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ABSTRACT 
Memory deduplication merges same-content memory pages and 
reduces the consumption of physical memory. It is a desirable 
feature for virtual machines on IaaS (Infrastructure as a Service) 
type cloud computing, because IaaS hosts many guest OSes which 
are expected to include many identical memory pages. However, 
some security capabilities of the guest OS modify memory 
contents for each execution (e.g., ASLR: Address Space Layout 
Randomization) or uniformly set inactive memory contents to 
zero (Memory Sanitization). These capabilities have positive or 
negative impacts on memory deduplication. The severity of the 
impact depends on the size of the memory (i.e., the number of 
virtual machines) and update frequency, because most memory 
deduplications scan and merge the memory at runtime at regular 
intervals. We evaluated the effects of ASLR, Memory Sanitization, 
and their related security capabilities (Position Independent 
Executables, page cache flushing, and dirty page flushing) of the 
Linux guest operating system on the KVM virtual machine with 
KSM (Kernel Samepage Merging) memory deduplication. The 
results indicate ASLR increases physical memory consumption by 
more than 18% on 4 virtual machines with memory deduplication. 
The combination of memory sanitization and page cache flushing 
reduce physical memory consumption about 20 - 35% at a stable 
state. 

1. INTRODUCTION 
A conventional operating system expects to own and manage the 
whole available memory itself. This assumption is not true in a 
virtual machine environment. The memory owned by the guest 
operating system, which is called guest physical memory, is 
managed by a virtual machine monitor and shared by other virtual 
machines. Memory sharing reduces consumption of real physical 
memory and allows accepting more virtual machines, which is 
preferred on IaaS (Infrastructure as a Service) cloud computing.  

Memory deduplication is a popular technique to merge same-
content memory pages between virtual machines. Most virtual 
machine monitors include this technique [1,2,7,9,16]. To increase the 
benefit of memory deduplication, the guest operating system 
should know of the existence of memory deduplication and 
increase the number of same-content memory pages. 
Unfortunately, such a collaboration is not as widely accepted as 

other techniques (e.g., memory ballooning). Therefore, some 
techniques to modify memory contents affect the performance of 
memory deduplication. 

On the other hand, modern operating systems have security 
capabilities that modify memory contents dynamically. Address 
Space Layout Randomization (ASLR)[6,10,12,15,17] changes memory 
contents for each execution. Memory sanitization[8] sets memory 
contents to zero. Page cache and dirty pages changes life time of 
data on memory and are targeted for computer forensics and side 
channel attacks[13]. These capabilities may have a positive or 
negative impact on memory deduplication. However, these 
security capabilities are not taken into account by most memory 
deduplication systems. 

Address Space Layout Randomization (ASLR)[6,10,12,15,17], 
which is a kind of memory randomization technique, changes the 
base address of the stack, heap, shared libraries, and the binary. 
ASLR can protect a system against malware that exploits a fixed 
address in order to overwrite or reuse code.  ASLR is useful but 
requires changing page contents for each execution. It also 
requires ELF binaries to be Position Independent Executables 
(PIE)[10,15], which consume more memory pages. Therefore, 
ASLR will affect memory contents and thus also memory 
deduplication.  

Memory sanitization sets memory contents to zero, when 
pages are released from an application or the kernel and become 
inactive. Sanitization is designed to prevent information leaks 
from inactive memory pages, but it also helps to increase the 
effectiveness of memory deduplication. However, memory 
sanitization on Linux[8] requires all memory managed by the 
kernel to be initialized at boot time. This may constitute an 
overhead for memory deduplication.  

Page cache and dirty pages are independent of the 
management of memory sanitization. They are designed to 
increase I/O performance at the cost of consuming more memory. 
Furthermore, the page cache and dirty pages may include sensitive 
information. From the view of security they should be cleared 
when they are not used anymore. If the memory for page cache 
and dirty pages is flushed and sanitized in a timely manner, 
memory deduplication is able to accept more virtual machines. 
This requires a tradeoff between keeping page cache and dirty 
pages for the I/O performance of each guest OS, and offering the 
pages to other virtual machines.  

