conflict class and a class that is both shared and
in conflict. It simply renames each class that is a conflict
class. Consider a set of project P = {p1, p2, p4, p3} for cen-
tralization, where each project pi ∈ P has one class A; p1, p2
share one version of A and p3, p4 share another version. The
simple renaming algorithm renames all A in p1, p2, p3, but
not in p4, resulting in three classes. However, the optimal
solution produces only two classes: one is shared by p1 and
p2 and the other one is shared by p3 and p4.

3. GRAPH COLORING BASED APPROACH
Project centralization is an optimization problem. The

goal is to obtain a centralized project with the minimal
number of classes under given version constraints. We for-
malize the D-graph representation for projects and trans-
form project centralization into a graph coloring problem.
Then, we present a corresponding algorithm based on ex-
isting graph coloring solutions. In the rest this section, we
arbitrarily fix a set of projects P for centralization.

3.1 Constraint Graph, Constraint Structure
A constraint graph represents the version relation of all

classes with the same name in P . We show that all con-
straint graphs of a class name in P form a complete lattice,
and extend the constraint graph to a constraint structure,
which represents a node of a D-graph, as defined below.

Definition 8. Let cln be a class name in P . A constraint
graph of cln in P consists of a pair of node set P ↑cln and
edge set CE , denoted by 〈P ↑cln ,CE〉, such that if there
exist two projects p, p′ ∈ P ↑cln and (p, p′) ∈ CE , p and p′

cannot share the class named cln.

Each node in a constraint graph of name cln is a project
containing a class named cln. Two project nodes that are
connected by an edge, cannot share the same version of the
class named cln. Edges in a constraint graph are undirected;
given any two project nodes m and n, (m,n) and (n,m) rep-
resent the same edge. Let G = 〈P ↑cln ,CE〉 be a constraint
graph of cln in P , and P ′ be a project set. We write the sub-
graph of G to P ′ as 〈P ′′,CE ′〉 (denoted by G

xP ′ ), where
P ′′ = P ′ ∩ P , and CE ′ is a restriction of CE to P ′′.

We define the partial order relations over constraint graphs
and denote the constraint graph domain of P by CG.

Definition 9. We define vcg∈ CG× CG as a binary rela-
tion such that for any two constraint graphs G1, G2 ∈ CG
with G1 = 〈P1,CE1〉 and G2 = 〈P2, CE2〉, G1 vcg G2 if
P1 ⊆ P2 and CE1 ⊆ CE2. We denote the least upper bound
of G1 and G2 by G1 tcg G2 = 〈P1 ∪ P2,CE1 ∪ CE2〉.

It is not difficult to prove that vcg∈ CG×CG is a partial
order and (CG,vcg) is a partially ordered set.

Let cln be a class name in P ; we write CGcln as the sub-
domain of CG, where CGcln ⊆ CG and ∀G ∈ CGcln . G =
〈P ′, CE′〉 ⇒ P ′ = P ↑cln . It is not difficult to prove that
the partially ordered set (CGcln ,vcg ,tcg ,ucg , ⊥cln

cg ,>cln
cg ) is

a complete lattice [2] with, ∀X ⊆ G, X = {x1, x2, . . . , xn}:

• a least upper bound tcgX = x1 tcg x2 tcg . . . tcg xn,

• a greatest lower bound
ucgX = tcg{y|∀x ∈ X. y vcg x},



• a least element ⊥cln
cg = 〈P ↑cln , ∅〉,

• a greatest element >cln
cg = 〈P ↑cln ,CE greatest〉, where

CE greatest = {(m,n)|n,m ∈ P ↑cln ∧m 6= n}.

We extend the constraint graph to a constraint structure.

Definition 10. A constraint structure CS in a project set
P consists of a name in NAMES(P ) (denoted by CS .name)
and a constraint graph of the name CS .name (denoted by
CS .CG). We write 〈CS .name,CS .CG〉 for the structure.

We define the partial order relation and least upper bound
for constraint structures.

Definition 11. Let CS1 and CS2 be two constraint struc-
tures. We define the partial order relation (constructed from
the partial order of the constraint graph) CS1 vcs CS2 if
CS1.name = CS2.name and CS1.CG vcg CS2.CG. The
least upper bound of CS1 and CS2 is defined as CS1 tcs

CS2 = 〈CS1.name, CS1.CG tcg CS2.CG〉 if CS1.name =
CS2.name.

