
Applying Static Analysis to
Large-scale, Multi-threaded Java Programs

Cyrille Artho and Armin Biere
Swiss Federal Institute of Technology

Institute of Computer Systems
ETH Zentrum, RZ H, CH-8092 Z̈urich, Switzerland

{artho,biere}@inf.ethz.ch

Abstract

Static analysis is a tremendous help when trying to find
faults in complex software. Writing multi-threaded pro-
grams is difficult, because the thread scheduling increases
the program state space exponentially, and an incorrect
thread synchronization produces faults that are hard to find.

Program checkers have become sophisticated enough to
find faults in real, large-scale software. In particular,Jlint,
a very fast Java program checker, can check packages in a
highly automated manner. The original version,Jlint1, still
lacked full support for synchronization statements in Java.
We extended Jlint1’s model to include synchronizations on
arbitrary objects, and named our versionJlint2. Our sta-
tistical analysis proves that these extensions are relevant
and useful. Applying Jlint2 to various large software pack-
ages, including commercial packages from Trilogy, found
12 faults, two of which related to multi-threading.

1 Introduction

In recent years, the use of multi-threaded software is
becoming increasingly widespread. Especially for large
servers, multi-threaded programs have advantages over
multi-process programs: Threads are computationally less
expensive to create than processes, and share the same ad-
dress space.

Before multi-threading was part of programming lan-
guages, it usually could only be used via libraries (e.g., the
“POSIX threads” in C or C++ [25]). The Java programming
language includes multi-threading as a language feature.
Other languages, such as Ada [33], have similar features,
but never became as widespread as Java. In addition to eas-
ier use of multi-threading, hardware support in the form of
symmetric multi processing(SMP) [32] is becoming more
powerful and cheaper.

Trilogy, a large software company in Austin, Texas,
heavily uses multi-threaded Java programs; therefore its de-
velopers have to cope with multi-threading problems on a
daily basis [4]. The main motivation for writing multi-
threaded programs is that Java makes it easy; despite this,
writing correct multi-threaded software, as the following
section shows, is still very hard. This research started as
an investigation of the usability of program checkers in this
commercial environment.

1.1 Problems with multi-threading

Non-trivial multi-threaded programs requiresynchro-
nizationbetween threads. Several variants have been pro-
posed [34, 35, 36]: Asemaphoreonly allows a certain num-
ber of threads to enter a critical section and execute a spe-
cific block at any given time [34]. Amonitor (see Section
1.1) only allows a single thread to execute a certain block
at any time [36]. This is a special case of a semaphore and
used in Java for synchronization. The entrance to the moni-
tor is guarded by alock; only a thread holding that lock can
enter the monitor, and only one thread may hold the lock at
a time. In Java, one lock is associated to each object and
class [30].

When synchronization between threads is required, the
two most common problems arerace conditionsanddead-
locks. This paper focuses on these two issues, omitting
other problems, such as livelocks.

A race condition occurs when several threads access the
same resource simultaneously, without sufficient protection.
To ensure the absence of a race condition for an objecto,
one examines thelock set Lo, the set of locks held by a
thread when accessingo. A checker has to ensure that an
objecto is 1) only read when a thread holds at least one lock
in Lo and 2) only written when a thread holdsall locks inLo

[12]. A race condition in a program means that operations
using the shared value may yield inconsistent results.



A B

Thread 1

Thread 2

f g

Thread 1 Thread2
method f() {

synchronized(A) {
synchronized(B) { }

}
}

method g() {
synchronized(B) {

synchronized(A) { }
}

}

Figure 1. A deadlock and its lock graph.

A deadlock is the situation where threads wait for each
other while holding, and not relinquishing, resources that
another thread needs to continue. Thelock graphis defined
by the order in which threads access the locks. If the lock
dependencies in the lock graph can be arranged as a partial
order, i.e., no cycles are present, then the program will not
have a deadlock. The opposite is not always true. Figure 1
depicts a constellation of two threads competing for two re-
sources, illustrated by an incomplete Java program. If both
threads hold one lock each, none of them can continue be-
cause the second lock they need is already taken.

