
Combined Static and Dynamic Analysis

Cyrille Artho1 and Armin Biere2

1 Computer Systems Institute, ETH Zürich, Switzerland
2 Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria

Abstract. Static analysis is usually faster than dynamic analysis but less pre-
cise. Therefore it is often desirable to retain information from static analysis for
run-time verification, or to compare the results of both techniques. However, this
requires writing two programs, which may not act identically under the same
conditions. It would be desirable to share the same generic algorithm by static
and dynamic analysis. In JNuke, a framework for static and dynamic analysis
of Java programs, this has been achieved. By keeping the architecture of static
analysis similar to a virtual machine, the only key difference between abstract
interpretation and execution remains the nature of program states. In dynamic
analysis, concrete states are available, while in static analysis, sets of (abstract)
states are considered. Our new analysis is generic because it can re-use the same
algorithm in static analysis and dynamic analysis. This paper describes the ar-
chitecture of such a generic analysis. To our knowledge, JNuke is the first tool
that has achieved this integration, which enables static and dynamic analysis to
interact in novel ways.

1 Introduction

Java is a popular object-oriented, multi-threaded programming language. Verification
of Java programs has become increasingly important. Two major approaches have been
established:Static analysisanddynamic analysis.

Static analysis approximates the set of possible program states. It includes abstract
interpretation [14], which typically encompasses a (strictly) wider range of behaviors
than the original, using an abstract version of the program. Abstract states represent
sets of concrete states. The analysis iterates over these abstract states until a fixpoint
is reached or a certain limit, such as a second loop execution, is reached. Static analy-
sis scales well for many properties, as they may only require summary information of
dependent methods or modules. “Classical” static analysis constructs a graph represen-
tation of the program and calculates the fix point of properties using that graph [14].
This is very different from dynamic analysis, which evaluates properties against an
event trace originating from a concrete program execution. Using a graph-free analy-
sis [26], static analysis is again close to dynamic execution. In this paper, a graph-free
static analysis is extended to ageneric analysiswhich is applicable to dynamic analysis
as well.

Dynamic analysis actually executes the system under test. This has the key advan-
tage of having precise information available. Some fully automated dynamic analysis
algorithms even only require a single execution trace to deduce possible errors [7,30].

This fact is the foundation of run-time verification [1], ameliorating the major weak-
ness of testing, which is the possible dependence of a system execution on the thread
schedule. If a test suite with high coverage exists, run-time verification can thus explore
a large part of the possible behaviors while scaling significantly better than software
model checking. Dynamic analysis requires an execution environment, such as a Java
Virtual Machine (VM). However, typical Java VMs only target execution and do not
offer all required features, in particular, full state access. Code instrumentation, used
by JPaX [20], can solve this problem to some extent only [19]. JNuke contains a spe-
cialized VM allowing for both backtracking and full state access. Custom checking
algorithms can be implemented using an API that allows an algorithm to register for
any event of interest.

1.1 Overview of JNuke

JNuke [8] is a fully self-contained framework for loading and analyzing Java class files.
The class loader includes a type checker which implements bytecode verification to en-
sure the well-formedness of class files to be loaded [24]. It also transforms the byte code
into a reduced instruction set, after inlining intra-method subroutines. Additionally, ex-
plicit registers are introduced to replace the operand stack [5]. A peep-hole optimizer
takes advantage of the register-based byte code. Originally JNuke was designed for dy-
namic analysis, encompassing explicit-state software model checking [32] and run-time
verification [1].

At the core of JNuke is its VM, providing check-points [15] for explicit-state model
checking and reachability analysis through backtracking. A check-point allows explo-
ration of different successor states in the search, storing only the difference between
states for efficiency. For generic run-time verification, the engine executes only one
schedule defined by a given scheduling algorithm. An observer interface provides ac-
cess to events occurring during program execution. Event listeners can then query the
virtual machine for detailed data and thus implement any run-time verification algo-
rithm.

Static analysis was added to JNuke at a later stage. In the initial version, static
analysis in JNuke could not handle recursion and required algorithms to be targetted to
a static environment [6]. This paper describes the solution for recursion and furthermore
allows sharing of algorithms in a static and dynamic environment.

JNuke’s generic analysis framework allows the entire analysis logics to be written
such that they are agnostic of whether the “environment” is a static or dynamic analysis.
Both versions require only a simple wrapper that converts environment-specific data
into a form that a generic algorithm can use.

For portability and best possible efficiency, JNuke was implemented in C. A light-
weight object-oriented layer has been added, allowing for a modern design without
sacrificing speed. The roughly 1700 unit tests make up half of the 130,000 lines of code
(LOC). Full statement coverage results in improved robustness and portability. JNuke
runs on Mac OS X and the 32-bit and 64-bit variants of Linux (x86 and Alpha) and
Solaris.

2

1.2 Motivation for this framework

Even a fast execution environment is greatly slowed down by run-time verification and
thus needs support from a static data flow analysis in order to reduce the amount of data
to be monitored at run-time. Ideally this functionality is pluggable in the class loader.
Because the entire framework is integrated, difficult (and often lossy) conversion of
static information for dynamic analysis is not necessary.

It is not always certain whether it is beneficial to implement a static or a dynamic
analysis for a specific property. Static analysis can scale easily to a million lines of
code per minute or more [3,6] if it does not require complex pointer aliasing infor-
mation. The block-local atomicity analysis algorithm [6] seemed to be most suitable
for static analysis because the property checked is context-insensitive (method-local).
However, accuracy depends heavily on the quality of the pointer analysis used [34].
Imprecise lock information may generate spurious warnings. Therefore it is interesting
to see whether a dynamic version of the same algorithm produces better results.

