
KRYLOV APPROXIMATION OF LINEAR ODES WITH

POLYNOMIAL PARAMETERIZATION

ANTTI KOSKELA∗, ELIAS JARLEBRING∗, AND MICHIEL E. HOCHSTENBACH†

Abstract. We propose a new numerical method to solve linear ordinary differential
equations of the type ∂u

∂t
(t, ε) = A(ε)u(t, ε), where A : C → C

n×n is a matrix polynomial
with large and sparse matrix coefficients. The algorithm computes an explicit parameteri-
zation of approximations of u(t, ε) such that approximations for many different values of ε
and t can be obtained with a very small additional computational effort. The derivation of
the algorithm is based on a reformulation of the parameterization as a linear parameter-free
ordinary differential equation and on approximating the product of the matrix exponential
and a vector with a Krylov method. The Krylov approximation is generated with Arnoldi’s
method and the structure of the coefficient matrix turns out to be independent of the trun-
cation parameter so that it can also be interpreted as Arnoldi’s method applied to an infinite
dimensional matrix. We prove the superlinear convergence of the algorithm and provide a
posteriori error estimates to be used as termination criteria. The behavior of the algorithm is
illustrated with examples stemming from spatial discretizations of partial differential equa-
tions.
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1. Introduction. Let A0, A1, . . . , AN ∈ C
n×n be given matrices and

consider the parameterized linear time-independent ordinary differential equa-
tion

(1.1)
∂u

∂t
(t, ε) = A(ε)u(t, ε), u(0, ε) = u0,

where A is the matrix polynomial A(ε) := A0 + εA1 + · · · + εNAN . Although
most of our results are general, the usefulness of the approach is more explicit
in a setting where N is not very large and the matrices A0, . . . , AN are large
and sparse, e.g., stemming from a spatial finite-element semi-discretization of
a parameterized partial-differential equation of evolutionary type.

We present a new iterative algorithm for the parameterized ODE (1.1),
which gives an explicit parameterization of the solution. This parameterization
is explicit in the sense that after executing the algorithm we can find a solution
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to the ODE (1.1) for many different values of ε and t > 0 essentially without an
additional computational effort. Such explicit parameterizations of solutions
are useful in various settings, e.g., in parametric model order reduction and
in the field of uncertainty quantification (with a single model parameter); see
the discussion of model reduction below and the references in [2]. Numerical
methods for parametric ODEs can be found in the literature in application
specific contexts, see e.g. [5, 23] and the references therein.

The parameterization of the solution of (1.1) is represented as follows. Let
the coefficients of the Taylor expansion of the solution with respect to the
parameter ε around 0 be denoted by c0(t), c1(t), . . . , i.e.,

(1.2) u(t, ε) = exp(tA(ε))u0 =
∞∑

ℓ=0

εℓcℓ(t).

As exp (tA(ε)) is an entire function of a matrix polynomial, the expansion
(1.2) exists for all ε ∈ C.

Consider the approximation stemming from the truncation of the Taylor
series (1.2) and a corresponding approximation of the Taylor coefficients

(1.3)

uk(t, ε) :=
k−1∑

ℓ=0

εℓcℓ(t)

≈

k−1∑

ℓ=0

εℓc̃ℓ(t) =: ũk(t, ε).

Our approach gives an explicit parameterization with respect to t of the ap-
proximate coefficients c̃0(t),. . . ,c̃k−1(t) which, via (1.3), gives an approximate
solution with an explicit parameterization with respect to ε and t.

The derivation of our approach is based on an explicit characterization of
the time-dependent coefficients c0(t),. . . ,ck−1(t). We prove in Section 2 that
they are solutions to the linear ordinary differential equation of size nm,

(1.4)
d

dt




c0(t)
...

ck−1(t)


 = Lk




c0(t)
...

ck−1(t)


 ,




c0(0)
...

ck−1(0)


 =




u0
0
...
0


 .

The matrix Lk in (1.4) is a finite-band block Toeplitz matrix and also a lower
block triangular matrix.

Since (1.4) is a non-parametric linear ODE, we can in principle apply any
numerical method to compute the solution which results in approximate coeffi-
cients c̃0(t),. . . ,c̃k−1(t). Exponential integrators combined with Krylov approx-
imation of matrix functions have turned out to be an efficient class of methods
for large-scale (semi)linear ODEs arising from PDEs [12, 13]. See also [14] for
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a recent summary of exponential integrators. Krylov approximations of matrix
functions have a feature which is suitable in our setting: after one run they
give parameterized approximations with respect to the time-parameter.

Our derivation is based on approximating the solution of (1.4), i.e., a prod-
uct of the matrix exponential and a vector, using a Krylov method. This is
done by exploiting the structure of the coefficient matrix Lk. We show that
when we apply Arnoldi’s method to construct a Krylov subspace corresponding
to (1.4), the block Toeplitz and lower block triangular property of Lk result in
a particular structure in the basis matrix given by Arnoldi’s method.

The structure of Lk is such that, in a certain sense, the algorithm can be
extended to infinity. For example when N = 1, the basis matrix is extended
with one block row as well as a block column in every iteration. This is anal-
ogous to the infinite Arnoldi method which has been developed for nonlinear
eigenvalue problems [16] and linear inhomogeneous ODEs [17]. This feature
implies that the algorithm does not require an a priori choice of the truncation
parameter k.

We prove convergence of the algorithm (in Section 3) and also provide a
termination criteria by giving a posteriori error estimates in Section 4.

The results can be interpreted and related to other approaches from a
number of different perspectives. From one viewpoint, our result is related
to recent work on computations and theory for Fréchet derivatives of matrix
functions, e.g., [11, 20, 19]. As an illustration of a relation, consider the special
case N = 1. The first-order expansion of the matrix exponential in (1.2) and
[10, Chapter 3.1] gives

u(t, ε) = exp(t(A0 + εA1))u0

= exp(tA0)u0 + Lexp(tA0, εtA1)u0 + o(|ε| |t| ‖A1‖),

where Lexp is the Fréchet derivative of the matrix exponential. Since the
Fréchet derivative is linear in the second parameter, the first coefficient is
explicitly given by c1(t) = Lexp(tA0, tA1)u0. The higher order terms c2, c3, . . .
have corresponding relationships with the higher order Fréchet derivatives. An
analysis of higher order Fréchet derivatives is given in [21]. In contrast to the
current Fréchet derivative approaches, which are essentially constructed for full
matrices, our approach is an iterative Krylov method with a focus on large and
sparse matrices and a specific starting vector u0.

