
Effects of Memory Randomization, Sanitization and Page
Cache on Memory Deduplication

Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, Cyrille Artho
 National Institute of Advanced Industrial Science and Technology

{k.suzaki | k-iijima | yagi-toshiki | c.artho}@aist.go.jp

ABSTRACT
Memory deduplication merges same-content memory pages and
reduces the consumption of physical memory. It is a desirable
feature for virtual machines on IaaS (Infrastructure as a Service)
type cloud computing, because IaaS hosts many guest OSes which
are expected to include many identical memory pages. However,
some security capabilities of the guest OS modify memory
contents for each execution (e.g., ASLR: Address Space Layout
Randomization) or uniformly set inactive memory contents to
zero (Memory Sanitization). These capabilities have positive or
negative impacts on memory deduplication. The severity of the
impact depends on the size of the memory (i.e., the number of
virtual machines) and update frequency, because most memory
deduplications scan and merge the memory at runtime at regular
intervals. We evaluated the effects of ASLR, Memory Sanitization,
and their related security capabilities (Position Independent
Executables, page cache flushing, and dirty page flushing) of the
Linux guest operating system on the KVM virtual machine with
KSM (Kernel Samepage Merging) memory deduplication. The
results indicate ASLR increases physical memory consumption by
more than 18% on 4 virtual machines with memory deduplication.
The combination of memory sanitization and page cache flushing
reduce physical memory consumption about 20 - 35% at a stable
state.

1. INTRODUCTION
A conventional operating system expects to own and manage the
whole available memory itself. This assumption is not true in a
virtual machine environment. The memory owned by the guest
operating system, which is called guest physical memory, is
managed by a virtual machine monitor and shared by other virtual
machines. Memory sharing reduces consumption of real physical
memory and allows accepting more virtual machines, which is
preferred on IaaS (Infrastructure as a Service) cloud computing.

Memory deduplication is a popular technique to merge same-
content memory pages between virtual machines. Most virtual
machine monitors include this technique [1,2,7,9,16]. To increase the
benefit of memory deduplication, the guest operating system
should know of the existence of memory deduplication and
increase the number of same-content memory pages.
Unfortunately, such a collaboration is not as widely accepted as

other techniques (e.g., memory ballooning). Therefore, some
techniques to modify memory contents affect the performance of
memory deduplication.

On the other hand, modern operating systems have security
capabilities that modify memory contents dynamically. Address
Space Layout Randomization (ASLR)[6,10,12,15,17] changes memory
contents for each execution. Memory sanitization[8] sets memory
contents to zero. Page cache and dirty pages changes life time of
data on memory and are targeted for computer forensics and side
channel attacks[13]. These capabilities may have a positive or
negative impact on memory deduplication. However, these
security capabilities are not taken into account by most memory
deduplication systems.

Address Space Layout Randomization (ASLR)[6,10,12,15,17],
which is a kind of memory randomization technique, changes the
base address of the stack, heap, shared libraries, and the binary.
ASLR can protect a system against malware that exploits a fixed
address in order to overwrite or reuse code. ASLR is useful but
requires changing page contents for each execution. It also
requires ELF binaries to be Position Independent Executables
(PIE)[10,15], which consume more memory pages. Therefore,
ASLR will affect memory contents and thus also memory
deduplication.

Memory sanitization sets memory contents to zero, when
pages are released from an application or the kernel and become
inactive. Sanitization is designed to prevent information leaks
from inactive memory pages, but it also helps to increase the
effectiveness of memory deduplication. However, memory
sanitization on Linux[8] requires all memory managed by the
kernel to be initialized at boot time. This may constitute an
overhead for memory deduplication.

Page cache and dirty pages are independent of the
management of memory sanitization. They are designed to
increase I/O performance at the cost of consuming more memory.
Furthermore, the page cache and dirty pages may include sensitive
information. From the view of security they should be cleared
when they are not used anymore. If the memory for page cache
and dirty pages is flushed and sanitized in a timely manner,
memory deduplication is able to accept more virtual machines.
This requires a tradeoff between keeping page cache and dirty
pages for the I/O performance of each guest OS, and offering the
pages to other virtual machines.