Static Analyzer

Run−time Verification Confirmed? example
Counter−

Report

Test case(s)

add to suppression list

no

yes

Fig. 1.A new tool flow for fault detection using combined static and dynamic analysis.

Furthermore, the fact that the algorithm itself is identical for static and dynamic
analysis allows a novel kind of combined analysis for fault detection, as outlined in
Figure 1. A static analyzer looks for faults. Reports are then analyzed by a human, who
writes test cases for each kind of fault reported. Run-time verification will then analyze
the program using the dynamic version of the same algorithm, possibly confirming the
fault as a failure or counterexample. If a failure is not confirmed, even after multiple
iterations of creating test cases, given reports can be suppressed in future runs of the
static analyzer. Of course this particular application gives up soundness but facilitates
fault finding. Current approaches only offer a manual review of reports. The generic
algorithm is shared by both tools, which is our contribution and enables this tight inte-
gration of static and dynamic analysis.

1.3 Outline

This paper is the extended version of a previously published paper [4]. Section 2 intro-
duces static analysis in JNuke. Generic analysis algorithms, applicable to both a static

3

and dynamic context, are described in Section 4. Section 5 shows the viability of this
approach based on experiments. Section 6 concludes.

2 Static Analysis in JNuke

In JNuke, static analysis works very much like dynamic execution, where theenviron-
mentonly implements non-deterministic control flow. It thus implements a graph-free
data flow analysis [26] where data locality is improved because an entire path of com-
putation is followed as long as valid new successor states are discovered. Each Java
method can be executed in this way. The abstract behavior of the program is modelled
by the user. The environment runs the analysis algorithm until an abortion criterion is
met or the full abstract state space is exhausted.

2.1 Graph-free abstract interpretation

Abstract interpretation of a program involves computation of the least or greatest fix
point of a system of semantics of the form:

x1 = Φ1(x1, . . . ,xn)
...

xn = Φn(x1, . . . ,xn)

where each indexi ∈C = [1,n] represents a location of the program, and each func-
tion Φi is a continuous function fromLn to L. L is the abstract lattice of program prop-
erties. Each functionΦi computes the property holding ati after one program step ex-
ecuted. Applying the equations iteratively therefore computes the solution eventually,
but is inefficient [9]. A well-established speed-up technique consists of widening [14],
where some equations forxi are replaced withxi = xi OΦi(x1, . . . ,xn), operatorO being
a safe approximation of the least upper bound such that the iteration strategy eventually
terminates. For optimal performance, widening operators have to be tuned for a specific
iteration strategy [9].

In graph-free abstract interpretation [26], the propertiesxi at each program locationi
are represented by an abstract state, representing a set of concrete statesS. Computation
of these properties from the abstract state is quite straightforward and can be done
uniformly for all locations, by using a property predicateP:

x1 = P(S1)
...

xn = P(Sn)

The central problem is thus computation of the fix point of all abstract statesSi :
S1 = absexec(1,S1)

...
Sn = absexec(n,Sn)

4

Since this technique already uses an execution environment, control flow structures
are evaluated correctly and efficiently [26]. Whenever a new abstract stateS′i is com-
puted, the effects of the instruction ati are calculated based on the semantics of the ab-
stract domain:S′i = absexec(i,Si). The difference to dynamic execution therefore lies in
the nature of an abstract stateSi which can represent several concrete states{sj , . . . ,sk},
some of them possibly unreachable in real execution. Function absexec may also over-
approximate its resultS′i , which can be compared to widening as described in Section 4.

2.2 Separation of control flow and bytecode semantics

The iteration over the program state space is separated from the analysis logics. A
genericcontrol flow modulecontrols symbolic execution of instructions, while the anal-
ysis algorithm deals with the representation of (abstract) data and the semantics of the
analysis. The control flow module implements a variant of priority queue iteration [22],
executing a full path of computation as long as successor states have not been visited
before, without storing the flow graph [26]. Abstract statess as used in this algorithm
refer to a set of program states at a single locationl . A single abstract state atl thus
usually represents a set of concrete states at that location.

3. for control flow,
 − clone state for each new target
 − merge with state queue

− updates of abstract state

− verification of program properties

1. get analysis state at next instruction

2. run analysis algorithm

Analysis algorithm (specific)Control flow (generic)

Fig. 2.Separation of control flow and analysis algorithm.

Figure 2 shows the principle of state space exploration: The generic control flow
module first chooses an instruction to be executed from a set of unvisited abstract states.
It then runs the specific analysis algorithm on that unvisited abstract state. That algo-
rithm updates its abstract state and verifies the properties of interest. After evaluation
of the current instruction, the control flow module adds all valid successor states to the
queue of states to visit, avoiding duplicates by keeping a set of seen states. When en-
countering a branch instruction such asswitch, all possible successors are added to the
state space. Furthermore, each possible exception target is also added to the states that
have to be explored.

It is up to the specific analysis algorithm to model data values. Currently, only the
block-local atomicity analysis for stale values [6] is implemented. This analysis tracks
the state of each register (whether it is shared and therefore possibly stale) and includes
a simple approximation of lock identities (pointer aliasing [35]). It does not require
any further information about the state of variables, and thus chooses to execute every

5

branch target. Due to the limited number of possible states for each register, the analysis
converges very quickly.