1.2 Structure of this paper

Existing work is shown in Section 2. Section 3 describes
how multi-threading is implemented in Java. An overview
of Konstantin Knizhnik’s Jlint1 is given in Section 4. Our
statistical analysis, described in Section 5, helped us to fo-
cus on the most important problems. After a preliminary
analysis of various static checkers, we decided to use Jlint1
and enhance its functionality, creating Jlint2. Its extended
model is documented in Section 6. Section 7 shows the re-
sults from using Jlint on Trilogy’s and other code.

2 Existing work

Classical reliability testing consists of running the pro-
gram for an extended period of time, to see if it fails. Check-
ing program properties at run time is calleddynamic check-
ing. Traditional testing is weak for multi-threaded pro-
grams, because the execution isnon-deterministic:since the
thread schedule cannot be influenced, the outcome of a pro-
gram may vary even if the input is the same. The number of
potential thread schedules isexponentialin the number of
threads, so the schedules cannot be tested exhaustively. In
order to solve this problem, the toolRivetcreates allrele-
vantschedules, schedules that produce a different outcome
[13]. Another related attempt is tracking the history of a

program in order to deducepossiblebehaviors of the pro-
gram under several schedules [2, 15].

Static checkinganalyzes program properties by using
compile-time information [7]. Traditionally, a model of the
program had been created manually, in form of a mathe-
matical specification. For the last few years, models have
been successfully been generated automatically, from the
program source or object code. Once the model is created,
various approaches exist for checking those.

A coarse distinction can be made between static check-
ers, betweenmodel checkersand theorem provers: Model
checkers operate directly on a model of the program, such
as a call graph or a finite state machine [10]. Such a model
may be an abstraction of thecontrol flow or data flowof
a program and is commonly expressed in some variant of
temporal logic [37]. Approaches based on model checking
include the toolsBandera, JPF,andJlint. Bandera is a pub-
licly available model checker; it encompasses several tools
that tackle different parts of program verification [11, 16].
JPF(2) [20, 21] is the second generation of a Java program
checker by NASA. Bandera and JPF both work in conjunc-
tion with theSPIN model checker [6]. Since Bandera and
JPF became available too late to be included in our prelim-
inary tool evaluation, we focused on Jlint. Jlint is a fast,
publicly available checker [1]. In this paper, we will always
use Jlint when referring to common features of Jlint1 and
Jlint2. Jlint was used for the project described here, and
extended to become Jlint2.

Theorem provers require a translation of the program
into logic formulae, in first order or second order logic.
These formulae are then processed by a theorem prover.
It should be noted that the two approaches are often com-
bined, so the boundaries are blurring [18].ESC/Javais the
second generation of a theorem prover designed forMod-
ula programs, and includes Java, too [12]. Work is also
in progress in theSLAMproject, where several approaches
are tried with the goal of ensuring reliability in software
[19, 22].

3 Multi-threading in Java

The Java programming language has special support
for multi-threaded programming, most importantly, the
Runnable interface and theThread class, as well as
keywords and methods for communication between objects
(synchronized , wait , notify ). This paper focuses
on synchronized statements. There are two types of
synchronization:

In asynchronized(resource) block, the resource
is always given explicitly. Before the block can be executed,
the current thread has to obtain, or already own, the lock on
resource . Only when a thread owns the lock, it can exe-
cute the block guarded by it. The lock is released when the



synchronized block or method is exited. In case a lock
is obtained several times, releasing it will only decrement a
counter; only when that counter is zero, the ownership on
the lock will actually be relinquished.

If a methodis synchronized , the current thread will
obtain a lock on the current instance (this ) at the be-
ginning of the method, and release it before returning. In
static methods, a lock associated with that class is used
[30].

In the Java Virtual Machine, these two kinds of synchro-
nization are implemented in different ways:Synchro-
nized blocks are implemented with special instructions.
Synchronized methods are indicated by a special flag
in the method descriptor; the virtual machine itself has to
take care of acquiring and releasing the lock [31]. This is
due to historical reasons;synchronized blocks are more
general, so that mechanism could be used for all cases.