In this paper, we investigate the quantitative impact of these
security capabilities on traditional memory deduplication
(periodic memory-scan) on a real machine. We evaluate the
effects of memory randomization, sanitization, page cache, and
dirty page of the Linux guest OS on the KVM virtual machine
with KSM (Kernel Samepage Merging) [1] memory deduplication.
We evaluate the boot process of guest OSes, because this requires
many resources. The results show that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EUROSEC’12 April 10, 2012, Bern, Switzerland.
Copyright 2012 ACM 978-1-4503-1165-6/10/04 …$10.00.

 ASLR increases physical memory consumption by more
than 18% on 4 virtual machines, which is more than
anticipated.

 Memory sanitization has to initialize all memory assigned to
the guest OS, but the CPU overhead for memory
deduplication is low because memory merging is postponed
at heavy load. At a stable state the combination of memory
sanitization and deduplication reduces physical memory
consumption by about 10%.

 Page cache flushing reduces physical memory consumption
by about 10% with memory deduplication. The combination
of memory sanitization and page cache flushing yields a 20 -
35% reduction. However, the boot time overhead increases
by 30% because of reloading flushed pages.

 KSM is implemented as a background job and does not
affect the performance of guest OS severely. The boot time
of the guest OS is delayed by page cache flushing and PIE,
because page cache flushing and PIE require more I/O
throughput than normal.

2. MEMORY DEDUPLICATION
Memory deduplication is a technique to merge same-content
memory pages and reduces the consumption of physical memory.
It is popular on virtual machines, because the memory images of
virtual machines include many same-content pages, especially
when the same guest OS runs on several virtual machines.

2.1 Taxonomy
Current virtual machine monitors are equipped with memory
deduplication. The techniques are divided into two types; content-
aware deduplication and periodic memory-scan deduplication.

Content-aware deduplication is used on Disco’s Transparent
Page Sharing (TPS) [2] and Satori [9] on Xen. TPS reads page data
from a special copy-on-write disk and checks whether the same
page data is already present in main memory. If a pages matches,
TPS creates a shared mapping to the existing page. Satori has a
similar policy for duplicate detection, but does not use a special
copy-on-write disk. Satori is implemented as para-virtualization
on the Xen hypervisor. Content-aware deduplication is useful but
cannot treat dynamically created pages, for example when using
memory sanitization.

Periodic memory-scan deduplication is used in Content-
Based Page Sharing of VMware ESX [16], Difference Engine [7] of
Xen, and KSM (Kernel Samepage Merging) [1] of the Linux kernel.
Content-Based Page Sharing scans the VM’s memory periodically
and records fingerprints of each page. When same fingerprints are
found, they are merged as an identical page. Difference Engine
has not only memory-scan deduplication, but also patching and
compressing. When almost identical pages are found, the small
difference is taken as a patch. Compression is used when a page
has not been active for a long time. KSM (Kernel Samepage
Merging) included from Linux kernel 2.6.32 is a general type of
memory deduplication. It was developed for its virtual machine
(KVM), but it is not limited to a virtual machine. In this paper we
use KSM for memory deduplication.

2.2 KSM (Kernel Samepage Merging)
Most implementations of periodic memory-scan deduplication use
the hash value of a page to check the similarity between pages.
The initial implementation of KSM used the same technique, but
it was re-implemented with another method to avoid a patent

problem. KSM uses a simple 32-bit checksum for rough scanning.
After scanning, the exact similarity is determined by a full
comparison with memcmp().

KSM manages memory pages with two red-black trees; one
is for candidate pages of deduplication (called unstable tree) and
the other one is for duplicated pages (called stable tree). Pages are
identified by their 32-bit checksum in the trees. When the same
content of a candidate page is found in the stable tree, the
candidate page is merged with the stable tree. When the same
content of a candidate page is found in the unstable tree, the two
pages (candidate page and the page in unstable tree) move to the
stable tree.

Pages are scanned at an interval, which is defined at
/sys/kernel/mm/ksm/sleep_millisecs. The default period is 20
msec. The time is the interval of the kernel daemon called “ksmd”.
The maximum number of pages that ksmd treats at one period, is
limited (the default is 25% of the available memory). Therefore,
not all pages are scanned at a time.

KSM is not applied on all processes automatically. An
application which uses KSM, has to declare the memory region to
be deduplicated by madvise(). It means the source code has to be
rewritten to use KSM. Virtual machine monitor KVM is already
customized to use KSM. Memory deduplication is automatically
applied on all processes of the guest OS on KVM.