In this paper, we investigate the quantitative impact of these 
security capabilities on traditional memory deduplication 
(periodic memory-scan) on a real machine.  We evaluate the 
effects of memory randomization, sanitization, page cache, and 
dirty page of the Linux guest OS on the KVM virtual machine 
with KSM (Kernel Samepage Merging) [1] memory deduplication. 
We evaluate the boot process of guest OSes, because this requires 
many resources. The results show that  
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 ASLR increases physical memory consumption by more 
than 18% on 4 virtual machines, which is more than 
anticipated. 

 Memory sanitization has to initialize all memory assigned to 
the guest OS, but the CPU overhead for memory 
deduplication is low because memory merging is postponed 
at heavy load. At a stable state the combination of memory 
sanitization and deduplication reduces physical memory 
consumption by about 10%. 

 Page cache flushing reduces physical memory consumption 
by about 10% with memory deduplication. The combination 
of memory sanitization and page cache flushing yields a 20 - 
35% reduction. However, the boot time overhead increases 
by 30% because of reloading flushed pages. 

 KSM is implemented as a background job and does not 
affect the performance of guest OS severely. The boot time 
of the guest OS is delayed by page cache flushing and PIE, 
because page cache flushing and PIE require more I/O 
throughput than normal. 

2. MEMORY DEDUPLICATION 
Memory deduplication is a technique to merge same-content 
memory pages and reduces the consumption of physical memory. 
It is popular on virtual machines, because the memory images of 
virtual machines include many same-content pages, especially 
when the same guest OS runs on several virtual machines.  

2.1 Taxonomy 
Current virtual machine monitors are equipped with memory 
deduplication. The techniques are divided into two types; content-
aware deduplication and periodic memory-scan deduplication. 

Content-aware deduplication is used on Disco’s Transparent 
Page Sharing (TPS) [2] and Satori [9] on Xen. TPS reads page data 
from a special copy-on-write disk and checks whether the same 
page data is already present in main memory. If a pages matches, 
TPS creates a shared mapping to the existing page. Satori has a 
similar policy for duplicate detection, but does not use a special 
copy-on-write disk. Satori is implemented as para-virtualization 
on the Xen hypervisor. Content-aware deduplication is useful but 
cannot treat dynamically created pages, for example when using 
memory sanitization. 

Periodic memory-scan deduplication is used in Content-
Based Page Sharing of VMware ESX [16], Difference Engine [7] of 
Xen, and KSM (Kernel Samepage Merging) [1] of the Linux kernel. 
Content-Based Page Sharing scans the VM’s memory periodically 
and records fingerprints of each page. When same fingerprints are 
found, they are merged as an identical page. Difference Engine 
has not only memory-scan deduplication, but also patching and 
compressing. When almost identical pages are found, the small 
difference is taken as a patch. Compression is used when a page 
has not been active for a long time. KSM (Kernel Samepage 
Merging) included from Linux kernel 2.6.32 is a general type of 
memory deduplication. It was developed for its virtual machine 
(KVM), but it is not limited to a virtual machine. In this paper we 
use KSM for memory deduplication. 

2.2 KSM (Kernel Samepage Merging) 
Most implementations of periodic memory-scan deduplication use 
the hash value of a page to check the similarity between pages. 
The initial implementation of KSM used the same technique, but 
it was re-implemented with another method to avoid a patent 

problem. KSM uses a simple 32-bit checksum for rough scanning. 
After scanning, the exact similarity is determined by a full 
comparison with memcmp(). 

KSM manages memory pages with two red-black trees; one 
is for candidate pages of deduplication (called unstable tree) and 
the other one is for duplicated pages (called stable tree). Pages are 
identified by their 32-bit checksum in the trees. When the same 
content of a candidate page is found in the stable tree, the 
candidate page is merged with the stable tree. When the same 
content of a candidate page is found in the unstable tree, the two 
pages (candidate page and the page in unstable tree) move to the 
stable tree. 