4 Jlint

In this paper, we investigate Jlint [1], a static program
checker created by Konstantin Knizhnik. Jlint checks Java
bytecode for inconsistencies, which includenull pointers,
array bounds violations, inheritance and finally, being the
focus of this publication: multi-threading problems. Jlint’s
functionality is hard-coded into the program, and cannot be
influenced by annotations or templates. However, command
line switches can be used to enable or disable certain cate-
gories of warnings, or entire groups of them. This makes it
very fast and easy to use. Because Jlint works on the com-
piled Java class files, it can also check libraries where the
source code is not available. This feature is also heralded
as important forPurify in the context of dynamic checking
[23].

Jlint works in two passes: in the first pass, all class
files are read into memory. Most checks are done locally,
while each method is processed. During this first pass,
the call graph of the analyzed classes is built. This call
graph includes certain extra information, such as whether
methods are synchronized. This elegant model is sufficient
for checking deadlocks amongsynchronized methods.
Jlint also builds the accessor dependency graph, which en-
ables it to check for race conditions. Despite its limitations,
Jlint is in practice as good as any other currently available
program at checking multi-threading problems, as our sta-
tistical analysis shows (see Section 5).

5 Statistical analysis

Our statistical analysis shows how frequent the different
Java synchronization mechanisms are in practice. It helped
us to focus our improvements of Jlint on the most common
synchronization mechanisms.

The following packages, whose source code encom-
passed nearly a million lines of code together, were ana-
lyzed: all class files coming with Sun’s Java Developer Kit
version 1.3, Doug Lea’s concurrency package [3], a data
warehousing tool developed at the ETHZ [5], and Trilogy’s
core packages. The analysis comprised two major steps:

The first part was a count ofsynchronized methods
and blocks. The relative numbers are of particular interest,
because they indicate the importance ofsynchronized
blocks compared tosynchronized methods.

A closer analysis ofsynchronized blocks followed.
The interesting cases are synchronizations onthis , the
current instance, or on a “constant” field whose content does
not change after initialization, i.e., outside the constructor.
Within the constructor, the field is protected against concur-
rent access because it is still invisible to other threads.

The foremost result was that synchronization statements
are fairly rare in large Java programs. This makes sense,
since a good design tries to keep the number of synchro-
nization points low, and restricts them to as few classes as
possible. Moreover, classes implementing a wrapper func-
tionality need fewer synchronization statements, because
the synchronization is mostly performed in the underlying
software.

As Table 1 shows,synchronized methods are more
common thansynchronized blocks, which sum up to
46 %. In synchronized blocks, synchronizations on
this and fields whose value does not change after ini-
tialization are very common. These results were surpris-
ingly consistent across all analyzed modules, although some
packages use almost onlysynchronized methods.

Category # %

synchronized methods 1351 53.76
synchronized(this) 209 8.32
synchronizations on a “constant” field 582 23.16
other cases 371 14.76
Total 2513 100.00

Table 1. Frequency of different synchroniza-
tions in the analyzed Java packages.

All in all, the trend is evident that simpler cases prevail,
even in complex packages. Of course, the statistics only
indicate the frequency of different synchronization mecha-
nisms, not their complexity. It is not certain whether faults
are more likely in the more complex cases.

6 Call graph extension

Jlint’s model allows checking for deadlocks among
synchronized methods. Figure 2 shows such a case,



wheresynchronized methods of two classes are used
recursively. Two threads calling the methodsA.f andB.f ,
respectively, can cause a deadlock, because they both have
to obtain a lock on the classesA andB in order to complete
the recursive method call.

class A {
static synch. f() {

B.g();
}
static synch. g() { }

}

class B() {
static synch. f() {

A.g();
}
static synch. g() { }

}

Figure 2. Two recursive synchronized method
calls causing a deadlock.

Suchsynchronized methods only constitute 54 % of
all synchronization statements used in Java. Therefore an
extension for supporting the other 46 % of all cases,syn-
chronized blocks, would improve Jlint’s fault finding ca-
pabilities significantly.