3. OS SECURITY FUNCTIONS
Modern operating systems have security capabilities that modify
memory contents dynamically. This section introduces these
capabilities.

3.1 Memory Randomization
Most attackers develop malware on the same environment as the
one of the target machine. This allows attackers to know the
address layout of a target application. A typical buffer overflow
attack works by overwriting the return address on the stack and
heap. In order to make this attack work, the attacker must know
the exact address at which to overwrite memory. A return-to-libc
attack also has to locate the exact code to be executed.

The exact address is easy to get when an application uses the
same address mapping of stack and heap. On traditional Linux,
the memory layout is fixed: ELF binary code is mapped from
0x08048000, the heap starts from at the end of the ELF binary,
shared libraries are mapped from 0x40000000, and the stack starts
from 0xBFFFF000. The attacker easily knows the target address.
To prevent these attacks, memory randomization was developed.

Address space layout randomization (ASLR) is a popular
memory randomization technique[6,10,12,15,17], which involves
randomly arranging the base address of key components. It
includes the base of the executable, libraries, heap, and stack.
ASLR changes the addresses for each process and makes it
difficult for an attacker to predict target addresses.

Early ASLR for Linux was implemented as a part of security
extensions PaX [12] and Exec Shield [15]. The mainline Linux
kernel has enabled ASLR since kernel version 2.6.12 (released
June 2005). The kernel gives randomized offsets to addresses of
the stack, heap, shared library, and binary code. Most current
Linux distributions enable ASLR in the Linux kernel by default.

Even if the kernel supports ASLR, a normal ELF binary is
mapped from the preselected address (0x08048000), because the
code is compiled to be loaded at that address. Red Hat recognized
this weak point and contributed to the GNU Compiler Collection

tool chain (compiler and linker), implementing a technique called
Position Independent Executable (PIE). Gentoo Linux has a
derivation called “Hardened Gentoo Linux” which builds PIE
binaries as default. With Gentoo, we can compare the difference
between a normal installation and a hardened one.

3.2 Memory Sanitization
Clearing sensitive data after use is commonly accepted practice
for secure programming. However, this practice is not widely used
in commodity applications. Sensitive data is often scattered
through user and kernel memory, and left there for long periods,
even if the memory is not used by applications or the kernel [3].
According to the paper [3], sensitive data was reported to be
remaining even after 30 seconds without power on IBM
ThinkPAD T30 laptops. This feature makes systems vulnerable
and increases the risk of exposing the data.

Chow proposed secure deallocation to erase sensitive data [4].
In order to implement secure deallocation on Linux, unconditional
page sanitization was developed [8]. That code is largely based on
the memory sanitization feature in the PaX project[12]. It writes
zero on a memory page when the memory page becomes inactive,
i.e., when it is released to the system after use. This avoids leaking
sensitive information on inactive memory pages. The software
was offered as patch of Linux kernel in 2009, but has not been
included in the mainline Linux kernel yet.

Not only at the time of a memory page release, but also at
boot time, unconditional page sanitization writes zero for
initialization. Namely, this requires the allocation of the physical
memory for the guest OS at boot time. This seems to be inefficient,
but it does not require taint tracing like secure deallocation.
Performance is examined in the evaluation section.

3.3 Page Cache
Page cache is a transparent disk-backed buffer of pages in main
memory. It reduces the I/O overhead when the same disk pages
are accessed repeatedly. However, the page cache mechanism on a
normal OS consumes all available memory. It assumes the whole
memory is owned by the OS and is unaware of sharing memory
with others. Furthermore, the page cache may potentially expose
sensitive data. When sensitive data is read from disk, it persists in
the page cache and is not purged even after a process terminates [3].

The page cache is not covered by Linux unconditional page
sanitization, because it is owned by the kernel. In order to release
the page cache, newer Linux kernels (versions 2.6.16 and later)
have a mechanism call “DropCache”. When 1 is written at
/proc/sys/vm/drop_caches, all page cache pages are released. It
means that DropCache requires an explicit write operation.
Usually, “cron” is used to flush page cache at certain intervals.
Even if the page cache is released from kernel, its contents are not
changed. The only effect of DropCache is that the pages are
recognized as inactive pages. In order to set the released pages to
zero, Linux unconditional page sanitization has to be enabled.