Pages are scanned at an interval, which is defined at 
/sys/kernel/mm/ksm/sleep_millisecs. The default period is 20 
msec. The time is the interval of the kernel daemon called “ksmd”. 
The maximum number of pages that ksmd treats at one period, is 
limited (the default is 25% of the available memory). Therefore, 
not all pages are scanned at a time. 

KSM is not applied on all processes automatically. An 
application which uses KSM, has to declare the memory region to 
be deduplicated by madvise(). It means the source code has to be 
rewritten to use KSM. Virtual machine monitor KVM is already 
customized to use KSM. Memory deduplication is automatically 
applied on all processes of the guest OS on KVM.  

3. OS SECURITY FUNCTIONS 
Modern operating systems have security capabilities that modify 
memory contents dynamically. This section introduces these 
capabilities. 

3.1 Memory Randomization 
Most attackers develop malware on the same environment as the 
one of the target machine. This allows attackers to know the 
address layout of a target application. A typical buffer overflow 
attack works by overwriting the return address on the stack and 
heap. In order to make this attack work, the attacker must know 
the exact address at which to overwrite memory. A return-to-libc 
attack also has to locate the exact code to be executed.  

The exact address is easy to get when an application uses the 
same address mapping of stack and heap. On traditional Linux, 
the memory layout is fixed: ELF binary code is mapped from 
0x08048000, the heap starts from at the end of the ELF binary, 
shared libraries are mapped from 0x40000000, and the stack starts 
from 0xBFFFF000. The attacker easily knows the target address. 
To prevent these attacks, memory randomization was developed. 

Address space layout randomization (ASLR) is a popular 
memory randomization technique[6,10,12,15,17], which involves 
randomly arranging the base address of key components.  It 
includes the base of the executable, libraries, heap, and stack. 
ASLR changes the addresses for each process and makes it 
difficult for an attacker to predict target addresses. 

Early ASLR for Linux was implemented as a part of security 
extensions PaX [12] and Exec Shield [15]. The mainline Linux 
kernel has enabled ASLR since kernel version 2.6.12 (released 
June 2005).  The kernel gives randomized offsets to addresses of 
the stack, heap, shared library, and binary code. Most current 
Linux distributions enable ASLR in the Linux kernel by default.  

Even if the kernel supports ASLR, a normal ELF binary is 
mapped from the preselected address (0x08048000), because the 
code is compiled to be loaded at that address. Red Hat recognized 
this weak point and contributed to the GNU Compiler Collection 



tool chain (compiler and linker), implementing a technique called 
Position Independent Executable (PIE).  Gentoo Linux has a 
derivation called “Hardened Gentoo Linux” which builds PIE 
binaries as default. With Gentoo, we can compare the difference 
between a normal installation and a hardened one. 

3.2 Memory Sanitization 
Clearing sensitive data after use is commonly accepted practice 
for secure programming. However, this practice is not widely used 
in commodity applications. Sensitive data is often scattered 
through user and kernel memory, and left there for long periods, 
even if the memory is not used by applications or the kernel [3]. 
According to the paper [3], sensitive data was reported to be 
remaining even after 30 seconds without power on IBM 
ThinkPAD T30 laptops. This feature makes systems vulnerable 
and increases the risk of exposing the data. 

Chow proposed secure deallocation to erase sensitive data [4]. 
In order to implement secure deallocation on Linux, unconditional 
page sanitization was developed [8]. That code is largely based on 
the memory sanitization feature in the PaX project[12]. It writes 
zero on a memory page when the memory page becomes inactive, 
i.e., when it is released to the system after use. This avoids leaking 
sensitive information on inactive memory pages. The software 
was offered as patch of Linux kernel in 2009, but has not been 
included in the mainline Linux kernel yet. 