For a class name cln in P , it can be shown that all con-
straint structures that share cln also form a complete lattice.

3.2 D-graph Representation of a Project Set
We formalize the D-graph representation for projects, and

propose constraint equations to calculate the minimal D-
graph that satisfies version constraints. We then transform
project centralization into a graph coloring problem.

Definition 12. A D-graph of a set of projects P consists a
node set N of constraint structures and an edge set E (de-
noted by 〈N,E〉) with each edge e = (l,m) ∈ E associ-
ated with a set of projects e.set = {p ∈ (P ↑l .name ∩
P ↑m.name ) |GetClass(p, l .name)→ GetClass(p,m.name)}
such that:

1. Name set {n.name|n ∈ N} is the same as NAMES(P ).

2. ∀i, j ∈ N. e = (i, j) ∧ e.set 6= ∅ ⇒ e ∈ E.

Let G = 〈N,E〉 be a D-graph of P . Each node n ∈ N
is a constraint structure that represents all versions of the
classes with name n.name. Its constraint graph n.CG =
〈P ↑n.name ,CE〉 keeps the version relation of these classes.
We denote the predecessor of a node n ∈ N inG by Pred(n) =
{m|(m,n) ∈ E}. For two nodes m,n ∈ N , the existence of
an edge (m,n) from m to n entails that the classes named
m.name and n.name have a dependency relation in a project
p, and p occurs in both P ↑m.name and P ↑n.name . Edges
in E are directed: (n,m) and (m,n) are different edges.

Fig. 2(a) gives the corresponding initial D-graph of the
project set in Fig. 1(a). The larger node is the constraint
structure node, inside which its name and constraint graph
are shown. For example, the node named A with its con-
straint graph indicates that its name exists in projects P1, P2

and P3. No edge exists between these projects, meaning all
these projects initially have the same version of class named
A. The label of an edge in a D-graph shows the projects in
which the two constraint structure nodes connected by that
edge have a dependency relation. For example, the edge
from node B to Main indicates that classes named B and
Main have a dependency relation in both P1 and P2.
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Figure 2: D-graph Representation Example

Definition 13. Let G = 〈N,E〉 be a D-graph of P . We
define its underlying graph as the graph of G by ignoring
the constraint graph of each constraint structure node in N ,
denoted by |G| = 〈|N |, E〉, where |N | represents the nodes
of G that ignore all their constraint graphs.

The underlying graph |G| for a project set P is unique.
There are multiple D-graphs that share |G|, differing in their
constraint structures. We use G|G| to represent the domain
all D-graphs of P such that they share |G| as the underlying
graph. We simply write G if |G| is clear from context. We
continue to define a partial order over G and show that all
its D-graphs also form a complete lattice.

Definition 14. Let G be a D-graph domain of P , and G =
〈N,E〉 and G′ = 〈N ′, E〉 be arbitrary two D-graphs in G. G
and G′ have the binary relation G v G′ if and ∀n ∈ N.∀n′ ∈
N ′.n.name = n ′.name ⇒ n vcs n

′. The least upper bound
of G and G′ is GtG′ = 〈N ′′, E〉, where N ′′ = {mtcs n|n ∈
N ∧m ∈ N ′ ∧m.name = n.name}.

Assuming NAMES(P ) = {cln1, cln2, . . . , clnk}, the con-
straint graph domain and underlying graph of P be G and
|G| = 〈|N |, E〉, respectively. It is not difficult to prove that
(G,v,t,u,⊥,>) is a complete lattice [2] such that ∀X ⊆ G
where X = {x1, x2, . . . , xn} with:

• a least upper bound tX = x1 t x2 t . . . t xn,

• a greatest lower bound uX = t{y|∀x ∈ X. y v x},
• a least element ⊥ =
〈{〈cln1,⊥cln1

cg 〉, 〈cln2,⊥cln2
cg 〉, . . . , 〈clnk ,⊥clnk

cg 〉}, E〉,
• a greatest element > =
〈{〈cln1,>cln1

cg 〉, 〈cln2,⊥cln2
cg 〉, . . . , 〈clnk ,>clnk

cg 〉}, E〉.