When analyzingsynchronized blocks, solving the
aliasing problemis the essential point of the analysis. One
has to know whether two references point to distinct objects
[8]. Nested data structures and the fact that objects keep
their state during execution make this problem very hard
[9].

In most cases, the shared resource that is locked on is ei-
ther a (static ) class variable, or an instance variable. In
both cases, the value is assumed to be constant during the
execution of the thread – the field is usually never changed
after initialization. As the statistical analysis shows, 85 %
of all variables that are synchronized on, including the cur-
rent instance,this , in synchronized blocks and meth-
ods, are initialized in the constructor and stay unchanged
afterwards. Therefore, the extension tosynchronized
blocks, solving the aliasing problem only for fields (or at-
tribute variables) of single instances, but across method
calls, would increase the applicability of Jlint from 54 %
to 85 %.

Inside the virtual machine,synchronized blocks are
implemented with two special bytecode operations:mon-
itorenter and monitorexit [31]. Both operations
take the top element from the stack as their argument.
Therefore, thealias of each value on the stack needs to
be tracked during execution. This was done by extending
Jlint1’s data structure and adding extra instructions for an-
alyzing operations that alter a value on the stack, and also
for the new operation. This instruction reserves memory
for a new object instance and pushes its reference onto the
stack. Our extension only covers the alias of any stack ele-
ment referring to a field or a local variable; it does not cover
equalities among different fields or across classes, e.g., ar-

guments of function calls.
With the aliasing problem solved – at least for the stack

values within the virtual machine – the question is how to
extend the existing call graph model to includesynchro-
nized blocks as well. In our approach, these blocks are
treated like method calls: for eachsynchronized block
in a method, a call to apseudo method<synch> is added
to the call graph. Nesting ofsynchronized blocks is
modeled with nested pseudo method calls.

static f() {
synch.(a) {

synch.(b) { g(); }
}

a.<synch>

b.<synch>

f

g

Figure 3. Jlint2’s extended call graph model.

In the example in Figure 3, methodf acquires a lock on
the variablea. The edge

f→ a.〈synch〉

in the call graph represents this synchronization. The same
method acquires another lockb withinthe first synchronized
block. The edge

a.〈synch〉 → b.〈synch〉

is added for that block. If the same lock is released and
then re-acquired, the same pseudo method is used; only the
nestingof method calls and blocks matters, not theiror-
der. Moreover, thetypeof the lock is unimportant, because
its name is unambiguous. Method calls from withinsyn-
chronized blocks are treated accordingly: The call from
the innermost block to methodg is modeled by the edge

b.〈synch〉 → g

Our extension combines the nesting ofsynchronized
methods and subsequent method calls withsynchro-
nized blocks. The final model, as it was implemented,
includes the full class names in the call graph. Method calls
from synchronized blocks to other classes are not in-
cluded in the call graph because the call graph would grow
too big for the current implementation of Jlint. This restric-
tion confines deadlock detection to deadlocks within and
across methods of the same class. Jlint cannot detect dead-
locks across different classes, except for deadlocks across
synchronized methods. Also, inheritance is not fully
covered, as the behavior of superclass methods is assumed
to be consistent with inherited methods, with respect to syn-
chronization. Dynamic class loading is not supported yet. A
future extension could include such features.



7 Application of Jlint

This section summarizes the faults that Jlint2 found in 15
small example programs, and various large software pack-
ages. The test examples served to assess Jlint2’s capabili-
ties, and also to evaluate the extensions. For the large soft-
ware packages, the goal was to find as many faults as pos-
sible, both multi-threading and other faults. The large soft-
ware packages varied between 25,000 and 100,000 lines of
code each.

7.1 Test examples

Jlint2 was evaluated with 15 small test examples: The
first six examples exhibit deadlocks using incorrect lock-
ing orders, or problems withwait andnotify , where a
thread calling these methods holds too many locks. Another
example contains a subtle race condition due to incom-
plete locking, as shown in Derek Bruening’s SplitSync [13].
The remaining examples comprise eight complex locking
schemes. Four examples are variations of shared buffer im-
plementations, with producer and consumer tasks. Two of
these implementations are correct. In addition to that, three
solutions to theDining Philosophers problem[26], one of
which is faulty, were checked. The ESC/Java tree exam-
ple [12] can also be counted towards this category, where a
complex nesting of locks is given by a recursive data struc-
ture, and therefore cannot be fully evaluated at compile-
time.