2.3 Optimized state space management

After the specific algorithm has calculated the outcome of the current abstract state,
the control flow algorithm evaluates all possible successor instructions. To achieve this,
the current abstract state is cloned for each new possible successor state. The control
flow module then adds this state to the queue of states to visit. This corresponds to
a basic model-checking algorithm [21] but is not the most efficient way to perform
static analysis for software. The observation was that a lot of states were stored and
then immediately re-fetched in the next cycle of the main loop. This is because many
instructions in Java do not affect control flow. Therefore the above algorithm from Fig-
ure 2 was modified to only store a state if (a) it generates multiple successor states or
(b) another state with the same program counter had been visited before. This has the
effect that the major part of a method is executed “linearly” without storing the current
state. Only if a branch instruction occurs, the state is cloned and stored.

The reason why this optimization works well is that many Java bytecode instructions
do not affect control flow. Therefore our algorithm does not store the current state if a
unique immediate successor instruction is eligible. A state is only stored if it is target
of a branch instruction. This reduces memory usage [26] but may visit a state twice: If
an instructionib is the target of a backward jump, such as in awhile loop, it is only
recognized as such when the branch instruction is visited, which usually occurs after
ib has been visited before. However, this overhead is small since it only occurs during
the first iteration. As an example, assume some execution visits states 1 – 5 and then
branches back to state 3. No state is stored until state 5 is reached. The current abstract
state at 5 is stored since its code consists of a branch instruction. States 3 and 4 are then
re-visited because the algorithm has not stored them during its first iteration. During the
second iteration, state 3 is stored because it is now known to be the target of a backward
jump. Therefore, if the abstract program state at 3 does not change during future loop
iterations, that state is not re-visited anymore.

3 Run-time verification in JNuke

JNuke implements a virtual machine that can execute the full set of Java bytecode in-
structions [24] and therefore any Java program given an implementation of the native
code used by it. An application programming interface (API) allows event listeners to
connect to any action of interest and query the VM about its internal state, thus imple-
menting any analysis algorithm of choice.

Prior to execution, the class loader transforms the Java bytecode into a more ab-
stract, RISC-like version that only contains 27 instructions. The result is then further
transformed into a register-based version of the originally stack-based bytecode [5].
This allows a peep-hole optimizer to reduce some of the complex sequences of instruc-
tions used to implement arithmetic operations, which have to copy all operands on the
stack first in the original version. Execution of the program generates a series of events,

6

RV API

Virtual Machine

Bytecode

Run−time verification
algorithm

Fig. 3.Run-time verification in JNuke.

denoted by an eventtrace.During execution, the run-time verification API (RV API)
offers event listeners, which can capture the event trace. Such listeners are used to im-
plement scheduling policies and run-time verification algorithms. The algorithm is re-
sponsible to copy data it needs for later investigation, as the VM is not directly affected
by the listeners and thus may choose to free data not used anymore. Figure 3 shows an
overview of the JNuke VM and how a run-time verification algorithm can be executed
by callback functions in the VM. For simplicity, the figure omits the fact that some
communication from the RV algorithm back to the VM actually occurs in the presence
of garbage collection. In such a situation, the RV algorithm must instruct the VM to
suppress collection of data it is still using, in order to prevent access to memory loca-
tions that are already freed or reallocated for other data [16]. Such a protection applies
to all algorithms that use references to identify data.

3.1 JNuke VM

Figure 4 shows the key components of the VM [15]. The core parts are subsumed by
the run-time environment, which controls the execution and effects of single instruc-
tions. It also loads classes on demand (using a linker module which is not shown in
the figure). After each instruction, an exchangeableschedulerdecides whether a thread
switch should occur. If this is the case, the run-time environment puts the current thread
to sleep and enables a new one. This action may involve updates on the lock sets of each
thread, which is done via thelock manager.Inter-thread communications are queued by
thewaitset manager,while any heap content is updated by theheap manager.The heap
manager allocates and frees data and is partially accessed directly by the run-time envi-
ronment, partially by thegarbage collector.The run-time environment can run with or
without garbage collection [16].

This modularization of the VM allowed for a more flexible design. After an initial
implementation, each module was augmented with a rollback capability which allows
storing and restoring the entire state of the VM. This can be used to explore each possi-
bility in the presence of non-determinism, such as non-determinism arising from thread

7

JNuke VM

Lock
manager

Waitset
manager

Heap
manager

Garbage
collector

Scheduler

Run−time environment

Fig. 4.Overview of the key components of the JNuke VM.

switches [11]. A special scheduler uses this to perform explicit-state model checking
for Java programs [8,15]. These interfaces also ensure that native methods needed to
perform system calls operate in a well-behaved manner and do not corrupt the Java
heap.

3.2 Run-time verification API

The run-time verification API (RV API) allows algorithms to registerlistenersfor events
of interest, such as a lock acquisition. These listeners are notified through an observer
interface [18] whenever such an event occurs. After registering all event handlers, the
virtual machine is started as usual. It will call the registered listeners whenever an event
of interest occurs. The call includes light-weight event data, containing the exact type
of event and a pointer to the run-time environment. The first part of the data is used
to distinguish subclasses of events. For instance, read and write accesses may share the
same event handler, but the handler may still need to know the exact nature of the access
in one decision. The second part of event data serves to query the virtual machine about
more information, such as the exact state of each thread. Some events include a little
extra information for efficiency, so such queries can be eliminated for basic information
that is always needed when an event occurs (for instance, which lock was used in a lock
release).