Correct project centralization requires separating the ver-
sion spaces of each project by renaming. Renaming a class
also entails renaming all references to it accordingly. We



use conflict edges to represent version constraint conditions.
Such constraints capture the effect that different versions of
a class are not separated due to the version separation of
another class that this class depends on.

Definition 15. Let G = 〈N,E〉 be a D-graph of P . Let e ∈
E be an edge and e = (m,n), where m.CG = 〈P ↑m.name ,
CE〉 and n.CG = 〈P ↑n.name ,CE ′〉. The edge e is a
conflict edge if ∃p, q ∈ e.set. (p, q) ∈ CE ∧ (p, q) /∈ CE ′.

An edge e = (m,n) in a D-graph of P is a conflict edge,
if there exist two projects p, p′ ∈ e.set such that they are
connected by an edge in m.CG but not in n.CG. For ex-
ample, the dashed edge from node C to B in Fig. 2(a) is
a conflict edge. P1 and P3 must hold a different version of
class C, as they are connected by an edge in C .CG. This
entails renaming their C to a different name; furthermore,
as C is referenced in the code of B , P1 and P3 must also be
connected in B .CG to separate version space.

Definition 16. A D-graphG = 〈N,E〉 of P is valid if there
does not exist an edge e ∈ E such that e is a conflict edge.

Correct project centralization requires finding a valid D-
graph given a set of projects, such that all version constraints
are resolved. An optimal solution requires a D-graph that
is both valid and minimal. This entails propagating the
minimal version constraints so that each constraint structure
node n in that D-graph satisfies the equations in (1), where
IN(n) and OUT(n) are the incoming and outgoing constraint
conditions (represented by the constraint graphs) of node
n, and IN0(n) and OUT0(n) are the corresponding initial
conditions, respectively. The functions in equational system
(1) are monotonically increasing over complete lattices with
finite height. Therefore, a minimal solution exists and can
be computed by iterating the equation system [24].

IN(n) = (
⊔

cg
m∈Pred(n)

OUT(m))
x(m,n).set

OUT(n) = IN(n) tOUT(n)
IN0(n) = ∅
OUT0(n) = n.CG

(1)

Initially, the incoming constraint for each node n ∈ N
is empty and the outgoing constraint equals n.CG. The
constraint graph n.CG is initialized during the construction
of the D-graph such that two project nodes are connected
by an edge in n.CG if they hold a different version of the
class named n.name. The initial D-graph of the example in
Fig. 1(a) is depicted in Fig. 2(a). The constraint equations
are solved iteratively until no conflict edge exists. Fig. 2(b1)
and Fig. 2(b2) show such steps to solve constraint equations
for node B and Main, respectively. The minimal valid result
is given in Fig. 2(c).

The remaining task is to ensure no two nodes connected by
an edge in a constraint graph of the minimal valid D-graph
share the same version. This is equivalent to coloring the
graph such that two nodes connected by an edge are colored
differently. After coloring, all the nodes in a constraint graph
with the same color can share the same version of a class,
and nodes colored differently cannot share the same class
and should be renamed accordingly. In our example, all
three projects share class A; class B outputs two versions,
one of which is for P1 and the other version is shared by P2

and P3 as shown in Fig. 2(c).

Algorithm 1 Graph Coloring Based Project Centralization

1: procedure ProjectCentralization
Input: A set of projects P = {p1, p2, . . . , pn}
Output: The centralized project pcentr ,

where ∀p ∈ P. ∃p′ ⊆ pcentr. p = p′

2: DGraph ← ∅
3: nameSet ← collectName(P ) . Collect all class names
4: DGraph.nodeSet ← ∅
5: for all name ∈ nameSet do . Build a node for each name
6: DGraph.nodeSet ← DGraph.nodeSet

∪ {createNode(name, P )}
7: end for
8: for all src ∈ DGraph.nodeSet do . Add edges
9: for all targ ∈ DGraph.nodeSet\src do