Even if sanitization is not enabled, DropCache changes the
behavior of memory, because the released memory pages are
reused by other applications instead of requiring extra memory.
This means that DropCache reduces the consumption of memory
and improves the total performance when a VM’s memory is
allocated on demand by the virtual machine monitor. The
disadvantage of DropCache is the increase of I/O: a flushed page
has to be re-loaded from disk when the same contents are accessed
again.

3.4 Dirty Page
When data of the page cache is updated by an application, its
pages have to be written back to disk in order to keep the file
consistent. However, data is not flushed to disk instantly when a
page is updated, because the page may be updated again. A page
containing updated data in memory is called a “dirty Page”. This
mechanism reduces the number of disk I/O operations.

However, dirty pages may potentially expose sensitive data.
They also consume memory. In order to flush data, the sync()
system call is used. Even if sync() is issued, a dirty page is not
released and zero-cleared. Pages are sanitized when DropCache is
issued and memory sanitization is enabled.

4. EVALUATION
The impacts of security capabilities (ASLR, memory sanitization,
DropCache, and sync for dirty page flushing) on memory
deduplication were measured on a real environment.

We made two disk images of the guest OS with Gentoo
Linux (1.12.13, kernel 2.6.31) on a 32GB virtual disk (31GB ext3,
1GB swap). One instance of Gentoo Linux was built as normal.
Another instance of Gentoo Linux was built using PIE ELF
binaries. Both of them could enable or disable ASLR, DropCache,
sync, and unconditional memory sanitization, respectively. The
disk images were run on KVM with 512MB memory on Ubuntu
9.10 (kernel: vanilla-2.6.32.1), on a 4-core Core2 machine. KVM
was used with KSM enabled, and booted with 1, or 2, or 4 virtual
machines at the same time. The measurements of booting show
the effect of the security capabilities on KSM, especially the
initialization of unconditional memory sanitization on Linux.

KSM shows four types of statistical information (sharing,
shared, unshared, volatile) at /proc/meminfo/ every second.
Sharing indicates the pages to be merged by KSM, which are then
eliminated from physical memory. Shared indicates the pages
merged by KSM, with one original page existing in physical
memory. Unshared indicates candidate memory pages for shared,
where no buddy page has been found yet, i.e., unshared indicates
unique pages. Volatile indicates the pages that change frequently
and are not target of deduplication, i.e., volatile also indicates
unique pages. We analyzed the behavior of security capabilities
on KSM using these statistics.

4.1 ASLR on KSM
ASLR changes the base address of stack, heap, shared libraries
and ELF binaries, which increases the number of pages with
different contents. Figure 1 shows the memory usage of KSM
with PIE Gentoo at a stable state after booting 1, 2, and 4 VMs,
respectively. They indicate the same tendencies that we got on
normal Gentoo. The left half of the results, (1) – (4), shows the
cases with ASLR, while the right of half results, (5) – (8), shows
the cases without ASLR. On any results, total
(volatile+unshared+sharing) memory with ASLR is larger than
without ASLR. The number of shared memory pages are almost
the same, but using ASLR increases the number of unshared
pages. The results indicate that ASLR increases pages with
different contents. The increases were higher than 18% on 4
virtual machines.

Table 1 shows the statistics of KSM on 4 VMs with and
without ASLR, DropCache and Sanitization on PIE Gentoo. The
upper four results are with ASLR and the lower four results are
without ASLR. At a stable state, sharing memory usage with
ASLR is lower than without ASLR, and unshared+volatile

memory usage with ASLR is higher than without. This indicates
that ASLR decreases deduplication and increases unique pages. It
means that ASLR reduces opportunities for memory deduplication.

The increases of non-deduplicated pages (unshared+volatile)
between 2 – 4 VMs with ASLR were higher than without ASLR.
This result is to be expected, but will have a significant impact
when a large number of VMs is run.

4.2 Position Independent Executable on KSM
Gentoo Linux has 1,469 ELF binary files in /bin, /sbin, /usr/bin,
and /usr/sbin. The total volume of the original ELF binaries is
88.4M; for PIE ELF binaries, it is 94.6M (7% more). The biggest
change is in “pampop9”, which increases from 5,396B to 9,440B
(75% more). The smallest change is in “wall”, which decreases
from 9,624B to 9,392B (2% less).