Events are separated into different classes, as shown in Table 1. This allows RV
algorithms to install generic event handlers to deal with common aspects of a super
class of events, which then delegates fine points to particular subclasses. These event
handlers may also have to performevent re-ordering,because one instruction may gen-
erate several events, which do not necessarily occur in the right order. For instance,
entry to asynchronized method causes three events: the lock acquistion on method
entry, method entry itself, and the first bytecode instruction of the method. Certain al-
gorithms may require these events to occur in a certain order in order to work properly.
For simplicity, the current API does not allow for specifying the order in which such

8

Event Subclasses (if available)Purpose/possible checks

Field access Read/write access Locking discipline (e.g. Eraser)
Lock event Lock acq./release Locking (e.g. deadlock detection)
Method event Method start/end Call graph construction
Thread creation – Record thread name and type
Bytecode executionEvents for all 27 Model instruction-specific properties

abstract instructions
Program termination– Final report, clean up RV data

Table 1.Run-time verification events in JNuke.

simultaneous events are received. However, this minor problem, which does not occur
often, can be easily solved in the listener implementation.

The RV API itself builds on low-level listeners provided by the VM. The low-level
listeners are embedded in the reponsible module: field access events are treated by the
heap manager while the lock manager deals with lock events. Other events are issued
by the run-time environment itself, such as bytecode execution events. The RV API
was created to provide a single front end to all these different event callbacks. It also
allows to activate certain auxiliary listeners that log history information as the program
executes. This is very useful for printing more detailed trace information. These two
features, a simple front end and history information, greatly reduce the amount of work
required for implementing a run-time verification algorithm.

4 Generic Analysis Algorithms

The goal of this extension to JNuke was to be able to usegeneric analysis algorithms.
These algorithms should work equally in both astatic environment(using abstract in-
terpretation) and adynamic environment(using run-time verification). The problem is
that the environments are quite different: the VM offers a single fully detailed state.
Abstract interpretation [14], on the other hand, deals with sets of states, each state con-
taining imprecise information that represents several concrete states. The challenge was
to reconcile the differences between these two worlds and factor out the common parts
of the algorithm.

Figure 5 illustrates the problem: The analysis algorithm is duplicated for both anal-
ysis scenarios. Much genericity and flexibility is already gained by utilizing a generic
observer-based run-time verification interface [2] and a generic iteration module which
analyzes control flow [4]. However, the final property-specific part still has to be written
twice, adapted to each scenario. This is even though the analysis clearly represents the
same rules. The goal is therefore to have a generic analysis. The design that allows to
achieve this is the key contribution of this paper.

A generic analysis represents a single program state or a set of program states at
a singleprogram location. It also embodies a number of event handlers that model the
semantics of byte code operations. Both static analysis and run-time analysis trigger
an intermediate layer that evaluates the events. The environment hides its actual nature

9

Run−time Verification Static Analysis

RV API

Virtual Machine

Bytecode

Run−time verification
algorithm

Static Analysis
algorithm

Bytecode

Control Flow
Iterator (generic)

Fig. 5.Classical approaches duplicate the analysis algorithm for the dynamic and static case.

(static or dynamic) from the generic algorithm and maintains a representation of the
program state that is suitably detailed.

Figure 6 shows the principle. Run-time verification is driven by atrace,a series of
eventse emitted by the run-time verification API. An event represents method entry or
exit, or execution of an instruction at locationl . Conventional run-time analysis ana-
lyzes these events directly. The dynamic environment, on the other hand, uses the event
information to maintain acontext cof algorithm-specific data before relaying the event
to the generic analysis. This context is used to maintain state informations that cannot
be updated uniformly for the static and dynamic case. It is updated similarly by the
static environment, which also receives eventse, determining that successor states atl
are to be computed. The key difference for the static environment is that its updates toc
concernsets of states S. Sets of states are also stored in components used by the generic
algorithm. Operation on states (such as comparisons) are performed through delegation
to component members. Therefore the “true nature” of state components, whether they
embody single concrete states or sets of abstract states, is transparent to the generic
analysis. It can thus be used statically or dynamically.

Existing work in software model checking has shown that using only determinis-
tic choices during state space exploration results in a feasible counter-example trace.
This technique therefore corresponds to reducing a set of (abstract) states to a concrete
state [27]. However, property verification algorithms as in run-time verification have so
far not been applied to the resulting concrete states. This is because in the JPF/Bandera
tool chain, the counter-example trace is already known to be concrete at that stage.
Instead, the counter-example trace is used for abstraction refinement [27].

The abstract domain is chosen based on the features required by the generic analysis
to evaluate given properties. Both the domain and the properties are implemented as an
observer algorithm in JNuke. Future algorithms may include an interpreter for logics
such as LTL [28]. Interpretation of events with respect to temporal properties would

10

Dynamic
environment

SA (Iteration)

Virtual Machine

RV API

S

s

Generic
analysis

Static
environment

Context

e

e
Bytecode

e

e

s | S

Fig. 6.Running generic analysis algorithms in a static or dynamic environment.

then be encoded in the generic analysis while event generation would be implemented
by the static and dynamic environment, respectively.