10: tempSet ← {p|p ∈ (P ↑src.name ∩ P ↑targ.name )
11: ∧GetClass(p, src.name)→ GetClass(p, targ.name)}
12: if tempSet 6= ∅ then
13: (src, targ).set = tempSet
14: Dgraph.edgeSet ← Dgraph.edgeSet ∪ {(src, targ)}
15: end if
16: end for
17: end for
18: Initialize IN(n) and OUT(n) for each n ∈ DGraph.nodeSet
19: SCCs ← calculateSCC(DGraph)
20: TopoSCCs ← calculateTopologicalOrder(SCCs)
21: Dgraph ← EquationSolver(Dgraph,TopoSCCs) . Alg. 2

solves constraint equations until reaching the least fixed point
22: for all node ∈ DGraph.nodeSet do
23: graphColoring(node.CG)

. Color each output constraint graph by existing algorithm
24: end for
25: pcentr ← NormalRenaming(DGraph)

. Perform normal substitution according to the coloring results
26: return pcentr

27: end procedure

3.3 Algorithm and Optimal Solution
Based on the D-graph representation for a set of projects,

obtaining the project centralization solution for version sep-
aration entails the following steps:

1. Solve the constraint equation for each node to get the
minimal valid D-graph.

2. Color the constraint graph in each constraint struc-
ture node n of the D-graph such that any two nodes
connected by an edge in n.CG are colored differently.

3. Perform normal renaming substitution for each con-
straint graph such that project nodes with the same
color still share the same class after renaming while
nodes with different colors do not.

We propose a project centralization algorithm based on
graph coloring (see Alg. 1). Given a set of projects as input,
the algorithm first initializes a D-graph (lines 2–17) and the
IN and OUT constraints for each of its nodes. To improve
convergence towards the fix point, we calculate all Strongly
Connected Components (SCC) and sort them in a topolog-
ical order. Next, function EquationSolver (see Alg. 2) is
called to solve the constraint equations iteratively for the
ordered nodes until reaching the least fixed point (lines 18–
21). The last step colors the constraint graph of each node
and performs normal renaming substitution (lines 22–25).

To analyze the complexity of our algorithm, we assume
the D-graph is initialized and it is only necessary to calculate
the renaming decision for further processing. The D-graph
initialization (lines 2–17) and renaming substitution (line
25) are specific to the given projects and operating system,
so we do not consider them in the complexity analysis.

Let P be the input projects with #P = n, and its ini-
tial D-graph be G = 〈N,E〉 with #N = m and #E = l.



Algorithm 2 Solve Constraint Equations

1: function EquationSolver
. Solve constraints for a given graph in SCCs’ topological order

Input: graph: a D-graph,
TopoSCCs: the topological order of SCCs for graph

Output: graph: the minimal valid D-graph
2: for SCC ∈ TopoSCCs do

. Visit each SCC in topological order
3: repeat . Repeat if constraints of a node in SCC change
4: for n ∈ graph.nodeSet ∧ n ∈ SCC do
5: IN(n)← (

⊔
m∈Pred(n) OUT(m))

x(m,n).set

6: OUT(n)← IN(n) tOUT(n)
7: n.CG ← OUT(n)
8: end for
9: until ∀n ∈ (graph.nodeSet ∩ SCC ). IN(n) and

OUT(n) do not change
10: end for

. Function terminates when no constraint conditions change
11: return graph
12: end function

Alg. 1 is guaranteed to terminate. It iteratively solves con-
straint equations for each node of G in order until reach-
ing a fix point. As the constraint functions in Alg. 2 are
monotonically increasing over a complete lattice with finite
height, the least fixed point can be reached in no more than
n2 · m iterations. The complexity of computing the con-
straint conditions for a node is O(n2 ·m). Computing the
SCCs and their topological cost O(m · l). Assuming the
complexity of adopted graph coloring algorithm for a k-
vertex and t-edge graph is α(k, t), the total complexity of
solving a given D-graph and making the renaming decision
is α(n, l) · m + O(n4 · m3). The complexity of the itera-
tive framework analysis depends on the graph structure of a
given D-graph. Proving a tighter upper bound for complex-
ity is beyond the scope of this paper and is future work.