In four of these 15 cases, Jlint1, which only supported
synchronized methods, successfully detected the dead-
lock in the program and did not issue a warning when the
program was correct (see Table 2). Jlint1 failed to detect
the race condition in the SplitSync program. The analysis
of the ESC/Java tree example seemed successful, but only
because Jlint1 ignored the critical part of the program. The
output about the seven complex examples was inconclusive,
and clearly showed that locking schemes operating on com-
plex compound data structures cannot be analyzed by any of
the static checkers mentioned in Section 2 yet. Jlint1 gave
a correct output in four cases; in remaining four cases, it
issued a spurious warning or failed to detect a fault in the
program.

Jlint1 Jlint2

Correct output 4 6
Missed fault/spurious warning 4 2
Beyond scope of Jlint 7 7

Table 2. Improvements for multi-threading
problems made with Jlint2.

With support forsynchronized blocks, Jlint2 is able

to successfully analyze all six simpler deadlock examples.
There is no support for special race conditions such as the
one shown in SplitSync, so Jlint2 still cannot detect the fault
in this case. The ESC/Java example is no longer ignored,
but too complex for Jlint2 to analyze, so Jlint2 now issues
a spurious warning. Jlint2’s capability to detect deadlock
problems is significantly stronger than Jlint1’s, as the table
shows. In the remaining part of this section, we demonstrate
Jlint2’s results for real world programs.

7.2 Sun’s JDK packages

Jlint2 as such is capable of analyzing large packages,
such as Sun’s JDK packages. However, the number of po-
tential deadlock warnings was very high (several thousand).
By filtering most warnings, the number could be reduced
to a few hundred, which is manageable. Because the Java
Foundation Classes are quite mature in version 1.3, and we
wanted to focus our efforts elsewhere, Jlint2’s output for
these classes was not reviewed.

7.3 Doug Lea’s concurrency package

Doug Lea’s concurrency package implements various
more advanced Java concurrency mechanisms, such as
shared-read locking [3]. The number of spurious warnings
produced for this package was very high. Most of these
warnings were caused by Jlint’s lack of a complete control
flow analysis, and could be dismissed quickly after a man-
ual review. Another large part of very similar, redundant
warnings were caused by a fault in Jlint2, which could not
be reproduced when running it on fewer or simpler modules.
After subtracting those, 29 warnings remained; 26 were po-
tential deadlock warnings. Because they referred to interac-
tions between methods andsynchronized blocks, they
are difficult to analyze for someone not familiar with the
package. It is likely that the concurrency package is correct,
and these warnings show cases where static analysis is very
difficult. If a call graph browsing tool had been available,
reviewing the warnings would have been lot easier.

Jlint2 successfully found three potential race conditions.
In one case, a node was inserted into a list of locks. This
is a difficult situation for static analysis, because a program
checker has to understand how the nodes in a list are con-
nected. In two other cases, the correct operation depends on
other methods or on the values of certain counters. To our
knowledge, no currently available tool is capable of analyz-
ing such properties automatically.

7.4 ETH data warehouse tool

Jlint2 was very successful in analyzing the data ware-
housing tool from ETH, which serves to analyze astronom-
ical observations [5]. Among other problems, Jlint2 found



two interesting race conditions. In a class implementing a
resource pool, each access to asingleelement was guarded
by synchronization. However, an operation re-allocating the
entire pool, to change its size, was lacking such an access
protection.

class ResourcePool {
Object[] resources = new Object[100];

public setSize(int newSize) {
resources = new Object[newSize];

// race condition!
}

}

Figure 4. A race condition when reallocating
an array object.

Because the object itself changes in Figure 4, a simple
synchronized(resources) will not work. The solu-
tion is to synchronize on an additional object when chang-
ing the resource itself, such asthis or an extraObject
resourceLock .