The general approach to compute parameterized solutions to parameter-
ized problems is very common in the field of model order reduction (MOR).
See the recent survey papers [2]. In the terminology of MOR, our approach
can be interpreted as a time-domain model order reduction technique for pa-
rameterized linear dynamical systems, without input or output. Parametric
MOR is summarized in [2]; see also [18, 26]. There are time-domain Krylov
methods, e.g., those described in PhD thesis [6]. To our knowledge, none of
these methods can be interpreted as exponential integrators.
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We use the following notation in this paper. We let #S denote the num-
ber of elements in the set S, and vec(B) denote vectorization, i.e., vec(B) =
[bT1 , . . . , b

T
k ]

T ∈ C
nk, where B = [b1, . . . , bk] ∈ C

n×k. By In we indicate the
identity matrix of dimension n. The set of eigenvalues of a matrix A is de-
noted by Λ(A) and the set of positive integers by N+. The logarithmic norm
(or numerical abscissa) µ : Cn×n → R is defined by

(1.5) µ(A) := max

{
λ ∈ R : λ ∈ Λ

(
A+A∗

2

)}
.

Throughout the paper, ‖ · ‖ denotes the Euclidean norm or its induced matrix
norm.

2. Derivation of the algorithm.

2.1. Representation of the coefficients using the matrix exponen-

tial. To derive the algorithm, we first show that the time-dependent coeffi-
cients c0(t), . . . , ck−1(t) are solutions to a linear time-independent ODE of the
form (1.4), i.e., they are explicitly given by the matrix exponential.

Theorem 1 (Explicit formula with matrix exponential). The Taylor co-
efficients c0(t), . . . , ck−1(t) in (1.2) are explicitly given by

(2.1) vec(c0(t), . . . , ck−1(t)) = exp(tLk) ũ0,

where

(2.2)

Lk :=




A0

A1
. . .

...
. . .

. . .

AN̂

. . .
. . .

. . .
. . .

. . .
. . .

. . .

AN̂ . . . A1 A0




∈ C
kn×kn and ũ0 =




u0
0
...
0


 ∈ C

kn,

and N̂ = min(k − 1, N).

Proof. The proof is based on explicitly forming an associated ODE. The
result can also be proven using a similar result [19, Theorem 4.1]. We give here
an alternative shorter proof for the case of the matrix exponential, since some
steps of the proof are needed in other parts of this paper. Differentiating (1.2)
yields that for any j ≥ 0,

(2.3)
1

j!

∂j

∂εj
u(t, ε)

∣∣∣∣
ε=0

= cj(t).
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By evaluating (2.3) at t = 0, and noting that u(0, ε) = u0 is independent of ε,
it follows that c0(0) = u0 and cℓ(0) = 0 for ℓ > 0. The initial value problem
(1.1) and the expansion of its solution (1.2) imply that

(2.4)

c′j(t) =
1

j!

∂j

∂εj
∂

∂t
u(t, ε)

∣∣∣∣
ε=0

=
1

j!

∂j

∂εj

(
N∑

i=0

εiAi

)
u(t, ε)

∣∣∣∣
ε=0

=
1

j!

∂j

∂εj

N∑

i=0

εiAi

∞∑

ℓ=0

εℓcℓ(t)

∣∣∣∣
ε=0

=
N∑

i=0

∞∑

ℓ=0

(
1

j!

∂j

∂εj
εi+ℓ

∣∣∣∣
ε=0

)
Aicℓ(t)

=

min(N,j)∑

i=0

Aicj−i(t).

From (2.3) and (2.4) it follows that the vector vec(c0(t), . . . , ck−1(t)) satisfies
the linear ODE (1.4) with a solution given by (2.1).

Algorithm 1: Infinite Arnoldi algorithm for polynomial uncertain ODEs

Input : u0 ∈ C
n, A0,. . . ,AN ∈ C

n×n

Output: Matrices Qp ∈ C
n(1+N(p−1))×p and Hp ∈ C

p×p representing
approximations of the coefficients c0, . . . , cp−1 via (2.7)

1 Let β = ‖u0‖, Q1 = u0/β, H0 = [ ]
for ℓ = 1, 2, . . . , p do

2 Let x = Qℓ(:, ℓ) ∈ C
n+(ℓ−1)nN

3 Compute y := vec(y1, . . . , y1+ℓN ) ∈ C
n+ℓnN with (2.6)

4 Let Q
ℓ
:=

[
Qℓ

0

]
∈ C

(n+ℓnN)×ℓ

5 Compute h = Q∗
ℓ
y

6 Compute y⊥ := y −Q
ℓ
h

7 Repeat Steps 5–6 if necessary
8 Compute α = ‖y⊥‖

9 Let Hℓ =

[
Hℓ−1 h
0 α

]

10 Let Qℓ+1 := [Q
ℓ
, y⊥/α] ∈ C

(n+ℓnN)×(ℓ+1)

end

11 Set Hp ∈ C
p×p to be the leading submatrix of Hp ∈ C

(p+1)×p

2.2. Algorithm. Theorem 1 can be used to compute the coefficients cℓ(t)
if we can compute the matrix exponential of Lk times the vector ũ0. We use a
Krylov approximation which exploits the structure of the problem. See, e.g.,
[12, 13] for literature on Krylov approximations of matrix functions.
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The Krylov approximation of v(t) = exp(tB)v0 consists of p steps of the
Arnoldi iteration for the matrix B initiated with the vector v0. This results in
the Arnoldi relation

BQp = Qp+1Hp,

where Hp ∈ C
(p+1)×p is a Hessenberg matrix and Qp an orthogonal matrix

spanning the Krylov subspace Kp(B, v0) = span(v0, Bv0, . . . , B
p−1v0). The

Krylov approximation of exp(tB)v0 is given by

v(t) = exp(tB)v0 ≈ Qp exp(tHp)e1 ‖v0‖,

where Hp ∈ C
p×p is the leading submatrix of Hp, and e1 is the first unit basis

vector.
The only way B appears in the Arnoldi algorithm is in the form of matrix

vector products. Moreover, the Arnoldi algorithm is initiated with the vector
v0. Suppose we apply this Arnoldi approximation to (2.1). In the first step we
need to compute the matrix vector product

(2.5) Lk vec(u0, 0, . . . , 0) = vec(A0 u0, . . . , AN u0, 0, . . . , 0),

which is more generally given as follows.
Lemma 2 (Matrix vector product). Suppose x = vec(x1, . . . , xj , 0, . . . , 0) =

vec(X) ∈ C
nk, where x1, . . . , xj ∈ C

n and k > j +N . Then,

Lkx = vec(y1, . . . , yj+N , 0, . . . , 0),

where

(2.6) yℓ =

min(N,ℓ−1)∑

i=max(0,ℓ−j)

Aixℓ−i, ℓ = 1, . . . , j +N.