Not only at the time of a memory page release, but also at 
boot time, unconditional page sanitization writes zero for 
initialization.  Namely, this requires the allocation of the physical 
memory for the guest OS at boot time. This seems to be inefficient, 
but it does not require taint tracing like secure deallocation. 
Performance is examined in the evaluation section. 

3.3 Page Cache 
Page cache is a transparent disk-backed buffer of pages in main 
memory. It reduces the I/O overhead when the same disk pages 
are accessed repeatedly. However, the page cache mechanism on a 
normal OS consumes all available memory. It assumes the whole 
memory is owned by the OS and is unaware of sharing memory 
with others. Furthermore, the page cache may potentially expose 
sensitive data. When sensitive data is read from disk, it persists in 
the page cache and is not purged even after a process terminates [3].  

The page cache is not covered by Linux unconditional page 
sanitization, because it is owned by the kernel. In order to release 
the page cache, newer Linux kernels (versions 2.6.16 and later) 
have a mechanism call “DropCache”. When 1 is written at 
/proc/sys/vm/drop_caches, all page cache pages are released. It 
means that DropCache requires an explicit write operation.  
Usually, “cron” is used to flush page cache at certain intervals. 
Even if the page cache is released from kernel, its contents are not 
changed.  The only effect of DropCache is that the pages are 
recognized as inactive pages. In order to set the released pages to 
zero, Linux unconditional page sanitization has to be enabled.  

Even if sanitization is not enabled, DropCache changes the 
behavior of memory, because the released memory pages are 
reused by other applications instead of requiring extra memory. 
This means that DropCache reduces the consumption of memory 
and improves the total performance when a VM’s memory is 
allocated on demand by the virtual machine monitor. The 
disadvantage of DropCache is the increase of I/O: a flushed page 
has to be re-loaded from disk when the same contents are accessed 
again. 

3.4 Dirty Page 
When data of the page cache is updated by an application, its 
pages have to be written back to disk in order to keep the file 
consistent. However, data is not flushed to disk instantly when a 
page is updated, because the page may be updated again. A page 
containing updated data in memory is called a “dirty Page”. This 
mechanism reduces the number of disk I/O operations. 

However, dirty pages may potentially expose sensitive data. 
They also consume memory. In order to flush data, the sync() 
system call is used. Even if sync() is issued, a dirty page is not 
released and zero-cleared. Pages are sanitized when DropCache is 
issued and memory sanitization is enabled. 

4. EVALUATION 
The impacts of security capabilities (ASLR, memory sanitization, 
DropCache, and sync for dirty page flushing) on memory 
deduplication were measured on a real environment.  

We made two disk images of the guest OS with Gentoo 
Linux (1.12.13, kernel 2.6.31) on a 32GB virtual disk (31GB ext3, 
1GB swap). One instance of Gentoo Linux was built as normal. 
Another instance of Gentoo Linux was built using PIE ELF 
binaries. Both of them could enable or disable ASLR, DropCache, 
sync, and unconditional memory sanitization, respectively.  The 
disk images were run on KVM with 512MB memory on Ubuntu 
9.10 (kernel: vanilla-2.6.32.1), on a 4-core Core2 machine. KVM 
was used with KSM enabled, and booted with 1, or 2, or 4 virtual 
machines at the same time. The measurements of booting show 
the effect of the security capabilities on KSM, especially the 
initialization of unconditional memory sanitization on Linux. 

KSM shows four types of statistical information (sharing, 
shared, unshared, volatile) at /proc/meminfo/ every second. 
Sharing indicates the pages to be merged by KSM, which are then 
eliminated from physical memory. Shared indicates the pages 
merged by KSM, with one original page existing in physical 
memory. Unshared indicates candidate memory pages for shared, 
where no buddy page has been found yet, i.e., unshared indicates 
unique pages. Volatile indicates the pages that change frequently 
and are not target of deduplication, i.e., volatile also indicates 
unique pages. We analyzed the behavior of security capabilities 
on KSM using these statistics. 