7.5 Trilogy’s middleware

The analyzed packages of Trilogy’s software are all
server-side engines, running as middleware between other
tiers. They are part of Trilogy’s MCC e-commerce suite,
and similarly to most server-side Java software, heavily
multi-threaded. This made them a perfect target for our
static checker. Moreover, these packages are rather large,
ranging from 25,000 to over 100,000 lines of code.

The overall distribution of synchronization statements
was very similar to the total in Section 5. The core engine
utilized most synchronization statements, while other en-
gines, embodying business logics, used fewer. The more
often synchronizations were needed in a certain package,
the more likely was the occurrence of complex cases. For
instance, inter-object interactions are difficult to analyze.

In one of Trilogy’s packages, Jlint2 discovered a race
condition. In most packages, the race condition warnings
were too numerous to be analyzed, because Jlint does not
understand the concept of shared-read access. If the only
write access is inside the constructor, then suppressing race
condition warnings is simple. Other cases will need a more
detailed lock set analysis (see Section 1.1, [15]), in order to
ensure that no race condition occurs.

Table 3 summarizes the kinds of faults detected by Jlint2.
The numbers in the middle column already exclude mul-
tiples of warnings referring to the same issue at different
lines in the source code, but include spurious warnings.
The second column states the confirmed warnings, i.e., ac-
tual faults. Other than the race condition mentioned above,

Warning category # C

Lock variable change outside constructor
or synchronization.

3 0

Missingsuper.finalize() call. 12 1
Possible deadlock: loop in locking graph
(synchronized methods).

13 0

Possiblenull pointer reference because
parameter is not checked.

23 6

Possiblenull pointer reference because
of unexpected input or state.

6 2

Other 4 1
Total 61 10

Table 3. Faults diagnosed and confirmed by
Jlint2 in Trilogy’s software.

none of the multi-threading warnings could be confirmed as
a fault.

Apart from race conditions, Jlint also found manynull
pointer problems and oneint overflow, where the value
was left shifted by 32beforeit was converted to along ,
and a fewsuper.finalize calls that were not included.
In total, ten confirmed faults were found from these warn-
ings.

The tested packages were fairly mature and had been in
use for quite some time; therefore it is possible that they
will not have any deadlocks anymore. It is also likely that
in more mature code, the remaining faults reside in the com-
munication and control flow between modules; Jlint’s anal-
ysis cannot cover this.

7.6 Usefulness of Jlint

Besides the impressive number of confirmed faults
found, the effort required to find them, using a static
checker, is of course very important in judging Jlint2’s value
as a utility. The time needed toinstall andmastera tool in-
fluences how readily developers will accept it. Jlint2 is easy
to install, and most of the warnings are self-explanatory. It
does not require any annotations, so it can directly be used
on production code. As a consequence of this, we have cho-
sen Jlint2 at Trilogy, where the developers do not have time
to learn a complex tool or add annotations to the source
code.

Theperformanceof a tool is also important. Jlint2 runs
very fast. For checking alljava.*.* class files coming
with Sun’s JDK 1.3, being 250,000 lines of code, Jlint2
requires little more than a second on a Pentium III/700
MHz! This leaves room for more sophisticated analysis al-
gorithms.

Ideally, each warning refers to afault in the software.
This would, however, restrict the scope of current static



checkers too much [12]. Sometimes, spurious warnings
were given because Jlint could not deduce enough context
from the program source code; in other cases, Jlint’s model
was too simple. Jlint does not support shared-read access
and complains about possible race conditions in such cases.
Because of the huge number of warnings, usually several
hundred per package, certain categories of warnings had
to be ignored. This reduced their number to usually 20 –
30 per package, which is quite manageable. Out of these,
roughly 10 % were confirmed as faults.