4.1 Context data

Context datac has to be applicable to static and dynamic analysis. The dynamic envi-
ronment maintains a single (current) contextcwhile the static one maintains one context
per location,cl . In a static environment, certain data may not be defined precisely; for
instance, in a field access, the static environment often cannot provide a pointer to the
instance of which the field was accessed. There are two ways to deal with this problem:
The generic analysis must not require such data, or the static layer must insert artificial
values. The latter was used for modeling staticlock sets,where the static layer uses
symbolic IDs to distinguish locks, rather than their pointers. On each lock acquisition,
the lock set incl is updated with a new such lock ID. The generic analysis may only
read locks or perform non-destructive, abstract tests, such as testing set intersections for
emptiness. Due to polymorphism (in the implementation) of the actual set content, the
generic analysis therefore never becomes aware of the true nature of the locks. The en-
vironment also maintains contextual information for each lock, such as the line number
where it was acquired. Again, polymorphism allows lookup from locks to line numbers
without revealing the content of the lock.

In general, the environment must create suitable representations of state informa-
tion used by the generic analysis. The generic analysis only operates on such data. The
environment thus acts as a proxy [18] for the virtual machine, if present, or replaces
that data with appropriate facsimiles in static analysis. These facsimiles have to be con-
ceptually isomorphic with respect to concrete values obtained during run-time analysis.
Distinct objects have to map to distinct representations. Of course, true isomorphism is
only achieved if pointer analysis is absolutely accurate. The proxy objects implemented
so far incur little overhead but are rather specialized and may only be re-used if another
algorithm has equivalent requirements. For example, if the alias information of two
locks is not known, one can either assume they are equal or different. The conservative

11

approximation of a lock set therefore depends on the algorithm used. A static version
of a low-level data race algorithm [30] can safely assume that all locks are different,
but this will likely lead to many false positives since the intersection of different lock
sets is going to be empty in such cases. The same assumption holds for the high-level
data race [7] and block-local atomicity [6] algorithms. Other algorithms may have the
reverse requirement, i.e., two locks of which the alias information is unknown have to
be treated as equal locks.

Context dataType Content for static analysis Content for dynamic analysis

Current Integer Integer reflecting approximatedTrue count of the total number
monitor non-reentrant lock acquisitionsof lock acquisitions so far
block (ID)
Registers Array Abstract entries containing Shadow values reflecting
(“stack only information about sets property of interest (exact
frame”) of possible register properties status of each register)
Lock set Set Integer descriptors for each lockTrue lock set
Lock context Map Map of integers to locations Map of locks to locations

Table 2.Context differences for the static and dynamic block-local atomicity analysis.

The generic block-local atomicity algorithm [6] has the property that it is agnostic
to certain concrete values (such as the values of integers) but needs relatively precise
information about others (locks). It thus provides a good example of a generic analysis
algorithm, as other ones are expected to show similar differences. Table 2 gives an
overview of the differences between the static and dynamic versions of the algorithm.

In the block-local atomicity algorithm, the static environment approximates the lock
set, representing it with proxy objects; the dynamic environment simply queries the
VM. The property check itself is completely independent of the environment, as it refers
to “shadow data” which reflects the status of each register, i.e., whether their value is
stale or not. In the static case, the semantics of sets of states are reflected by approxi-
mating the set of all possible values in the operations on registers. Figure 7 shows an
excerpt of this generic algorithm. Its code has been simplified for clarity, using Java-like
syntax and ignoring registers with a size of 64 bits. It contains the essence of the idea
outlined above: Classcontext stores the lock set, which is updated by the environment
and queried bycontext.getLockSet(). Context data is therefore updated with each
evaluation step, and queried on demand. A static environment approximates the lock set
using proxy objects. Note that the approximation can be made conservative if pointer
alias information is imprecise [6]. The dynamic environment simply queries the VM to
obtain the real, concrete lock set. The property check itself is completely independent
of the environment, aslocalvars refers to “shadow data” which reflects the status of
reach register, i.e., whether their value is stale or not [6]. In the static case, the seman-
tics of sets of states are reflected by approximating the set of all possible values in the
operations onlocalvars (such asget andset shown here). Therefore the generic
algorithm performs the same operations on concrete states as on sets of abstract states.

12

void atGetField(Bytecode bc) {
 /* Compute effect of GetField instruction w.r.t. stale values. */
 /* Potential data races with the reference to the object instance
 * are discovered by the Eraser lock set algorithm, which monitors
 * individual field accesses. */

 /* Check block-local atomicity property for arguments consumed by
 * this instruction */
 checkRegisters(bc);
 StackElement result = newData(); /* possibly shared, see below */
 localvars.set(bc.getResultRegister(), result); /* store result */
}

StackElement newData() {
 /* Generic case where new data is obtained from a possibly shared
 * field. If data is shared, set correct monitorBlock etc. */

 StackElement data = new StackElement(); /* unshared by default */
 if (context.getLockSet().count() > 0) {
 data.setShared(true);
 data.setMonitorBlock(context.getCurrentMonitorBlock()));
 }
 return data;
}

void checkRegisters(Bytecode bc) {
 /* Check each local variable for local atomicity violation. */

 for (int i = 0; i < bc.getNumRegs(); i++) {
 int idx = bc.getRegisterIndex(i);
 if (registerIsLocalVariable(idx)) {
 StackElement data = localvars.get(idx);
 if (data.getShared() &&
 (data.getMonitorBlock() != getCurrentMonitorBlock()))
 /* report error */
 }
 }
}

Fig. 7.Excerpt of the block-local atomicity algorithm (simplified).

13

4.2 Interfacing run-time verification

Many run-time verification algorithms, such as Eraser [30], are context-sensitive and
not thread-local. Such an algorithm receives events fromall threads and methods. A
run-time variant of such an algorithm therefore requires only a single instance of object
holding analysis data. In such a case, creating a static variant is less interesting since
the dynamic algorithm, if used with a good test suite, yields excellent results [10].