Proof. Suppose S ∈ R
k×k is the shift matrix S :=

∑k−1
ℓ=1 eℓ+1e

T
ℓ which

satisfies (Si)T =
∑k−i

ℓ=1 eℓe
T
ℓ+i. We have

Lkx =

N∑

i=0

(Si ⊗Ai) vec(X) =

N∑

i=0

vec(AiX(Si)T )

=
N∑

i=0

k−i∑

ℓ=1

vec(AiXeℓe
T
ℓ+i).

Note that Xeℓ = xℓ if ℓ ≤ j and Xeℓ = 0 if ℓ > j. Hence, by using the assump-
tion k > j+N , and by reordering the terms in the sum we find the explicit for-

mula Lkx =
∑N

i=0

∑j
ℓ=1 vec(Aixℓe

T
ℓ+i) =

∑j+N
ℓ=1

∑min(N,ℓ−1)
i=max(0,ℓ−j) vec(Aixℓ−ie

T
ℓ ).

Since the Arnoldi method consists of applying matrix vector products and
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orthogonalizing the new vector against previous vectors, we see from (2.5) that
the second vector in the Krylov subspace will consist of N +1 nonzero blocks.
Repeated application of Lemma 2 results in a structure where the jth col-
umn in the basis matrix consists of (j − 1)N + 1 nonzero blocks, under the
condition that k is sufficiently large. It is natural to store only the nonzero
blocks of the basis matrix and use Lemma 2 for the matrix vector products.
Then, the Arnoldi method for (2.1) reduces to Algorithm 1. Notice that the
orthogonalization cost of Algorithm 1 may become significant for large p’s, as
the complexity of the orthogonalization of p steps of Algorithm 1 is O(p3Nn)
as opposed to the O(p2n)-cost of p steps of the Arnoldi iteration applied to an
n× n matrix.

We note that our construction is equivalent to the Arnoldi method and
the output of the algorithm is a basis matrix and a Hessenberg matrix which
together form the approximation of the coefficients c0, . . . , ck−1

(2.7) vec(c0(t), . . . , ck−1(t)) ≈ vec(c̃0(t), . . . , c̃k−1(t)) := Qp exp(tHp)e1 ‖u0‖,

where by construction k = N(p− 1) + 1. The approximation of the solution is
denoted as in (1.3), i.e.,

ũk,p(t, ε) :=
k−1∑

ℓ=0

εℓ c̃ℓ(t),

where we have added an index p to stress the dependence on the iteration. A
feature of this construction is that the algorithm does not explicitly depend on
k, such that it in a sense can be extended to infinity, i.e., it is equivalent to
Arnoldi’s method on an infinite dimensional operator. This can be summarized
as follows.

Theorem 3. The following procedures generate identical results.
(i) p iterations of Algorithm 1 started with u0 and A0, . . . , AN ;
(ii) p iterations of Arnoldi’s method applied to Lk with starting vector e1⊗

u0 ∈ C
nk for any k ≥ Np;

(iii) p iterations of Arnoldi’s method applied to the infinite matrix L∞ with
the infinite starting vector e1 ⊗ u0 ∈ C

∞.

3. A priori convergence theory. To show the validity of our approach
we now bound the total error after p iterations, which is separated into two
terms as

(3.1)
errp(t, ε) := ‖u(t, ε) − ũk,p(t, ε)‖

≤ errK,k,p(t, ε) + errT,k(t, ε),

where

errK,k,p(t, ε) := ‖ũk,p(t, ε)− uk(t, ε)‖(3.2)

errT,k(t, ε) := ‖u(t, ε) − uk(t, ε)‖.(3.3)
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Notice that when running Algorithm 1, k = N(p − 1) + 1 in equation (3.1).

A bound of errK,k,p, which corresponds to the Krylov approximation of
the expansion coefficients c0, . . . , ck−1, is given in Section 3.1 and a bound on
errT,k, which corresponds to the truncation of the series, is given in Section 3.2.
After combining the main results of Section 3.1 and Section 3.2, in particular
formulas (3.8) and (3.9), we reach the conclusion that

(3.4)

errp(t, ε) ≤

C1(t, ε)

N−1∑

ℓ=0

C2(t, ε)
p+ℓ−1eC2(t,ε)

(p+ ℓ− 2)!
‖u0‖+ 2

√
1− |ε|2N(p−1)

1− |ε|2
(tα)pe tγ

p!
‖u0‖,

where α and γ are given in (3.6), and C1(t, ε) and C2(t, ε) are given in (3.10).
Due to the factorial in the denominator of (3.4), for fixed ε and t > 0, the
bound suggests that the total error eventually decreases superlinearly with
respect to the iteration count p.

3.1. A bound on the Krylov error. We first study the error generated
by the Arnoldi method to approximate the coefficients c0(t),. . . ,ck−1(t). We
define

(3.5) Ek,p(t) = [c0(t), . . . , ck−1(t)]− [c̃0(t), . . . , c̃k−1(t)].

where c̃0, . . . , c̃k−1 are the approximations given by the Arnoldi method after
p steps, i.e., by the vector

ĉk(t) :=




c̃0(t)
...

c̃k−1(t)


 = Qp exp(tHp)e1 ‖u0‖.

Using existing bounds for the Arnoldi approximation of the matrix exponen-
tial [9], we get a bound for the error of this approximation, as follows.

Lemma 4 (Krylov coefficient error bound). Let t > 0, A0,. . . ,AN ∈ C
n×n,

and u0 ∈ C
n. Let c̃0(t),. . . ,c̃k−1(t) be the result of Algorithm 1, and let Ek,p(t)

be defined by (3.5). Then, the total error in the coefficients ‖ vec(Ek(t))‖ sat-
isfies

‖ vec(Ek,p(t))‖ = ‖ exp(tLk)ũ0 − ĉk(t)‖ ≤ 2
(tα)p

p!
etmax{1,β} ‖u0‖

where

(3.6) α =

N∑

ℓ=0

‖Aℓ‖ and β = µ(A0) +

N∑

ℓ=1

‖Aℓ‖,

and µ(B) denotes the logarithmic norm defined in (1.5)
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Proof. The result follows directly from [9, Thm. 2.1], and Lemma 8 and
Corollary 10 in Appendix A.