The PIE image increases the consumption of memory at any
security capability setting. However, the increases were less than
10% on 4 VMs in stable states. The effects of other security

capabilities are small, and experiments using normal Gentoo show
the same tendencies. The subsequent sections discuss the results
of PIE Gentoo.

4.3 DropCache on KSM
On experiments with DropCache enabled, DropCache was issued
every second. DropCache takes 10 - 20 microseconds, thus it does
not affect performance severely. However, the boot time with
DropCache increases by about 20 seconds (30%); see Table 1, last
column. This change is caused by re-reading data from disk.
Without DropCache, the boot procedure reads 65MB of data from
disk. DropCache increases this to 99MB. Table 2 summarizes the
results.

When considering memory usage, DropCache is effective,
because the released memory is reused for other processes.
DropCache reduces the consumption of physical guest memory on
each VM, thus reducing total real physical memory. This effect is
visible in Figure 2, which shows the maximum guest physical

Table 1. Statistics of KSM on 4 Virtual Machines with/without ASLR, DropCache and Sanitization on PIE Gentoo.
On Peak Memory, Virtual is the maximum memory requested by the guest OS, and Physical is the maximum
memory offered by KVM with KSM. The stable state shows the memory status after booting. Total Physical
indicates used memory, Sharing indicates deduplicated memory, and Unshared+Volatile indicates non-
deduplicated memory. The guest OS boot time is the time in which X Window boots on VMs.

ASLR DropCache Sanitize
Peak Mem (MB)
Virtual/Physical

Stable State Guest OS
Boot Time

(sec)

Total Physical
Mem (MB)

Sharing
(MB (%))

Unshared+
Volatile
(MB (%))

○ 574/458 234.9 106.4(45.3) 128.5(54.7) 62

○ ○ 431/332 206.9 70.7(34.1) 136.3(65.9) 83

○ ○ 2063/1661 204.6 82.1(40.1) 122.5(59.9) 61

○ ○ ○ 2063/1616 186.5 39.4(21.1) 147.1(78.9) 83

 574/455 199.0 120.1(60.4) 78.9(39.6) 62

 ○ 429/316 169.5 83.1(49.0) 86.5(51.0) 82

 ○ 2063/1661 171.2 94.0(54.9) 77.2(45.1) 62

 ○ ○ 2063/1161 129.9 50.4(38.8) 79.5(61.2) 85

0

50

100

150

200

250

Shared
Unshare
Volatile

1VM,2VM,4VM
MB

Figure 1. Memory usage of KSM with PIE Gentoo at stable
states after booting 1, 2, and 4 VMs, respectively. The Y-axis
indicates consumed memory (MB).

0

500

1000

1500

2000

2500

Virtual Max

Physical Max

1VM, 2VM, 4VM

Deduplicated

MB

Figure 2. The maximum guest physical memory requested by
PIE Gentoo and maximum real physical memory offered by
KVM with KSM on 1, 2, and 4 VMs, respectively. The Y-axis
indicates consumed memory (MB).

+18%

+43%

-12%

-13%

-21%

-15%

-14%

-35%

memory requested by PIE Gentoo and maximum real physical
memory offered by KVM with KSM on 1, 2, and 4 VMs,
respectively. The results of DropCache, (2) and (6), show the
smallest physical memory usage, regardless of ASLR being
enabled or not. At a stable state, DropCache can reduce memory
consumption by about 10% compared to the case without memory
sanitization (Table 1, Total Physical Mem). The results indicate
that DropCache has advantages on IaaS type cloud computing,
even if sanitization is not active. When sanitization is active, the
memory released by DropCache is set to zero and deduplicated.

 Table 2. Disk read data on PIE Gentoo

 Disk Read (MB)
Normal 65

DropCache 99
Sanitize 65

4.4 Sync on KSM
On experiments with sync enabled, sync was issued every second.
We measured the effects with and without DropCache and
sanitization. The results show no significant difference in any
cases. We guess this result comes from out choice to measure boot
time. If we used an application updating data frequently, such as a
data base, sync might have an effect. Such experiments constitute
future work.

4.5 Memory Sanitization on KSM
Unconditional memory sanitization in Linux sets memory
contents to zero on all memory pages at the beginning of booting.
The whole memory is assigned at that time, even if it is not used
by applications or the kernel. KSM is a periodic memory-scan
deduplication and cannot catch up with this large memory
assignment. This is confirmed by the case when several guest
OSes sanitize the memory in Figure 3, which shows a trace of
memory deduplication with and without memory sanitization. At

peak memory usage, memory merging is postponed and pages are
treated as volatile memory. Furthermore, the effect on the guest
OS is small, exemplified by minor differences in boot time.