To obtain the optimal project centralization result, it is
necessary to apply an exact graph coloring algorithm on the
achieved minimal D-graph so that the number of classes in
the output is minimal. We adopt an existing optimal algo-
rithm [3], which solves the problem of a k-vertex graph in
PSPACE and in time O(5.283k). However, the exact graph
coloring is an NP-complete problem and its complexity is ex-
ponential. Therefore, we also provide the option to use the
Greedy Independent Sets (GIS) coloring approach [13] with
complexity O(k · v), where k and v represent the number of
vertexes and edges, respectively.

Finally, when using the resulting classes in Java, reflec-
tion [9] is widely used to dynamically load a class. For ex-
ample, Java library methods like ClassLoader.loadClass load
a class with a given name at runtime. To support dynamic
class loading by reflection after renaming, we keep a renam-
ing map for each project to track the renaming decisions
made after graph coloring. We instrument application code
before several key functions that load a class by reflection.
If the class name to be loaded is included in the renaming
map, then we use its corresponding new class name.

4. EXPERIMENTS
We have implemented the proposed algorithms in Java

and applied them on seven real-world Java projects as bench-
marks. Our implementation transforms the Java bytecode
of the target applications. As our tool does not require the
source code of the application, it also works for languages
other than Java that compile to Java bytecode. Table 1 sum-
marizes the benchmarks, where the project size and number

of classes are listed. All experiments were run on an Intel
Core i7 Mac 2.4 GHz with 8 GB of RAM, running Mac OS X
10.8.3 and Oracle’s Java VM, version 1.7.0 21.

To quantify and compare the effectiveness of each algo-
rithm in sharing common code, we define Shared as the ratio
of shared classes to output classes: Shared = #ClassShared

#OutputClass
. A

class named cln is counted as shared if at least two projects
share that class in the renaming decision. Consider the
graph coloring results in Fig. 2(c), classes A, B, C are shared
because multiple projects are colored the same in their con-
straint graph, but class Unique and Main are not. Shared
ranges from 0 to 1; the larger its value, the more classes are
shared. The trivial renaming approach renames all classes
of each projects and shares no classes, Shared is therefore 0.

We run the experiment to centralize projects of each bench-
mark with a different number of instances per version. Each
experiment is repeated 60 times to collect the Shared value,
run time, and storage saving ratio (project size before cen-
tralization/after centralization). After choosing a bench-
mark with a specific setting, the Shared value and storage
ratio of a given project centralization algorithm are unique.
As for the run time, we discard the data of the first 10 runs,
which may be influenced by disk I/O to read the input, and
take the average of the other results.

The overall experimental result is summarized in Table 2.
We have five experimental settings for each benchmarks with
two versions of a project, from centralizing one and two
project instances, to seven instances of both versions. The
performance of the three approaches for each setting is listed
in columns Shared, Storage Ratio, and Time, respectively,
which can be compared horizontally and vertically. For each
experimental setting, the greedy approach outperforms the
simple solution and performs as well as the optimal solution
in sharing common code and saving storage, as shown by
Shared value and the storage ratio. As the number of project
instances for centralization increases in each benchmark, the
Shared value of the simple algorithm decreases. It indicates
that some classes are not sharable by the simple solution
when centralizing more class instances, but they still can be
shared by the greedy solution and the optimal solution. The
storage saving ratio of each approach increases as there is a
growth in the number of project instances. Compared with
the simple solution, the greedy solution and optimal solu-
tion both have a larger value of storage saving ratio, meaning
that they saves more storage than the simple solution. As for
run time, the simple algorithm is the most efficient one, and
the optimal algorithm does not scale. Consistent with the
complexity analysis in Section 3, the run time of the optimal
algorithm grows exponentially in the number of projects in
Table 2. The optimal algorithm cannot solve larger settings
in a reasonable time (1 hour). Compared with the other two
approaches, the greedy centralization is effective in sharing
common code and efficient enough in practice.