The coefficient error bound in Lemma 4, implies the following bound on
the error errK,k,p, via the relation

(3.7) errK,k,p(t, ε) = ‖Ek,p(t)[1, ε, . . . , ε
k−1]T ‖.

Theorem 5 (Krylov error bound). Let errK,k,p be defined in (3.2) corre-
sponding to applying p steps of Algorithm 1 to A0,. . . ,AN ∈ C

n×n and u0 ∈ C
n.

Then,

(3.8) errK,k,p(t, ε) ≤ 2

√
1− |ε|2k

1− |ε|2
(tα)pe tmax{1,β}

p!
‖u0‖

where α and β are given in (3.6).

Proof. By (3.7) and the Cauchy–Schwarz inequality we have that

errK,k,p(t, ε) = ‖
k−1∑

ℓ=0

εℓ(cℓ(t)− c̃ℓ(t))‖

≤

√√√√
k−1∑

ℓ=0

|εℓ|
2

√√√√
k−1∑

ℓ=0

‖cℓ(t)− c̃ℓ(t)‖2

=

√
1− |ε|2k

1− |ε|2
‖ vec(Ek,p(t))‖.

The claim follows now from Lemma 4.

3.2. A bound on the truncation error. The previous subsection gives
us an estimate for the error in the coefficient vectors cℓ(t). To characterize the
total error of the approximation ũk,p(t, ε), we now analyze the second term in
the error splitting (3.1), i.e., the remainder

errT,k(t, ε) := ‖u(t, ε) −

k−1∑

ℓ=0

εℓcℓ(t)‖.

Lemma 13 of Appendix B gives a bound for the norms of cℓ(t) and can be used
to derive the following theorem which bounds errT,k(t, ε).

Theorem 6 (Remainder bound). Let u(t, ε) be the solution of the ini-
tial value problem (1.1), and consider its ε-expansion (1.2). Then, the error
errT,k(t, ε) is bounded as

(3.9) errT,k(t, ε) ≤ C1(t, ε)
N−1∑

ℓ=0

C2(t, ε)
⌊ k
N
⌋+ℓ

(⌊ k
N ⌋+ ℓ− 1)!

,
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where

(3.10)
C1(t, ε) = |ε|sign(|ε|−1) e t(µ(A0)+eNa)+C2(t,ε)−1‖u0‖,

C2(t, ε) = |ε|N eNta.

Proof. From Lemma 13 it follows that

errT,k(t, ε) = ‖
∞∑

ℓ=k

εℓcℓ(t)‖ ≤
∞∑

ℓ=k

|ε|ℓ ‖cℓ(t)‖ ≤ C̃1(t, ε)
∞∑

ℓ=k

|ε|ℓ
(eNta)⌈

ℓ
N
⌉

(⌈ ℓ
N ⌉ − 1)!

,

where C̃1(t, ε) = e t(µ(A0)+eNa)−1‖u0‖.

Setting k̃ = k−N⌊ k
N ⌋ and using the bound cℓ = (cN )

ℓ
N ≤ (cN )⌈

ℓ
N
⌉csign(c−1)

for c > 0, we get

∞∑

ℓ=k

|ε|ℓ
(eNta)⌈

ℓ
N
⌉

(⌈ ℓ
N ⌉ − 1)!

≤ |ε|sign(|ε|−1)
∞∑

ℓ=k̃

(|ε|N eNta)⌈
ℓ
N
⌉

(⌈ ℓ
N ⌉ − 1)!

= |ε|sign(|ε|−1)
N−1∑

j=0

∞∑

ℓ=⌊ k
N
⌋+j

(|ε|N eNta)ℓ

(ℓ− 1)!
.

Using the inequality [22, Lemma 4.2]

(3.11)

∞∑

ℓ=k

xℓ

ℓ!
≤

xkex

k!
for x > 0,

the claim follows.
We also give a bound for the special case N = 1 since it is in this case

considerably lower than the one given in Theorem 6.
Theorem 7 (Remainder bound N = 1). Let N = 1. Then the remainder

errT,k is bounded as

(3.12) errT,k(t, ε) ≤
e t(µ(A0)+|ε|‖A1‖)(|ε| ‖tA1‖)

k

k!
‖u0‖.

Proof. From Lemma 11 and (B.3) we see that cℓ(t) consists now of one
integral term which can be bounded by Lemma 12 giving

‖cℓ(t)‖ ≤
‖tA1‖

k

k!
e tµ(A0) ‖u0‖.

Therefore

errT,k(t, ε) ≤
∞∑

ℓ=k

|ε|ℓ ‖cℓ(t)‖ ≤ e tµ(A0)
∞∑

ℓ=k

(|ε| ‖tA1‖)
ℓ

ℓ!
‖u0‖,

and the claim follows from the inequality (3.11).
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3.3. Expansion around a fixed ε and choice of εmax. In case one is
interested in solutions of (1.1) for values of ε around some fixed value ε̃, it
may be beneficial to perform the expansion (1.2) around ε̃ instead of 0. As an
example, consider the case N = 2, defined by the coefficient matrices A0, A1

and A2. Then, the ODE can be reformulated as follows

u′(t) =
(
A0 + εA1 + ε2A2

)
u(t)

=
(
A0 + (ε− ε̃)A1 + ε̃A1 + (ε− ε̃)2A2 + 2εε̃A2 − ε̃2A2

)
u(t)

=
(
(A0 + ε̃A1 + ε̃2A2) + (ε− ε̃)(A1 + 2ε̃A2) + (ε− ε̃)2A2

)
u(t).

By running Algorithm 1 for the matrices Ã0 = A0 + ε̃A1 + ε̃2A2, Ã1 = (A1 +
2ε̃A2) and Ã2 = A2 one may obtain considerably faster convergence of the
ε-expansion for values of ε around ε̃. This is also reflected by the error bounds
(3.4), as ε is then replaced by ε− ε̃.

If there is a constraint for the value of p, due to, e.g., memory constraints,
the a priori bound (3.4) can be used to determine the largest value of |ε| that
guarantees a given error tolerance tol for errp(t, ε). One readily sees that the
right-hand side of the bound (3.4) is a monotonically increasing function of |ε|.
Fixing p and tol, and using, e.g., the bisection method, the maximum value of
|ε| which satisfies the p constraint can be directly computed numerically.