4.1 ASLR on KSM 
ASLR changes the base address of stack, heap, shared libraries 
and ELF binaries, which increases the number of pages with 
different contents. Figure 1 shows the memory usage of KSM 
with PIE Gentoo at a stable state after booting 1, 2, and 4 VMs, 
respectively. They indicate the same tendencies that we got on 
normal Gentoo. The left half of the results, (1) – (4), shows the 
cases with ASLR, while the right of half results, (5) – (8), shows 
the cases without ASLR. On any results, total 
(volatile+unshared+sharing) memory with ASLR is larger than 
without ASLR. The number of shared memory pages are almost 
the same, but using ASLR increases the number of unshared 
pages. The results indicate that ASLR increases pages with 
different contents. The increases were higher than 18% on 4 
virtual machines. 

Table 1 shows the statistics of KSM on 4 VMs with and 
without ASLR, DropCache and Sanitization on PIE Gentoo. The 
upper four results are with ASLR and the lower four results are 
without ASLR. At a stable state, sharing memory usage with 
ASLR is lower than without ASLR, and unshared+volatile 



memory usage with ASLR is higher than without. This indicates 
that ASLR decreases deduplication and increases unique pages. It 
means that ASLR reduces opportunities for memory deduplication. 

The increases of non-deduplicated pages (unshared+volatile) 
between 2 – 4 VMs with ASLR were higher than without ASLR. 
This result is to be expected, but will have a significant impact 
when a large number of VMs is run.  

4.2  Position Independent Executable on KSM 
Gentoo Linux has 1,469 ELF binary files in /bin, /sbin, /usr/bin, 
and /usr/sbin. The total volume of the original ELF binaries is 
88.4M; for PIE ELF binaries, it is 94.6M (7% more). The biggest 
change is in “pampop9”, which increases from 5,396B to 9,440B 
(75% more). The smallest change is in “wall”, which decreases 
from 9,624B to 9,392B (2% less). 

The PIE image increases the consumption of memory at any 
security capability setting. However, the increases were less than 
10% on 4 VMs in stable states. The effects of other security 

capabilities are small, and experiments using normal Gentoo show 
the same tendencies. The subsequent sections discuss the results 
of PIE Gentoo. 

4.3 DropCache on KSM 
On experiments with DropCache enabled, DropCache was issued 
every second. DropCache takes 10 - 20 microseconds, thus it does 
not affect performance severely. However, the boot time with 
DropCache increases by about 20 seconds (30%); see Table 1, last 
column. This change is caused by re-reading data from disk. 
Without DropCache, the boot procedure reads 65MB of data from 
disk. DropCache increases this to 99MB. Table 2 summarizes the 
results. 

When considering memory usage, DropCache is effective, 
because the released memory is reused for other processes. 
DropCache reduces the consumption of physical guest memory on 
each VM, thus reducing total real physical memory. This effect is 
visible in Figure 2, which shows the maximum guest physical 

Table 1. Statistics of KSM on 4 Virtual Machines with/without ASLR, DropCache and Sanitization on PIE Gentoo. 
On Peak Memory, Virtual is the maximum memory requested by the guest OS, and Physical is the maximum 
memory offered by KVM with KSM. The stable state shows the memory status after booting. Total Physical 
indicates used memory, Sharing indicates deduplicated memory, and Unshared+Volatile indicates non-
deduplicated memory. The guest OS boot time is the time in which X Window boots on VMs. 