5. RELATED WORK
Hnetynka et al. [11] originally discussed the component

version conflict problem in Java component-based systems.
They adopt the renaming approach by augmenting the class
name of each component with a version identifier during dy-
namic class loading. This solution is equivalent to trivial
renaming. As our algorithm maximizes the sharing of com-
mon classes, our solution requires less memory to represent
the transformed code. Another approach adopts a modi-



Table 1: Summarization of Bechmarks

Project name / version
Edtftp Ganymed-ss2 Jsmpp Kryonet Mime4j-core Xnio Netx

2.3.0 2.4.0 build209 build210 2.0 2.1 2.08 2.20 0.7.1 0.7.2 2.0.0CR2 2.1.0CR1 0.4 0.5

Bytecode size[KB] 352 391 305 345 457 458 206 252 154 154 249 254 240 246
#Cl. (*.class) 106 113 115 133 201 202 79 104 61 61 72 74 91 88

Table 2: Experimental Results of Project Centralization

Project name / version Inst. Shared [%] Strorage Ratio Time [ms]
Simple Greedy Optimal Simple Greedy Optimal Simple Greedy Optimal

Edtftpj-2.3.0 2.4.0 1 2 69.3 69.3 69.3 1.79 1.79 1.79 1.07 7.65 10.65
Edtftpj-2.3.0 2.4.0 2 2 53.1 69.9 69.9 1.70 2.35 2.35 1.51 9.71 51.00
Edtftpj-2.3.0 2.4.0 3 3 43.0 69.9 69.9 2.00 3.52 3.52 2.80 11.72 139.06
Edtftpj-2.3.0 2.4.0 5 5 31.1 69.9 69.9 2.32 5.87 5.87 6.77 20.70 5349.42
Edtftpj-2.3.0 2.4.0 7 7 24.4 69.9 N.A. 2.50 8.22 N.A. 12.60 32.30 > 1 h
Ganymed-ss2-build209 build210 1 2 76.0 76.0 76.0 1.94 1.94 1.94 1.02 8.85 12.02
Ganymed-ss2-build209 build210 2 2 61.3 76.0 76.0 1.91 2.54 2.54 1.38 9.65 52.97
Ganymed-ss2-build209 build210 3 3 51.4 76.0 76.0 2.30 3.81 3.81 2.60 12.49 138.04
Ganymed-ss2-build209 build210 5 5 38.8 76.0 76.0 2.75 6.35 6.35 6.39 20.06 5073.64
Ganymed-ss2-build209 build210 7 7 31.1 76.0 N.A. 3.01 8.88 N.A. 12.16 32.13 > 1 h
Jsmpp-2.0 2.1 1 2 89.4 89.4 89.4 2.53 2.53 2.53 1.18 17.68 23.13
Jsmpp-2.0 2.1 2 2 80.8 89.4 89.4 2.92 3.37 3.37 1.88 20.79 83.28
Jsmpp-2.0 2.1 3 3 73.7 89.4 89.4 3.86 5.06 5.06 3.99 28.39 188.76
Jsmpp-2.0 2.1 5 5 62.7 89.4 89.4 5.20 8.43 8.43 10.79 44.76 7109.86
Jsmpp-2.0 2.1 7 7 54.6 89.4 N.A. 6.11 11.80 N.A. 21.67 67.16 > 1 h
Kryonet-2.08 2.20 1 2 58.1 58.1 58.1 1.56 1.56 1.56 0.95 7.45 17.48
Kryonet-2.08 2.20 2 2 41.5 62.6 62.6 1.40 2.02 2.02 1.48 9.83 48.52
Kryonet-2.08 2.20 3 3 32.1 62.6 62.6 1.61 3.02 3.02 2.42 13.40 144.54
Kryonet-2.08 2.20 5 5 22.1 62.6 62.6 1.83 5.04 5.04 4.55 26.39 5119.54
Kryonet-2.08 2.20 7 7 16.9 62.6 N.A. 1.94 7.06 N.A. 8.59 42.94 > 1 h
Mime4j-core-0.7.1 0.7.2 1 2 98.4 98.4 98.4 2.88 2.88 2.88 0.84 3.89 5.74
Mime4j-core-0.7.1 0.7.2 2 2 96.8 98.4 98.4 3.70 3.84 3.84 0.92 4.41 24.94
Mime4j-core-0.7.1 0.7.2 3 3 95.3 98.4 98.4 5.35 5.77 5.77 1.58 5.32 45.27
Mime4j-core-0.7.1 0.7.2 5 5 92.4 98.4 98.4 8.31 9.61 9.61 3.56 6.72 1797.52
Mime4j-core-0.7.1 0.7.2 7 7 89.7 98.4 N.A. 10.90 13.45 N.A. 6.65 10.6 > 1 h
Netx-0.4 0.5 1 2 57.5 57.5 57.5 1.60 1.60 1.60 0.98 8.63 15.46
Netx-0.4 0.5 2 2 45.7 65.4 65.4 1.52 2.13 2.13 1.34 8.68 45.49
Netx-0.4 0.5 3 3 36.0 65.4 65.4 1.77 3.19 3.19 2.18 10.20 130.22
Netx-0.4 0.5 5 5 25.2 65.4 65.4 2.05 5.32 5.32 4.49 18.02 4790.91
Netx-0.4 0.5 7 7 19.4 65.4 N.A. 2.19 7.45 N.A. 8.28 29.10 > 1 h
Xnio-2.0.0CR2 2.1.0CR1 1 2 51.4 51.4 51.4 1.51 1.51 1.51 1.43 4.28 12.33
Xnio-2.0.0CR2 2.1.0CR1 2 2 35.2 54.9 54.9 1.35 2.01 2.01 1.54 5.37 42.03
Xnio-2.0.0CR2 2.1.0CR1 3 3 26.6 54.9 54.9 1.52 3.01 3.01 2.24 9.84 131.10
Xnio-2.0.0CR2 2.1.0CR1 5 5 17.9 54.9 54.9 1.70 5.02 5.02 4.76 17.65 4804.70
Xnio-2.0.0CR2 2.1.0CR1 7 7 13.4 54.9 N.A. 1.78 7.02 N.A. 8.31 28.58 > 1 h