4. An a posteriori error estimate for the Krylov approximation.

Although the previous section provides a proof of convergence, the final bound
is not necessarily very useful to estimate the error. We therefore also propose
the following a posteriori error estimates, which appear to work well in the
simulations of Section 5.

Let Qp exp(Hp)e1 be the approximation of eAb, ‖b‖ = 1, by p steps of the
Arnoldi method. Then, due to the fact that our algorithm is equivalent to the
standard Arnoldi method, the following expansion holds [22]

(4.1) eAb−Qp exp(Hp)e1 = hp+1,p

∞∑

ℓ=1

eTp ϕℓ(Hp)e1 A
ℓ−1qp+1,

where ϕℓ(z) =
∑∞

j=0
zj

(j+ℓ)! and qp+1 is the (p + 1)st basis vector given by the
Arnoldi iteration.

We estimate the error of the Arnoldi approximation of exp(tLk) ũ0, i.e.,
the approximation of the vector vec(Ek,p(t)), by using the norm of the first
two terms in (4.1). This gives us the estimate

(4.2)
vec(Ek,p(t)) ≈ hp+1,p

(
eTp ϕ1(tHp)e1 qp+1 + eTp ϕ2(tHp)e1 (tLk)qp+1

)
‖u0‖

:= ẽrrk,p(t).

Then, for the Krylov error errK,k,p(t, ε) in the total error (3.1), we obtain an
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estimate ẽrrK,k,p(t, ε) directly using (3.7):

(4.3)

errK,k,p(t, ε) = ‖Ek,p(t)[1, ε, . . . , ε
k−1]T ‖

= ‖
(
In ⊗ [1, ε, . . . , εk−1]

)
vec(Ek,p(t))‖

≈ ‖
(
In ⊗ [1, ε, . . . , εk−1]

)
ẽrrk,p(t)‖ =: ẽrrK,k,p(t, ε),

where k = 1+(N −1)p. Notice that the scalars eTp ϕ1(tHp)e1 and eTp ϕ2(tHp)e1
in (4.2) can be obtained with a small extra cost using the fact that [24, Thm. 1]

[
Ip 0

]
exp





tHp e1 0
0 0 1
0 0 0




 =

[
exp(tHp) ϕ1(tHp)e1 ϕ2(tHp)e1

]
.

Since the a priori bound given by Theorem 6 is rather pessimistic in practice,
in numerical experiments we only use the Krylov error estimate (4.3) as a total
error estimate when N ≥ 2. For N = 1, we use also the truncation bound
given in Theorem 7, i.e., the total estimate is then

‖u(t, ε) − ũk,p(t, ε)‖ ≤ errT,k(t, ε) + errK,k,p(t, ε)

≈ ẽrrK,k,p(t, ε) +
e t(µ(A0)+|ε|‖A1‖) (|ε| ‖tA1‖)

p

p!
.(4.4)

5. Numerical examples. The behavior of the algorithm is now illus-
trated for two test problems: one stemming from spatial discretization of an
advection-diffusion equation and the other one appearing in the literature [18]
corresponding to the discretization of a damped wave equation. In all of the nu-
merical examples the reference solution is computed using the expmv command
described in [1].

5.1. Scaling of Lk. It turns out that the performance of the algorithm
can be improved by performing a transformation which scales the coefficient
matrices. This scaling can be carried out as follows. Let A0, A1, . . . , AN ∈
C
n×n and Lk be the corresponding block-Toeplitz matrix of the form (2.2).

Let γ > 0 and define Σk := diag(1, γ, . . . , γk−1)⊗ In. Then it clearly holds

ĉ(t) = exp(tLk) ũ0 = Σk exp(tΣ
−1
k LkΣk) ũ0

= Σk exp(tL̂k) ũ0,

where L̂k is the matrix (2.2) corresponding to A0, γ
−1A1, . . . , γ

−NAN .
Thus, we see that using this scaling strategy corresponds to the changes

(5.1) ǫ → γǫ and Aℓ → γ−ℓAℓ

when performing the Arnoldi approximation of the product exp(tL̂k) ũ0. This
is also evident from the original ODE (1.1).
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The performance of the algorithm appears to improve when we scale the
norms of coefficients Aℓ, 1 ≤ ℓ ≤ N , such that they are of the order 1 or less.
To balance the norms, we used the heuristic choice

(5.2) γ = max
1≤ℓ≤N

‖Aℓ‖
1/ℓ.

This was found to work well in all of our numerical experiments, giving both
good convergence and a posteriori error estimates.

We note that scaling has also been exploited for polynomial eigenvalue
problems, e.g., in [8]. Our scaling (5.2) can be interpreted as a slight variation
of the scaling proposed in [3, Thm. 6.1]. Another related scaling, one for the
matrix exponential of an augmented matrix, can be found in [1, p. 492].

5.2. Advection-diffusion operator. Consider the 1-d advection-diffusion
equation

(5.3)
∂

∂t
y(t, x) = a

∂2

∂x2
y(t, x) + ε

∂

∂x
y(t, x), y(0, x) = y0(x)

with Dirichlet boundary conditions on the interval [0, 1] and y0(x) = 16 ((1 −
x)x)2. The spatial discretization using central finite differences gives the or-
dinary differential equation u′ = (A0 + εA1)u, u(0) = u0 ∈ R

n, where the
matrices A0 and A1 are of the form

A0 =
a

(∆x)2




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2



, A1 =

1

2∆x




−1
1 −1

. . .
. . .

. . .

1 −1
1



,

where ∆x = (n + 1)−1 and u0 is the discretization of y0(x). We set n = 200
and a = 3 · 10−4, and approximate at t = 0.5. Then, ‖tA0‖ ≈ 95. We compute
the approximations ũk,p(t, ε) for ε = 10−3, 1.5 · 10−2, and 3 · 10−2. Then,
respectively, ‖tεA1‖ ≈ 0.4, 6.0 and 12.0. Figure 5.1 shows the 2-norm errors of
these approximations and the corresponding a posteriori error estimates using
(4.4). We observe superlinear convergence for the error and the estimate.

To illustrate the generality of our approach we now consider the case N = 2,
namely a modification of (5.3)

(5.4)
∂

∂t
y(t, x) = a

∂2

∂x2
y(t, x)+ ε

∂

∂x
y(t, x)+ ε2b y(t, 1−x), y(0, x) = y0(x);

the extra term can be interpreted as a non-localized feedback. We set the
parameter a = 3 · 10−4 and b = 2 · 102. The spatial discretization with finite
differences gives the ODE u′ = (A0 + εA1 + ε2A2)u, u(0) = u0 ∈ R

n, where

13
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Figure 5.1. 2-norm errors of approximations ũk,p(t, ε) and the estimate (4.4) when ε

has the values ε1 = 1 · 10−3, ε2 = 1.5 · 10−2 and ε3 = 3 · 10−2.

u0 and the matrices A0 and A1 are as above, and

A2 = b ·




1
. .