However, memory sanitization causes another problem.
About 1600MB physical memory is required by the memory spike
caused by the sanitization on 4 VMs, though only 500MB
physical memory is required for the case without sanitization. If
the VMM can recognize memory sanitization of the Guest OS, the
extra physical memory is not required.

At a stable state, memory sanitization can reduce the
consumption of memory by about 10%, compared to without
memory sanitization (Table 1, Total Physical Mem). The
combination of DropCache and sanitization shows the best
memory performance (20 - 35% reduction) at a stable state
regardless of ASLR being enabled, as shown in Figure 1, (4) and
(8). The drawback of this combination is the time overhead
caused by DropCache and the large amount of guest physical
memory required by sanitization.

4.6 Ratio of Deduplication at a Stable State
Figure 1 shows the ratio of memory deduplication at a stable state,
which has the smallest number of volatile pages after booting the
guest OS.

 The ratio of shared pages is almost the same using any
security capabilities on 2 and 4 VMs, except in the case that
combines DropCache and Sanitization. This result comes from
flushing the page cache, memory reuse, and the deduplication of
sanitized pages. When considering memory usage, this
combination is the best one.

The number of shared pages on one VM is small, because a
single VM does not have many identical pages by itself. Unshared
(unique) pages, on one VM turn into shared on 2 and 4 VMs (see
Figure 2). It also shows that the number of pages merged by
deduplication do not increase beyond 2 VMs. However, physical
memory usage increases beyond 2 VMs, which is caused by
unshared memory, indicating unique memory pages. This increase
comes from different memory pages that were created on each
guest OS.

4.7 Boot time of the Guest OS
The boot time of the guest OS (Gentoo) is affected by PIE and
DropCache. The other security capabilities do not affect the boot
time significantly. The number of VMs also has little effect,
because the experiments were executed such that the number of
VMs was not more than the number of physical cores.

Table 3 summarizes the effects. Time was measured by a
physical clock, and the results include the overhead of the VMM.
We expected that the effects come from I/O, because DropCache
increases the I/O from 65MB to 99MB, and PIE increases the size
of ELF binaries (the average increase being 7%). The time
difference is also related to the increase of I/O.

The results are interesting, because memory behavior does
not affect boot time severely, even if memory sanitization causes
extra load on the guest OS and KSM. The most severe impact
comes from extra I/O.

Table 3. The boot time guest OS

Normal Gentoo
(seconds)

PIE Gentoo
(seconds)

No DropCache 57―58 61―62
DropCache 72―79 82―85

0

500

1000

1500

2000

0 100 200 300 sec

 MB

sharing
shared
unshared
volatile

0

500

1000

1500

2000

0 100 200 300 sec

 MB

sharing
shared
unshared
volatile

Figure 3. Trace of Memory Deduplication on ASLR of PIE
Gentoo with ASLR on 4 VMs. The upper graph shows the
case without sanitization, and the lower graph shows the case
with sanitization. The X-axis indicates time (sec) and the Y-
axis indicates consumed memory (MB).

without memory sanitization

with memory sanitization

5. RELATED WORK
Memory deduplication can offset overheads introduced by
increasing the security of an OS. SLINKY[5] shows that memory
deduplication reduces extra memory usage caused by statically
linked shared libraries, which protect against the vulnerabilities of
dynamic linking. In our past work [14], a self-contained binary
translator is used to integrate shared libraries instead of static
linking; extra memory usage is also reduced by memory
deduplication. These results show that redundant memory
contents caused by security-strengthened OSes can be reduced by
memory deduplication.

Memory deduplication is vulnerable to side channel attacks.
The vulnerability is caused by different write-access times
between deduplicated and non-deduplicated memory pages,
because a deduplicated memory page has to be re-created by
Copy-On-Write when the page is updated. The vulnerability is
used to disclose contents on other VMs[13] and fingerprint the
Guest OS[11].