fied non-standard Java VM [6, 12, 23] that allows loading
multiple versions of the same named classes multiple times.
However, it does not share common code either.

To share common code, Paal et al. [20] propose a cus-
tomizable hierarchical class loader approach to separate the
component-based application space so that two applications
that share the same system class loader share all the code
loaded by the system class loader. However, this approach
requires manually configuring the hierarchy of class loaders.
It also lacks flexibility, allowing component-based applica-
tions to communicate with each other using only the types
from the core of their system. Such a class loader approach
does not separate the Java core library space either [15].

Deduplication is a general approach to address redun-
dancy in memory contents at run-time [26]. Deduplication
shares identical memory blocks in virtualized execution en-
vironments. This approach is independent of target lan-
guage and platforms and has recently been extended to shar-
ing contents of similar (but not identical) memory blocks
as well [10]. However, it is less specific and less efficient
than our code transformation-based approach, and is not
amenable to program analysis as it is agnostic of the struc-
ture of the underlying data.

Project centralization is a general solution to solve the
version conflict problem, which allows sharing common code.
Our approach extends existing process centralization [5, 22,
1] for component-based systems with multiple versions, such
that both static storage and runtime memory of these sys-
tems can be shared. Our approach is also able to separate
the Java core library level runtime space for different appli-
cations through code instrumentation.

Software merging is another technique related to project
centralization. It is widely used in revision control sys-
tems [19, 4] to merge files with the same name that have been
revised differently. Mens [18] makes a comprehensive survey
on the field of software merging techniques and points out
that current techniques give no guarantees about the run-
time behavior of the programs based on the merged code.
On the other hand, project centralization considers shar-
ing common code among different projects without merg-
ing files. Our main concern is to share common code of
multiple component-based applications in a distributed sys-
tem, where similar installations are duplicated among many
peers. We will consider combining file merging techniques
with our project centralization in future work.



6. CONCLUSION AND FUTURE WORK
In this paper, we have investigated project centralization

to manage component-based systems with multiple versions.
We have formalized the D-graph representation of projects
and transformed project centralization into a graph coloring
problem. We have presented an algorithm based on exist-
ing graph coloring solutions. The experiments on real-world
projects demonstrate the effectiveness of our method in shar-
ing common code and resolving version conflicts, showing
the usefulness of our coloring based approach in practice.

Future work will use project centralization as a general
framework for verifying distributed applications. We also
consider using project centralization to manage related soft-
ware, such as software products from the same software
product line. Furthermore, it would be interesting to con-
vert our D-graph representation of a project set into the DI-
MACS format that can be used by SAT solvers to improve
the efficiency to calculate the optimal solution.
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