.

1


 .

We compute the approximations ũk,p(t, ε) for ε = 10−3, 1.5 · 10−2 and 3 · 10−2,
for which respectively, ‖tε2A2‖ ≈ 5.0 · 10−4, 0.11, and 0.45. Figure 5.2 shows
the 2-norm errors of these approximations and the corresponding a posteriori
error estimates using (4.4).

In Figure 5.3 we illustrate the dependence of the convergence on the scaling.
Clearly the choice (5.2) results in the fastest convergence for this example.
Simulations with γ larger than what is suggested by (5.2) did not result in
substantial improvement of the convergence.

5.3. Wave equation. Consider next the damped wave equation inside
the 3-d unit box given in [18, Section 5.2]. The governing 2n-dimensional
first-order differential equation is given by

(5.5)
d

dt

[
u(t)
u′(t)

] [
0 I

−M−1K −M−1C(γ)

] [
u(t)
u′(t)

]
,

[
u(0)
u′(0)

]
=

[
u0
u′0

]
∈ R

2n,

where C(γ1, γ2) = γ1C1 + γ2C2. The model is obtained by finite differences
with 15 discretization points in each dimension, i.e., n = 153. The matrix
K denotes the discretized Laplacian, C(γ1, γ2) the damping matrix stemming
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Figure 5.2. 2-norm errors of approximations ũk,p(t, ε) for the equation (5.4) and the
error estimate (4.3) when ε has the values ε1 = 1 · 10−3, ε2 = 1.5 · 10−2 and ε3 = 3 · 10−2.
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Figure 5.3. 2-norm errors of approximations ũk,p(t, ε), when ε = 1.5 · 10−2 using
different scalings (5.1). The last option corresponds to the scaling (5.2).

from Robin boundary conditions, and M the mass matrix which is a diagonal
matrix. We carry out numerical experiments for parameter values γ1 = 0, 1, 2
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and γ2 = 0, 1, 2.
We reformulate (5.5) in the form (1.1) by setting

A0 =

[
0 I

−M−1K −M−1γ1C1

]
, A1 =

[
0 0
0 −M−1C2

]
.

Then, the variable ε in (1.1) corresponds to γ2. This means that by running
the algorithm for a fixed value of γ1, we may efficiently obtain solutions for
different values of t and γ2.

Figure 5.4 shows the contour plots of the numerical solutions of (5.5) at
t = 9 on the plane {(x, y, z) ∈ [0, 1]3 : z = 0.5} for different values of (γ1, γ2).
Note that for a fixed value of γ1, only one run of the algorithm is required to
compute the solution for many different γ2.
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Figure 5.4. The solution to (5.5) in the plane z = 0.5, for different values of (γ1, γ2)
at t = 9.

In Figure 5.5 we illustrate the 2-norm errors of the approximations, when
γ1 = 2 and γ2 = 0, 1 and 2. Then, ‖tA0‖ ≈ 108, and, respectively, ‖tγ2A1‖ ≈
0, 9.6 and 12.9. We again observe superlinear convergence, and, moreover, the
a posteriori error estimate is very accurate for this example.

Table 5.1 illustrates the costs of the different parts of the algorithm when
producing the approximation ũk,p(t, ε) for the solution of (5.5), when γ1 = 2
and γ2 = 1. We see that the computational cost of evaluating the vectors
c̃ℓ(t) (i.e., evaluating the product Qp exp(tHp)e1) for different t is very small
compared to the cost of producing the matrices Qp and Hp using Algorithm 1.
And as illustrated by these timings, the cost of evaluating the solution for
different ε for given t (i.e., evaluating the sum

∑
ℓ c̃ℓ(t)ε

ℓ) is very moderate.
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p Time for Arnoldi Time for Qp exp(tHp)e1 Time for
∑

ℓ c̃ℓ(t)ε
ℓ

10 0.067 0.0031 1.75 ·10−4

30 0.912 0.0316 3.33 ·10−4

50 3.942 0.0833 5.40 ·10−4

70 10.53 0.1591 7.59 · 10−4

Table 5.1

Table of CPU timings (in seconds) for the example (5.5): CPU time of running p steps
of Algorithm 1, evaluating the vectors c̃ℓ(t), ℓ = 0, . . . , p − 1, and of evaluating the series∑p−1

ℓ=0
cℓ(t)ε

ℓ, when p = 10, 30, 50, 70.

parameter p
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Figure 5.5. 2-norm errors of approximations ũk,p(t, ε) for the equation (5.4) and the
error estimate (4.3), when γ1 = 2 and γ2 has the values ε1 = 0, ε2 = 1 and ε3 = 2.

6. Conclusions and outlook. The focus of this paper is an algorithm
for parameterized linear ODEs, which is shown to have superlinear convergence
in theory and perform convincingly in several examples. The behavior is con-
sistent with what is expected from an Arnoldi method. Due to the equivalence
with the Arnoldi method, the algorithm may suffer from the typical disadvan-
tages of the Arnoldi method, for instance, the fact that the computation time
per iteration increases with the iteration number. The standard approach to
resolve this issue is by using restarting [7], which we leave for future work. We
note that the technique we have presented is in principle applicable also to
ODEs with several perturbation variables. Such constructions would however
lead to a more severe growth in the basis matrix and requires further work to
be used as a competitive algorithm.

17



Acknowledgments. The authors thank anonymous reviewers for their
constructive comments.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM J. Sci. Comput., 33:488–511,
2011.

[2] P. Benner, S. Gugercin, and K. Willcox. A survey of model reduction methods for
parametric systems. Technical report, Max Planck Institute Magdeburg, 2013.

[3] T. Betcke. Optimal scaling of generalized and polynomial eigenvalue problems. SIAM
J. Matrix Anal. Appl., 30(4):1320–1338, 2008.

[4] S. Blanes, F. Casas, J. Oteo, and J. Ros. The Magnus expansion and some of its
applications. Physics Reports, 470:151–238, 2009.

[5] H. G. Bock, S. Körkel, and J. P. Schlöder. Parameter estimation and optimum ex-
perimental design for differential equation models. In H. G. Bock, Th. Carraro,
W. Jäger, S. Körkel, R. Rannacher, and J. Schlöder, editors, Model Based Param-
eter Estimation, pages 1–30. Springer, 2013.