AnalysisAlgorithm

RV API

ThreadSplitter

Dynamic
environment

DynamicAnalysis

Fig. 8. Interfacing run-time verification with a generic analysis algorithm.

Conversely, analyzing a context-insensitive (method-local), thread-local property
is more amenable to static analysis, but actually makes run-time analysis more diffi-
cult. This is counter-intuitive because such properties are conceptually simpler. The
block-local atomicity algorithm serves as an example here, being both thread-local and
method-local. For run-time verification, a new instance of this analysis has to be cre-
ated on each method call and thread. Instances of analysis algorithms then correspond
to stack frames on the program stack. Figure 8 contains a UML diagram [29] depict-
ing how the dynamic environment creates instances of an analysis algorithm as needed.
The first layer, classthread splitter,splits events according to their thread ID, creating a
separate instance of classdynamic analysisas needed, one for each thread. The second
layer, driven by class dynamic analysis, creates a new instance of classanalysis algo-
rithm for each stack frame, at the beginning of each method call. Each new analysis
instance is completely independent of any others, except for a shared, global context
(such as lock sets, which are kept throughout method calls) and return values of method
calls. The dynamic environment maintains the shared context and relays return values
of method calls to the analysis instance corresponding to the caller. In this case, lock
set information is already available by the RV API and does not have to be managed
separately. Other global data can be managed by an extra listener that evaluates events
before relaying them to class thread splitter. The thread-specific instances of dynamic
analysis deal with communicating return values from an “inner” instance, correspond-
ing to the callee, to the “outer” one, referring to the caller.

4.3 Interfacing static analysis

Static analysis calculates the set of all possible program states. Branches (test nodes) are
treated non-derministically by considering all possible successors and copying(cloning)

14

the current state for each outcome. Junction nodes denote points where control flow of
several predecessor nodes merges [14]. In this paper, the operation that creates a new
set of possible states at this node will be calledmerging.

The key is that the generic algorithm is not aware that static analysis requires copy-
ing and merging operations. To achieve this, the capabilities of the generic analysis must
be extended with theMergeableinterface. The extended class inherits the algorithm and
delegates cloning and merging states to the components of a state, as shown in Figure 9.
By merging states, sets of states are generated. Computations of state components must
therefore support set semantics for static analysis. What is important is that theanalysis
logicsare unchanged: the generic algorithm is still unaware that cloning, merging, and
set operations happen “behind the scenes” and implements its property checking as if
only a single state existed. In some cases, static analysis may converge slowly; conver-
gence is improved by using a widening operator [14] which can be implemented by the
merge operation.

AnalysisAlgorithm Mergeable

StaticAnalysis ControlFlow

Recursion

Static
environment

Fig. 9. Interfacing static analysis with a generic analysis algorithm.

In dynamic analysis, only one program locationl is active (per thread), correspond-
ing to a single program states. This current states is updated and the result assigned to
successor states′; the original states is then discarded. In static analysis, abstract states
Si at all program locationsi are being analyzed. The abstract states are analyzed in an
iterative way, and thus the abstract states at each program location are retained until the
iteration terminates. Each abstract stateSi is represented by an instance of the generic
algorithm. The type of operation performed to model the semantics of each instruction
remains the same for static and dynamic analysis.

In our framework, the successor states of one setSi are calculated in each iteration.
The choice ofi is implemented by a control flow module, as described in Section 2. This
covers intra-method analysis, leaving open the problem of method calls. It is desirable
that the entire statically reachable call graph is traversed so each reachable method in
a program is analyzed. Arecursionclass solves this challenge. Itexpandsa method
call by starting a new instance of the control flow class. Figure 9 shows an overview of
these connections. The recursion class starts with themain method and creates a new in-
stance of the control flow class for each called method. The control flow class performs
intra-method analysis and delegates method calls back to the recursion class, which
also handles multi-threading by exploring the behavior of threads when encountering a

15

thread start point, e.g. arun method. This way, the algorithm explores the behavior of
all threads.

This leaves open the problem of self-recursion or mutual recursion. It is not possi-
ble to model the effects of a recursive method that calls another method higher up in
its stack frame using this algorithm. This is because the precise effect of that method
call depends on itself.3 Therefore the static analysis class has to implement asummary
method, which models method calls without requiring knowledge about the effects of
a method. Such a summary method can conservatively assume the worst possible out-
come or provide more precise information.

The result of each evaluated method call is stored as a summary. Context-sensitivity
is modeled by evaluating each method call once for each possible call context. For
a context-insensitive analysis, an empty call context is assumed. Context sensitivity
therefore does not directly have an effect on the fact that each method call requires a new
instance of control flow and analysis objects. However, once summaries are available,
their information will act as a cache. For context-insensitive analysis, the empty call
context always matches for a given method, and thus each method call is only evaluated
once.

In principle, every analysis algorithm can be split up into a generic algorithm and
its environment. Most data flow problems can be seen as set-theoretic or closure prob-
lems [25] and their nature will affect how the merge operation is implemented. Precision
of the analysis will depend on the approximation of pointer aliasing [35]. If accurate in-
formation about data values is needed or when environment-specific optimizations are
called for, the generic part of an algorithm may become rather small compared to the
size of its (static or dynamic) environment. However, with the block-local atomicity
algorithm, it has been our experience that the generic algorithm does indeed embody
the entire logics and thus is not just a negligeable part of the whole. Notably, adapting
a static algorithm for dynamic analysis is greatly facilitated with our approach.