ASLR DropCache Sanitize 
Peak Mem (MB) 
Virtual/Physical

Stable State Guest OS 
Boot Time 

(sec) 

Total Physical 
Mem (MB) 

Sharing 
(MB (%)) 

Unshared+ 
Volatile  
(MB (%)) 

○   574/458 234.9 106.4(45.3) 128.5(54.7) 62 

○ ○  431/332 206.9 70.7(34.1) 136.3(65.9) 83 

○  ○ 2063/1661 204.6 82.1(40.1) 122.5(59.9) 61 

○ ○ ○ 2063/1616 186.5 39.4(21.1) 147.1(78.9) 83 

   574/455 199.0 120.1(60.4) 78.9(39.6) 62 

 ○  429/316 169.5 83.1(49.0) 86.5(51.0) 82 

  ○ 2063/1661 171.2 94.0(54.9) 77.2(45.1) 62 

 ○ ○ 2063/1161 129.9 50.4(38.8) 79.5(61.2) 85 
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Figure 1. Memory usage of KSM with PIE Gentoo at stable 
states after booting 1, 2, and 4 VMs, respectively. The Y-axis 
indicates consumed memory (MB). 
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memory requested by PIE Gentoo and maximum real physical 
memory offered by KVM with KSM on 1, 2, and 4 VMs, 
respectively. The results of DropCache, (2) and (6), show the 
smallest physical memory usage, regardless of ASLR being 
enabled or not. At a stable state, DropCache can reduce memory 
consumption by about 10% compared to the case without memory 
sanitization (Table 1, Total Physical Mem). The results indicate 
that DropCache has advantages on IaaS type cloud computing, 
even if sanitization is not active. When sanitization is active, the 
memory released by DropCache is set to zero and deduplicated.  

 Table 2. Disk read data on PIE Gentoo 

 Disk Read (MB) 
Normal 65 

DropCache 99 
Sanitize 65 

4.4 Sync on KSM 
On experiments with sync enabled, sync was issued every second. 
We measured the effects with and without DropCache and 
sanitization. The results show no significant difference in any 
cases. We guess this result comes from out choice to measure boot 
time. If we used an application updating data frequently, such as a 
data base, sync might have an effect. Such experiments constitute 
future work. 

4.5 Memory Sanitization on KSM 
Unconditional memory sanitization in Linux sets memory 
contents to zero on all memory pages at the beginning of booting. 
The whole memory is assigned at that time, even if it is not used 
by applications or the kernel. KSM is a periodic memory-scan 
deduplication and cannot catch up with this large memory 
assignment. This is confirmed by the case when several guest 
OSes sanitize the memory in Figure 3, which shows a trace of 
memory deduplication with and without memory sanitization. At 

peak memory usage, memory merging is postponed and pages are 
treated as volatile memory. Furthermore, the effect on the guest 
OS is small, exemplified by minor differences in boot time.  

However, memory sanitization causes another problem. 
About 1600MB physical memory is required by the memory spike 
caused by the sanitization on 4 VMs, though only 500MB 
physical memory is required for the case without sanitization. If 
the VMM can recognize memory sanitization of the Guest OS, the 
extra physical memory is not required.  

At a stable state, memory sanitization can reduce the 
consumption of memory by about 10%, compared to without 
memory sanitization (Table 1, Total Physical Mem). The 
combination of DropCache and sanitization shows the best 
memory performance (20 - 35% reduction) at a stable state 
regardless of ASLR being enabled, as shown in Figure 1, (4) and 
(8). The drawback of this combination is the time overhead 
caused by DropCache and the large amount of guest physical 
memory required by sanitization.  

4.6 Ratio of Deduplication at a Stable State 
Figure 1 shows the ratio of memory deduplication at a stable state, 
which has the smallest number of volatile pages after booting the 
guest OS. 

 The ratio of shared pages is almost the same using any 
security capabilities on 2 and 4 VMs, except in the case that 
combines DropCache and Sanitization. This result comes from 
flushing the page cache, memory reuse, and the deduplication of 
sanitized pages. When considering memory usage, this 
combination is the best one. 

The number of shared pages on one VM is small, because a 
single VM does not have many identical pages by itself. Unshared 
(unique) pages, on one VM turn into shared on 2 and 4 VMs (see 
Figure 2). It also shows that the number of pages merged by 
deduplication do not increase beyond 2 VMs. However, physical 
memory usage increases beyond 2 VMs, which is caused by 
unshared memory, indicating unique memory pages. This increase 
comes from different memory pages that were created on each 
guest OS.  