[6] R. Eid. Time Domain Model Reduction By Moment Matching. PhD thesis, TU
München, 2008.

[7] M. Eiermann and O. G. Ernst. A restarted Krylov subspace method for the evaluation
of matrix functions. SIAM J. Numer. Anal., 44(6):2481–2504, 2006.

[8] H.-Y. Fan, W.-W. Lin, and P. Van Dooren. Normwise scaling of second order polyno-
mial matrices. SIAM J. Matrix Anal. Appl., 26(1):252–256, 2004.

[9] E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by Krylov ap-
proximation methods. SIAM J. Sci. Stat. Comput., 13(5):1236–1264, 1992.

[10] N. J. Higham. Functions of Matrices. Theory and Computation. SIAM, Philadelphia,
2008.

[11] N. J. Higham and S. D. Relton. Higher order Fréchet derivatives of matrix functions
and the level-2 condition number. SIAM J. Matrix Anal. Appl., 35(3):1019–1037,
2014.

[12] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the matrix
exponential operator. SIAM J. Numer. Anal., 34(5):1911–1925, 1997.

[13] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems
of differential equations. SIAM J. Sci. Comput., 19(5):1552–1574, 1998.

[14] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209–286,
2010.

[15] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, UK, 1991.

[16] E. Jarlebring, W. Michiels, and K. Meerbergen. A linear eigenvalue algorithm for the
nonlinear eigenvalue problem. Numer. Math., 122(1):169–195, 2012.

[17] A. Koskela and E. Jarlebring. The infinite Arnoldi exponential integrator for linear
inhomogeneous ODEs. Technical report, KTH Royal institute of technology, 2014.
arxiv preprint.

[18] P. Lietaert and K. Meerbergen. Interpolatory model order reduction by tensor Krylov
methods. Technical report, KU Leuven, 2015.

[19] R. Mathias. A chain rule for matrix functions and applications. SIAM J. Matrix Anal.
Appl., 17(3):610–620, 1996.

[20] I. Najfeld and T. F. Havel. Derivatives of the matrix exponential and their computation.
Adv. Appl. Math., 16(3):321–375, 1995.

[21] S. D. Relton. Algorithms for Matrix Functions and their Fréchet Derivatives and Con-
dition Numbers. PhD thesis, Univ. Manchester, 2014.

[22] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential

18



operator. SIAM J. Numer. Anal., 29(1):209–228, 1992.
[23] B. A. Schmitt and E. Kostina. Peer two-step methods with embedded sensitivity ap-

proximation for parameter-dependent ODEs. SIAM J. Numer. Anal., 50(5):2182–
2207, 2012.

[24] R. B. Sidje. Expokit: a software package for computing matrix exponentials. ACM
Trans. Math. Software, 24(1):130–156, 1998.

[25] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. The Behavior of Nonnor-
mal Matrices and Operators. Princeton University Press, 2005.

[26] Y. Yue and K. Meerbergen. Using Krylov-Padé model order reduction for accelerating
design optimization of structures and vibrations in the frequency domain. Int. J.
Numer. Methods Eng., 90(10):1207–1232, 2012.

Appendix A. Technical lemmas for the norm and the field of

values of Lm.

We now provide bounds on the norm and the field of values of Lm, which
are needed in Section 3.1. The derivation is done with properties of field of
values. Recall that the field of values of a matrix A ∈ C

n×n is defined as

F(A) = {x∗Ax : x ∈ C
n, ‖x‖ = 1}.

The bounds for the norm and the field of values of AN follow from the
block structure of Lm.

Lemma 8. Let N ≥ 0 and Lm be given by (2.2). Then,

‖Lm‖ ≤

N∑

ℓ=0

‖Aℓ‖

Proof. Let x = [xT1 . . . xTm]T ∈ C
nm such that xi ∈ C

n for all 1 ≤ i ≤ m
and ‖x‖ = 1. From the block Toeplitz structure of Lm we see that

‖Lmx‖ ≤
N∑

ℓ=0

√√√√
n−ℓ∑

k=1

‖Aℓxk‖2 ≤
N∑

ℓ=0

‖Aℓ‖

√√√√
n∑

k=1

‖xk‖2 =
N∑

ℓ=0

‖Aℓ‖.

Next, we give a bound for the field of values of the matrix Lm. Let d(S, z)
denote the distance between a closed set S and a point z.

Lemma 9. Let N ≥ 0 and Lm be given by (2.2). Then,

F(Lm) ⊂ {z ∈ C : d(F(A0), z) ≤

N∑

ℓ=1

‖Aℓ‖}.

Proof. Let x = [xT1 . . . xTm]T ∈ C
nm, where xi ∈ C

n for all 1 ≤ i ≤ m and
‖x‖ = 1. Then

(A.1) x∗Lmx =
m∑

ℓ=1

x∗ℓA0xℓ + x∗L̃mx,
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where L̃m equals Lm on the subdiagonal blocks and is otherwise zero. By the
convexity of the field of values [15, Property 1.2.2], we know that

∑m
ℓ=1 x

∗
ℓA0xℓ ∈

F(A0). The second term in (A.1) can be bounded as in proof of Lemma 8,
giving

|x∗L̃mx| ≤ ‖L̃m‖ ≤

N∑

ℓ=1

‖Aℓ‖.

As a corollary of Lemma 9, we have the following bound, which follows
directly from the fact that the logarithmic norm of a matrix in 2-norm equals
the real part of the rightmost point in its field of values.

Corollary 10. Let Lm be given by (2.2). Then,

(A.2) µ(Lm) ≤ µ(A0) +

N∑

ℓ=1

‖Aℓ‖,

where µ(A) denotes the logarithmic norm of A defined in (1.5).

Appendix B. Technical lemmas for coefficient bounds. We now
derive bounds needed for the a priori analysis of the truncation error in Sec-
tion 3.2. The following result provides an explicit characterization of the ex-
pansion coefficients. The proof technique is based on the same type of reason-
ing as what is commonly used in the analysis of Magnus series expansions for
time-dependent ODEs; see e.g. [4].

Lemma 11 (Explicit integral form). Let ℓ and N be positive integers such
that N ≤ ℓ. Denote by Cℓ the set of compositions of ℓ, i.e.,

(B.1) Cℓ = {(i1, . . . , ir) ∈ N
r
+ : i1 + · · ·+ ir = ℓ},

and further denote

(B.2) Cℓ,N := {(i1, . . . , ir) ∈ Cℓ : is ≤ N for all 1 ≤ s ≤ r}.