5 Experiments

The block-local atomicity algorithm [6] has been implemented as a generic algorithm
that can be used to compare the static and dynamic approach. It analyzes method-local
data flow, checking for copies of shared data(stale values)that are used outside the
critical section in which shared data was read [13]. This analysis only requires reference
alias information about locks, making it a suitable candidate for both static and dynamic
analysis. Table 3 summarizes the benchmark programs used to compare the static and
dynamic version of the stale-value analysis [6].

The static analysis module includes asuppression listto avoid a few common cases
of false positives. The list contains three methods which return thread-local information,
corresponding to the hand-over protocol for return data [23]:

– java/io/BufferedReader.readLine
– java/lang/Integer.parseInt
– java/util/Date.getTime

16

Benchmark Size [LOC] Description

Daisy [17] 1900Multi-threaded (simulated) file system
DiningPhilo [15] 100 Dining Philosophers (3 threads, 5,000 iterations)
JGFCrypt [12] 1700Large cryptography benchmark
ProdCons [15] 100 Producer/Consumer simulation (12,000 iterations)
Santa [31] 300 Santa Claus problem
SOR [33] 250 Successive Over-Relaxation over a 2D grid:

5 iterations, 5 threads
TSP [33] 700 Travelling Salesman Problem

Table 3.Benchmark programs.

The experiments emphasize the aim of applying a tool to test suites of real-world
programs without user-defined abstractions or annotations. All experiments were run
on a Pentium 4 with a clock frequency of 2.8 GHz and 1 MB of level II cache. Table 4
shows the results of run-time verification and static analysis. Both for run-time verifi-
cation and static analysis, the number of reports (warnings), the run time, and memory
consumption are given. The table omits experiments based on about 25 small programs
used for testing, which were all verified correctly.

Benchmark Run-time verification Static analysis
ReportsTime [s] Mem. [MB] ReportsTime [s] Mem. [MB]

Daisy 0 11.03 23.93 [ro, tl, tl] 0.17 1.9
DiningPhilo 0 9.45 20.4 0 0.02 0.3
JGFCrypt 0 1127.92 36.6 0 0.14 1.9
ProdCons 1 [buf] 4.35 7.0 1 [buf] 0.01 0.2
Santa 0 0.25 1.4 0 0.04 0.8
SOR 0 32.95 2.5 0 0.11 1.5
TSP, size 10 0 2.76 3.3 2 [exc] 0.09 1.1

Table 4.Benchmark results.

Run times for dynamic analysis are still quite high, with an overhead of up to a
factor of 5.6 compared to normal execution in the JNuke VM. This is even though
Java foundation methods have been omitted from being monitored. A very effective
optimization would therefore exclude any methods that can be statically proven to be
safe.

Given warnings are all false positives.4 In Daisy, they were caused by read-only
[ro] and thread-local [tl] values. For the ProdCons benchmark, the stale value comes

3 A bounded expansion of recursion is possible, approximating the unbounded behavior.
4 A more precise pointer analysis could suppress such warnings. Run-time verification would

never report false positives concerning thread-local data, such as in the five cases in Daisy and
TSP, due to fully accurate pointer information.

17

Object getLock() {
 /* assume some really complex obfuscated code here */
 return this;
}

void correctMethod() {
 Object lock1, lock2;
 int tmp;
 lock1 = getLock();
 lock2 = getLock();
 synchronized (lock1) {
 synchronized (lock2) {
 tmp = getData();
 }
 tmp++;
 }
}

Fig. 10.A false positive resulting from redundant locks.

from asynchronized buffer [buf] and is thread-local [23]. The two false warnings for
the static analysis of the TSP benchmark are caused by thread-local exceptions [exc].
However, an example in which static analysis will provide a false positive because of
lock aliasing can be constructed easily. Figure 10 shows a contrived example where
two nested locks are used. Assume thatgetLock() is too complex for a precise pointer
analysis. Then static analysis will conservatively assume the two locks are different and
report the use of a stale value at statementtmp++. However, run-time analysis will only
use a single monitor block, since the two locks are equal, and not report a false positive.
This scenario has been outlined before [6].

The overall experience shows that the approach works as envisioned. Experiments
clearly indicate that static analysis is a lot faster, while being less precise. The stag-
gering difference in execution times for the two analysis types is easily explained: for
SOR, for instance, the dynamic version generates many thousands of objects, on which
a series of mathematical operations is performed. In the static version, each method is
only executed once, which by itself reduces complexity by many orders of magnitude.
In summary, given experiments show that the framework is fully applicable to real-
world programs, analyzing them both statically or dynamically depending on whether
one requires a fast analysis or high precision.

6 Conclusion and Future Work

Static and dynamic analysis algorithms can be abstracted to a generic version, which
can be run in a static or dynamic environment. By using a graph-free analysis, static
analysis remains close enough to program execution such that the algorithmic part can
be re-used for dynamic analysis. The environment encapsulates the differences between
these two scenarios, making evaluation of the generic algorithm completely transpar-
ent to its environment. This way, the entire analysis logics and data structures can be

18

re-used, allowing for comparing the two technologies with respect to precision and
efficiency. Experiments with JNuke have shown that the static variant of a stale-value
detection algorithm is significantly faster but less precise than the dynamic version. This
underlines the benefit of using static information in order to reduce the overhead of run-
time analysis. The fact that both types of analysis share the algorithm also allows for
combining them in a tool that applies run-time verification to test cases resulting from
static analysis reports.