4.7 Boot time of the Guest OS 
The boot time of the guest OS (Gentoo) is affected by PIE and 
DropCache. The other security capabilities do not affect the boot 
time significantly. The number of VMs also has little effect, 
because the experiments were executed such that the number of 
VMs was not more than the number of physical cores.  

Table 3 summarizes the effects. Time was measured by a 
physical clock, and the results include the overhead of the VMM. 
We expected that the effects come from I/O, because DropCache 
increases the I/O from 65MB to 99MB, and PIE increases the size 
of ELF binaries (the average increase being 7%). The time 
difference is also related to the increase of I/O. 

The results are interesting, because memory behavior does 
not affect boot time severely, even if memory sanitization causes 
extra load on the guest OS and KSM. The most severe impact 
comes from extra I/O. 

Table 3. The boot time guest OS 

Normal Gentoo 
(seconds) 

PIE Gentoo 
(seconds)

No DropCache 57―58 61―62 
DropCache 72―79 82―85 
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Figure 3. Trace of Memory Deduplication on ASLR of PIE 
Gentoo with ASLR on 4 VMs. The upper graph shows the 
case without sanitization, and the lower graph shows the case 
with sanitization. The X-axis indicates time (sec) and the Y-
axis indicates consumed memory (MB). 
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5. RELATED WORK 
Memory deduplication can offset overheads introduced by 
increasing the security of an OS. SLINKY[5] shows that memory 
deduplication reduces extra memory usage caused by statically 
linked shared libraries, which protect against the vulnerabilities of 
dynamic linking. In our past work [14], a self-contained binary 
translator is used to integrate shared libraries instead of static 
linking; extra memory usage is also reduced by memory 
deduplication. These results show that redundant memory 
contents caused by security-strengthened OSes can be reduced by 
memory deduplication. 

Memory deduplication is vulnerable to side channel attacks. 
The vulnerability is caused by different write-access times 
between deduplicated and non-deduplicated memory pages, 
because a deduplicated memory page has to be re-created by 
Copy-On-Write when the page is updated. The vulnerability is 
used to disclose contents on other VMs[13] and fingerprint the 
Guest OS[11]. 

6. CONCLUSIONS 
This paper shows how memory deduplication is affected by the 
security capabilities of the guest OS. Different security 
capabilities (ASLR: address space layout randomization, position 
independent executables, memory sanitization, page cache 
flushing, dirty page flushing) are equipped on a guest OS (Gentoo 
Linux), and their effects are evaluated on the KVM virtual 
machine with KSM (Kernel Samepage Merging) memory 
deduplication, which is a kind of periodic memory-scan 
deduplication.  

The security capabilities have a positive or negative impact 
on memory deduplication. ASLR increases physical memory 
consumption by more than 18% on 4 virtual machines, which is 
more than anticipated. Memory sanitization reduces physical 
memory consumption by about 10%. Even though memory 
sanitization has to initialize all memory assigned to the guest OS, 
the time overhead for memory deduplication is low. Page cache 
flushing (DropCache of Linux) reduces physical memory 
consumption by about 10%, but it requires pages to be re-read 
from disk, which reduces the performance of the guest OS. The 
combination of memory sanitization and page cache flushing 
reduces physical memory consumption by 20 - 35%, but takes 
over disadvantages of them. Fortunately, KSM is implemented as 
a background job and does not affect the performance of the guest 
OS severely, because memory merging is postponed. The impact 
on the performance of the guest OS is caused by page cache 
flushing and PIE, which increase  I/O. 

Some of this impact is due to the security capabilities not 
being recognized by the VMM. We propose that a page cache for 
dynamically created pages should be co-designed with the 
memory deduplication of the VMM. In future work we plan to 
implement the co-design between security capabilities and 
memory deduplication on a VMM.  
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