Then,

(B.3)

c0(t) = e tA0u0,

cℓ(t) =
∑

(i1,...,ir)∈Cℓ,N

t∫

0

e(t−ti1 )A0Ai1

ti1∫

0

e(ti1−ti2 )A0Ai2

. . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(tir) dti1 . . . dtir for ℓ > 0.
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Proof. From the ODE (2.4) and the variation-of-constants formula it follows
that

c0(t) = e tA0u0,(B.4a)

cℓ(t) =

min{N,ℓ}∑

k=1

t∫

0

e(t−s)A0Akcℓ−k(s) ds for ℓ > 0.(B.4b)

Using (B.4) we now prove (B.3) by induction. For ℓ = 1, we have C1 = {(1)}
and C1,1 = {(1)}. From (B.4a) and (B.4b) we directly conclude that

c1(t) =

∫ t

0
e(t−t1)A0A1c0(t1) dt1.

Suppose (B.3) holds for ℓ = 1, . . . , p − 1 for some value p > 1. From Defini-
tion (B.1), we know that the row sum of any element of Cp is p, and the row
sum of any element in Cp−k is p − k. Therefore, Cp satisfies the recurrence
relation

(B.5) Cp =

p⋃

k=1

⋃

(i1,...,ir)∈Cp−k

(k, i1, . . . , ir)

and

(B.6) Cp,N =

min(N,p)⋃

k=1

⋃

(i1,...,ir)∈Cp−k,N

(k, i1, . . . , ir).

By using (B.4b) with ℓ = p and the fact that (B.3) is assumed to be satisfied
for ℓ = 1, . . . , p − 1 we have

cp(t) =

min{N,p}∑

k=1

t∫

0

e(t−s)A0Akcp−k(s) ds

=

min{N,p}∑

k=1

t∫

0

e(t−s)A0Ak

∑

(i1,...,ir)∈Cp−k,N

s∫

0

e(s−ti1 )A0Ai1 . . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(tir)dti1 . . . dtir ds.
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By rearranging the terms as a double sum and using (B.6), we have

cp(t) =

min{N,p}∑

k=1

∑

(i1,...,ir)∈Cp−k,N

t∫

0

e(t−s)A0Ak

s∫

0

e(s−ti1 )A0Ai1 . . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(tir)dti1 . . . dtir ds

=
∑

(i1,...,ir)∈Cp,N

t∫

0

e(t−ti1 )A0Ai1 . . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(tir)dti1 . . . dtir

which shows that (B.3) holds for ℓ = p and completes the proof.

Lemma 12. Let m,N be positive integers, N ≤ m, and let Cm,N be defined
as in (B.2). Let (i1, i2, . . . , ir) ∈ Cm,N , a = maxj=1,...,N ‖Aj‖, and assume that
for all 1 ≤ j ≤ N . Then, one corresponding term in (B.3) is bounded as

(B.7)
‖

t∫

0

e(t−ti1 )A0Ai1 . . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(tir) dti1 . . . dtir‖

≤ e tµ(A0) (ta)
r

r!
‖u0‖.

Proof. By using the Dahlquist bound [25, p. 138] for the matrix exponential,
the rightmost integral on the left-hand side of (B.7) can be bounded as

‖

tir−1∫

0

e(tir−1
−tir )A0Aire

tirA0u0 dtir‖

≤

tir−1∫

0

e(tir−1
−tir )µ(A0)‖Air‖e

tirµ(A0)dtir‖u0‖ = tir−1
ae tir−1

µ(A0) ‖u0‖.

The claim (B.7) follows by applying the same bounding technique r − 1 times
for the remaining integrals, and using that ti ≤ t for any i.

Lemma 13 (Coefficient bound). Let c0,c1,. . . be the ε-expansion of u(t, ε)
in (1.2) for N ≥ 1 in (1.2), and let a = maxj=1,...,N ‖Aj‖. Then, for any ℓ ≥ 0
such that k := ⌈ ℓ

N ⌉ ≥ 2,

‖cℓ(t)‖ ≤ e t(µ(A0)+eNa)−1 (eNta)k

(k − 1)!
‖u0‖.
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Proof. We first note that the maximum length of any vector in Cm,N is m,
and the vector with the shortest length has length at least k = ⌈mN ⌉. Hence,
Lemma 11 can be rephrased as

(B.8)

cm(t) =

m∑

r̂=k

∑

(i1,...,ir)∈Cm,N

r=r̂

t∫

0

e(t−ti1 )A0Ai1

. . .

tir−1∫

0

e(tir−1
−tir )A0Airc0(t) dti1 . . . dtir .

Since, Cm,N ⊂ Cm we can bound the number of elements in Cm,N

#{(i1, . . . , ir) ∈ Cm,N : r = ℓ} ≤ #{(i1, . . . , ir) ∈ Cm : r = ℓ} =

(
m− 1

ℓ− 1

)
,

and Lemma 12 and (B.8) imply that

‖cm(t)‖ ≤ e tµ(A0)
m∑

ℓ=k

(
m− 1

ℓ− 1

)
(ta)ℓ

ℓ!
‖u0‖.

Moreover,

(
m− 1

r − 1

)
=

(m− 1)(m− 2) · · · (m− r + 1)

(r − 1)!
≤

mr

(r − 1)!

and therefore

(B.9) ‖cm(t)‖ ≤ e tω(A0)
m∑

r=k

mr(ta)r

(r − 1)! r!
‖u0‖ ≤ e tµ(A0)

m∑

r=k

rr(Nta)r

(r − 1)! r!
‖u0‖.

In the second inequality in (B.9) we use m = N m
N ≤ N⌈mN ⌉ = Nk ≤ Nr.

Using the inequality e
(
n
e

)n
≤ n!, n ≥ 1, we see that for k ≥ 2

‖cm(t)‖ ≤ e tµ(A0)
m∑

r=k

rr(Nta)r

e
(
r
e

)r
(r − 1)!

‖u0‖ ≤ e tµ(A0)
∞∑

r=k

(eNta)r

e(r − 1)!
‖u0‖

= e tµ(A0)−1(eNta)k
∞∑

r=0

r!

(r + k − 1)!

(eNta)r

r!
‖u0‖

≤
e t(µ(A0)+eNa)−1(eNta)k

(k − 1)!
‖u0‖,

where in the last inequality we use r!
(r+k−1)! ≤

1
(k−1)! .
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