Future work includes evaluation of our combined analysis for fault detection, and
porting more algorithms to the generic framework. Furthermore, run-time verification in
JNuke needs more commonly used classes and libraries, while static analysis in JNuke
is still limited by the lack of a precise pointer analysis.

References

1. 1st, 2nd, 3rd and 4th Workshops on Runtime Verification (RV ’01 – RV ’04), volume 55(2),
70(4), 89(2), 113 ofENTCS. Elsevier Science, 2001 – 2004.

2. C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid, M. Lowry, C. Pasareanu,
G. Rosu, K. Sen, W. Visser, and R. Washington. Combining Test Case Generation with
Runtime Verification. ASM issue of Theoretical Computer Science, 2003. Accepted for
publication.

3. C. Artho and A. Biere. Applying static analysis to large-scale, multithreaded Java programs.
In D. Grant, editor,Proc. 13th ASWEC, Canberra, Australia, 2001. IEEE Computer Society.

4. C. Artho and A. Biere. Combined static and dynamic analysis. InProc. AIOOL ’05, ENTCS,
Paris, France, 2005. Elsevier Science.

5. C. Artho and A. Biere. Subroutine inlining and bytecode abstraction simplify static and
dynamic analysis. InProc. BYTECODE ’05, ENTCS, Edinburgh, Scotland, 2005. Elsevier
Science.

6. C. Artho, A. Biere, and K. Havelund. Using block-local atomicity to detect stale-value
concurrency errors. In Farn Wang, editor,Proc. ATVA ’04. Springer, 2004.

7. C. Artho, K. Havelund, and A. Biere. High-level data races.Journal on Software Testing,
Verification & Reliability (STVR), 13(4), 2003.

8. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke: Efficient
Dynamic Analysis for Java. In R. Alur and D. Peled, editors,Proc. CAV ’04, Boston, USA,
2004. Springer.

9. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. InProc. Formal Methods
in Programming and their Applications, volume 735 ofLNCS, pages 128–141. Springer,
1993.

10. G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasare-
anu, W. Visser, and R. Washington. Experimental evaluation of verification and validation
tools on Martian rover software.Formal Methods in System Design, 25(2), 2004.

11. D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis, MIT, 1999.
12. J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A methodology for benchmarking

Java Grande applications. InProc. ACM Java Grande Conference, 1999.
13. M. Burrows and R. Leino. Finding stale-value errors in concurrent programs. Technical

Report SRC-TN-2002-004, Compaq SRC, Palo Alto, USA, 2002.
14. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. InProc. Symp. Principles of
Programming Languages. ACM Press, 1977.

19

15. P. Eugster. Java Virtual Machine with rollback procedure allowing systematic and exhaustive
testing of multithreaded Java programs. Master’s thesis, ETH Zürich, 2003.

16. P. Farkas. Garbage Collection for JNuke, a Java Virtual Machine for Runtime Verification
and Model Checking. Master’s thesis, ETH Zürich, 2004.

17. S. Freund and S. Qadeer. Checking concise specifications for multithreaded software.Jour-
nal of Object Technology, 3(6):81–101, 2004.

18. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, New York, NY, 1995.

19. A. Goldberg and K. Havelund. Instrumentation of Java bytecode for runtime analysis. In
Proc. Formal Techniques for Java-like Programs, volume 408 ofTechnical Reports ETH
Zürich. ETH Zürich, 2003.

20. K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer. InProc. Run-
Time Verification Workshop (RV ’01), volume 55 ofENTCS. Elsevier, 2001.

21. G. Holzmann.Design and Validation of Computer Protocols. Prentice-Hall, 1991.
22. S. Horwitz, A. Demers, and T. Teitebaum. An efficient general iterative algorithm for

dataflow analysis.Acta Inf., 24(6):679–694, 1987.
23. D. Lea.Concurrent Programming in Java, Second Edition. Addison-Wesley, 1999.
24. T. Lindholm and A. Yellin. The Java Virtual Machine Specification, Second Edition.

Addison-Wesley, 1999.
25. T. Marlowe and B. Ryder. An efficient hybrid algorithm for incremental data flow analysis.

In Proc. 17th ACM SIGPLAN-SIGACT, pages 184–196, San Francisco, USA, 1990. ACM
Press.

26. M. Mohnen. A graph-free approach to data-flow analysis. InProc. 11th CC, pages 46–61.
Springer, 2002.

27. C. Pasareanu, M. Dwyer, and W. Visser. Finding feasible abstract counter-examples.
Intl. Journal on Software Tools for Technology Transfer (STTT), 5(1), 2003.

28. A. Pnueli. The temporal logic of programs. InProc. FOCS ’77, pages 46–57, Rhode Island,
1977. IEEE, IEEE Computer Society Press.

29. J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Man-
ual. Addison-Wesley Object Technology Series, 1998.

30. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data
race detector for multithreaded programs.ACM Trans. on Computer Systems, 15(4), 1997.

31. J. Trono. A new exercise in concurrency.SIGCSE Bull., 26(3):8–10, 1994.
32. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.Automated

Software Engineering Journal, 10(2), April 2003.
33. C. von Praun and T. Gross. Object-race detection. InOOPSLA 2001, Tampa Bay, USA,

2001. ACM Press.
34. J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. InProceedings of the Conference on Programming Language Design
and Implementation, Washington D.C., USA, June 2004. ACM Press.

35. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs. In
Proc. OOPSLA ’99, pages 187–206, Denver, USA, 1999. ACM Press.

20