6. CONCLUSIONS
This paper shows how memory deduplication is affected by the
security capabilities of the guest OS. Different security
capabilities (ASLR: address space layout randomization, position
independent executables, memory sanitization, page cache
flushing, dirty page flushing) are equipped on a guest OS (Gentoo
Linux), and their effects are evaluated on the KVM virtual
machine with KSM (Kernel Samepage Merging) memory
deduplication, which is a kind of periodic memory-scan
deduplication.

The security capabilities have a positive or negative impact
on memory deduplication. ASLR increases physical memory
consumption by more than 18% on 4 virtual machines, which is
more than anticipated. Memory sanitization reduces physical
memory consumption by about 10%. Even though memory
sanitization has to initialize all memory assigned to the guest OS,
the time overhead for memory deduplication is low. Page cache
flushing (DropCache of Linux) reduces physical memory
consumption by about 10%, but it requires pages to be re-read
from disk, which reduces the performance of the guest OS. The
combination of memory sanitization and page cache flushing
reduces physical memory consumption by 20 - 35%, but takes
over disadvantages of them. Fortunately, KSM is implemented as
a background job and does not affect the performance of the guest
OS severely, because memory merging is postponed. The impact
on the performance of the guest OS is caused by page cache
flushing and PIE, which increase I/O.

Some of this impact is due to the security capabilities not
being recognized by the VMM. We propose that a page cache for
dynamically created pages should be co-designed with the
memory deduplication of the VMM. In future work we plan to
implement the co-design between security capabilities and
memory deduplication on a VMM.

References
[1] Arcangeli, A., Eidus, I,. and Wright, C., Increasing memory

density by using KSM, Linux Symposium, 19–28, 2009.

[2] Bugnion, E., Devine, S., and Rosenblum, M., Disco:
Running Commodity Operating Systems on Scalable
Multiprocessors, Symposium on Operating Systems
Principles (OSDI), 143–156, 1997.

[3] Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and
Rosenblum, M. Understanding data lifetime via whole
system simulation, USENIX Security, 321–336, 2004.

[4] Chow, J., Pfaff, B., Garfinkel, T., and Rosenblum, M.,
Shredding your garbage: reducing data lifetime through
secure deallocation, USENIX Security, 22–22, 2005.

[5] Collberg, C., Hartman, J.H., Babu, S., and Udupa, S.K.,
SLINKY: Static Linking Reloaded, USENIX Annual Tech,
309–322, 2005.

[6] Drepper, U., Security Enhancements in Red Hat Enterprise
Linux (beside SELinux),
http://www.akkadia.org/drepper/nonselsec.pdf, 2004.

[7] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C.,
Varghese, G., Voelker, G.M., and Vahdat, A., Difference
Engine: Harnessing Memory Redundancy in Virtual
Machines, Operating Systems Design and Implementation
(OSDI), 309–322, 2008.

[8] Linux Sanitization Patch: http://lwn.net/Articles/334919/
2009.

[9] Miłoś, G., Murray, D., Hand, S., and Fetterman, M.A.,
Satori: Enlightened page sharing, USENIX Annual Tech,
2009.

[10] Murphy, F., Position Independent Executables,
http://blog.fpmurphy.com/2008/06/position-independent-
executables.html?output=pdf, 2008.

[11] Owens, R., and Wang, W., Non-interactive OS
Fingerprinting through Memory De-duplication Technique in
Virtual Machines, IEEE International Performance
Computing and Communications Conference (IPCCC), 2011.

[12] Pax project: http://pax.grsecurity.net/

[13] Suzaki, K., Yagi, T., Iijima, K., and Artho, C., Memory
Deduplication as a Threat to the Guest OS, The Fourth
European Workshop on System Security (EuroSec) 2011.

[14] Suzaki, K., Yagi, T. Iijima, K., Quynh, N.A., Artho, C., and
Watanabe, Y., Moving from Logical Sharing of Guest OS to
Physical Sharing of Deduplication on Virtual Machine,
USENIX Hot topics in Security (HotSec), 2010.

[15] Ven, A., New Security Enhancements in Red Hat Enterprise
Linux v.3, update 3,
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.
pdf , 2004.

[16] Waldspurger, C.A., Memory Resource Management in
VMware ESX Server, Symposium on Operating Systems
Principles (OSDI), 181–194, 2002.

[17] Xu, J., Kalbarczyk, Z., and Iyer, R.K., Transparent Runtime
Randomization for Security, Reliable Distributed Systems,
2003.