The reviewof the warnings is an important step as well,
because most warnings do not correspond to a fault. More-
over, it is usually left to the developer to think of a fix
for the detected faults. This is sometimes very easy: war-
nings about local properties, such as results of localnull
pointer analyses, are usually reviewed within seconds, and
fixed quickly. Race conditions also tend to be easy to re-
view. However, for the analysis of possible deadlocks, the
developer has to understand synchronization dependencies
between objects. Because Jlint cannot print the part of the
call graph that would illustrate the conflict, and does not
show the lock set of each thread when there could be a dead-
lock, reviewing deadlock warnings manually is quite diffi-
cult. For someone who is working on the code, it is usually
still possible to examine the warnings in a rather short time.
Someone who is not directly involved with the code cannot
do this, though. Aninspection tool,such as a call graph
browser, would remedy this situation.

8 Conclusions

This paper showed how we successfully used Jlint2, a
static Java program checker, to analyze large-scale, indus-
trial software. Static analysis is a promising way of tackling
multi-threading problems.

We showed howsynchronized blocks in Java can be
modeled as special methods. This allowed us to include
synchronized blocks in the method call graph and treat
method calls and synchronizations uniformly. As our statis-
tical analyses showed, even an incomplete alias analysis is
sufficient to cover 85 % of all cases.

We had extended the original Jlint1 and created our
extended version, Jlint2. Jlint2’s finer grained deadlock
checks found only minor faults – possibly because the soft-
ware checked was already fairly mature. Nevertheless, the
15 test examples showed that Jlint2 is now capable of find-
ing a much wider range of faults than before. This is a first,
important step towards covering the full semantics of multi-
threading. It remains to be seen whether the hardest 15 %
of all cases are the most error prone.

In order to cover the remaining, hard, cases, a more com-
plete alias analysis, and a more flexible framework, will be
needed. Including more context in the analysis will elimi-

nate certain spurious warnings. However, even the current
Jlint2 is a valuable tool for finding faults early, or for prepar-
ing a code review.

References

[1] Jlint1 http://www.ispras.ru/˜knizhnik/
jlint/ReadMe.htm , Jlint2 http://artho.
com/jlint/

[2] VisualThreads http://www5.compaq.com/
products/software/visualthreads/

[3] Doug Lea’s concurrency package http:
//gee.cs.oswego.edu/dl/classes/EDU/
oswego/cs/dl/util/concurrent/intro.
html

[4] Trilogy Inc. http://www.trilogy.com/

[5] HEDC - HESSI Experimental Data Centerhttp://
www.hedc.ethz.ch/

[6] G. J. Holzmann.Design And Validation Of Computer
Protocols.Prentice Hall, USA 1991.

[7] A. T. Chamillard.An Empirical Comparison of Static
Concurrency Analysis Techniques.PhD thesis. Uni-
versity of Massachusetts at Amherst, May 1996.

[8] W. Landi and B. Ryder. Pointer-induced aliasing: A
Problem taxonomy.Proceedings of the Eighteenth An-
nual ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages,93–103, January
1991.

[9] J. Hogg, D. Lea, A. Wills, D. deChampeaux, R. Holt.
The Geneva Convention On The Treatment of Object
Aliasing.OOPS messenger 1992,USA 1992.

[10] E. M. Clarke, O. Grumber, and D. A. Peled.Model
Checking.MIT Press, USA 1999.

[11] J. Hatcliff and O. Tkachuk.The Bandera Tools for
Model-Checking Java Source Code: A User’s Man-
ual. Kansas State University, USA 2001.

[12] K. Rustan M. Leino, G. Nelson, and J. B. Saxe.
ESC/Java User’s Manual.Technical Note 2000-002,
Compaq Systems Research Center, October 2000.

[13] D. Bruening. Systematic Testing of Multi-threaded
Java Programs.Master’s Thesis, MIT, May 1999.

[14] P. Godefroid.Model Checking for Programming Lan-
guages using VeriSoft.Bell Laboratories, Lucent
Technologies, USA 2000.

http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm
http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm
http://artho.com/jlint/
http://artho.com/jlint/
http://www5.compaq.com/products/software/visualthreads/
http://www5.compaq.com/products/software/visualthreads/
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://www.trilogy.com/
http://www.hedc.ethz.ch/
http://www.hedc.ethz.ch/


[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. Anderson. Eraser: A Dynamic Race Detector
for Multi-Threaded Programs.Proceedings of the 16th
ACM Symposium on Operating System Principles,27-
37, Saint Malo, France, October 1997.

[16] J.C. Corbett, M.B. Dwyer, J. Hatcliff, and R.. Bandera:
A source-level interface for model checking Java pro-
grams.Proc. 22nd International Conference on Soft-
ware Engineering,June 2000.

[17] K. Rustan M. Leino, J. B. Saxe, and R. Stata.Check-
ing Java programs via guarded commands.Techni-
cal Note 1999-002, Compaq Systems Research Cen-
ter, May 1999.

[18] D. L. Detlefs, K. Rustan M. Leino, G. Nelson, and J.
B. Saxe.Extended Static Checking.Compaq Systems
Research Center, December 1998.

[19] T. Ball, S. Chaki, S. K. Rajamani. Parameterized Ver-
ification of Multithreaded Software Libraries.TACAS
2001,LNCS 2031, April 2001, 158-173.

[20] W. Visser, K. Havelund, G. Brat, S. Park. Model
Checking Programs.International Conference on Au-
tomated Software Engineering,September 2000.

[21] G. Brat, K. Havelund, S. Park, W. Visser. Java
PathFinder, Second Generation of a Java Model
Checker.Workshop on Advances in Verification,July
2000.

[22] T. Ball, S. K. Rajamani.Boolean Programs: A Model
and Process for Software Analysis.MSR Technical
Report 2000–14, USA 2000.

[23] R. Hastings and B. Joyce. Purify: fast detection of
memory leaks and access errors.Proceedings of the
Winter Usenix Conference,1992.

[24] J. C. Corbett. Evaluating Deadlock Detection Methods
for Concurrent Software.IEEE transactions on soft-
ware engineering, Vol. 22,No. 3, March 1996.

[25] IEEE.Threads Extension for Portable Operating Sys-
tems (Draft 6).February 1992, P1003.4a/D6.

[26] A. Silberschatz, G. Gagne, P. Baer Galvin.Applied
Operating Systems Concepts.1st edition, USA 2000.

[27] D. Lea. Concurrent Programming in Java: Design
Principles and Patterns.2nd edition, Addison-Wesley,
USA 1999.

[28] S. Oaks, H. Wong.Java Threads.O’Reilly, USA 1997.

[29] D. Flanagan.Java In A Nutshell.3rd Ed.. O’Reilly,
USA 1999.

[30] J. Gosling, B. Joy, G. Steele, G. Bracha.The Java Lan-
guage Specification.2nd Ed., Addison-Wesley, USA
2000.

[31] T. Lindholm, F. Jellin. The Java Virtual Machine
Specification, Second Edition.Addison-Wesley, USA
1999.

[32] Intel Corporation.Pentium Pro family developer’s
manual, volume 3: Operating system writer’s manual.
Intel Corporation, 1996, Order number 242692.

[33] United States Department of Defense.Reference Man-
ual for the Ada programming language.DoD, Wash-
ington, D.C., January 1983. ANSI/MIL-STD-1815A.

[34] E. W. Dijkstra. Co-operating sequential processes.
Programming Languages,F. Genuys, Ed. Academic
Press, New York, 1968, 43-112.

[35] C. A. R. Hoare. Towards a theory of parallel pro-
gramming.Operating Systems Techniques,Academic
Press, New York, 1972, 61–71.

[36] B. Hansen, P. The programming language Concurrent
Pascal.IEEE Trans. Software Eng. 1, 2(June 1975),
199–207.

[37] A. Pnueli. A temporal logic of concurrent programs.
Theoretical Computer Science 13,45–60.


	Introduction
	Problems with multi-threading
	Structure of this paper

	Existing work
	Multi-threading in Java
	Jlint
	Statistical analysis
	Call graph extension
	Application of Jlint
	Test examples
	Sun's JDK packages
	Doug Lea's concurrency package
	ETH data warehouse tool
	Trilogy's middleware
	Usefulness of Jlint

	Conclusions

