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Abstract. The action of the matrix exponential and related ϕ functions on vectors plays an
important role in the application of exponential integrators to ordinary differential equations. For
the efficient evaluation of linear combinations of such actions we consider a new Krylov subspace
algorithm. By employing Cauchy’s integral formula an error representation of the numerical approx-
imation is given. This is used to derive a priori error bounds that describe well the convergence
behavior of the algorithm. Further, an efficient a posteriori estimate is constructed. Numerical
experiments illustrating the convergence behavior are given in MATLAB.
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1. Introduction. Matrix functions are of central importance in different fields
of science and engineering. The so called ϕ functions arise in the formulation of
exponential integrators [21] when applied to semilinear differential equations

u′(t) = Au(t) + g(t, u(t)), u(0) = u0, (1.1)

where A ∈ Cn×n, u(t) ∈ Cn, and g is a (non)linear function of t and u. Ordinary dif-
ferential equations (ODEs) of this form typically arise from spatial semidiscretization
of semilinear partial differential equations. Exponential integrators are particularly
efficient in the case where the stiffness of the equation (1.1) comes from the linear
part, which means that the Lipschitz constant of g is considerably smaller than the
norm of A.

By applying exponential integrators to semilinear ODEs, one has to evaluate
terms of the form f(A)b, i.e., products of matrix functions and vectors. There are
several equivalent definitions of matrix functions, see [11], [14], [18], [22]. For expo-
nential integrators the required matrix functions are the so-called ϕ functions. These
are entire functions, closely related to the exponential function, as can be seen from
the series representation (3.3) below.

When A comes from the spatial discretization of a differential operator, it is
usually sparse and very large. Then, instead of computing the matrix f(A) explicitly,
an efficient alternative is to project the problem onto a smaller dimensional subspace,
namely onto a Krylov subspace. The effectiveness of this approach comes from the fact
that generating Krylov subspaces is primarily based on operations of the form b→ Ab,
which is a cheap operation for sparse A. In fact, by using Krylov subspace methods
it was first shown in [20] that exponential integrators can be competitive compared
to classical stiff solvers. The approximation of products of the form f(A)b by using
Krylov subspace methods has recently been a very active research topic: we mention
the work on classical Krylov subspaces [6], [12], [23], [27], extended Krylov subspaces
[7], [8], and rational Krylov subspaces [3], [9], [26]. We note, however, that the use of
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extended and rational Krylov subspaces requires the solution of linear systems. This
will not be considered here.

More specifically, when employing exponential integrators for the numerical solu-
tion of (1.1), one has to compute linear combinations of products of the form ϕℓ(A)wℓ,
where ℓ denotes the order of the ϕ function. These linear combinations appear, for
instance, in the stages of exponential Runge–Kutta methods [21] and in the time step
formulas of exponential Taylor methods [24]. Instead of computing these products
separately, an attractive alternative is to compute the linear combination at once
using a single product of the form exp(Ã)w̃, where the matrix Ã is constructed by
augmenting A with the coefficient vectors wℓ and one Jordan block (see [1]).

However, even when A is structured (e.g. Hermitian negative semidefinite), the
augmented matrix will be unstructured and non-normal, in general, having a field
of values considerably larger than that of A. As the convergence analysis of Krylov
approximations is based on the field of values of the operator, it becomes difficult
to predict how fast the convergence of Krylov approximations for exp(Ã)w̃ will be
compared to Krylov approximations for the products ϕℓ(A)wℓ. The bounds based on

the field of values of Ã give largely pessimistic a priori bounds for the convergence of
the iteration. Moreover, in order to make the Krylov iteration numerically stable, the
augmented matrix needs an additional scaling, which requires some further effort.

The subject of this paper is to propose a new Krylov subspace algorithm to
overcome these problems. The convergence analysis of the new algorithm depends
only on the field of values of A as can be seen from the obtained convergence bounds.
Moreover, the new algorithm avoids the scaling that is needed for the augmented
matrix. Finally an effective a posteriori estimate can be obtained based on the notion
of the residual.

The rest of the paper is organized as follows. In Section 2 we review the poly-
nomial Krylov approximation of matrix functions and emphasize the approach based
on Cauchy’s integral formula (originally considered in [20]). In Section 3 we consider
the evaluation of linear combinations of products of the form ϕℓ(A)wℓ. We give a
short proof for the Cauchy integral representation of ϕ functions and, based on this,
discuss the representation of linear combinations of the products ϕℓ(A)wℓ by a single

product exp(Ã)w̃, as stated in [1]. Our proof also gives an integral representation for
this linear combination, which will be needed later in the error analysis. Further the
scaling of the augmented matrix is discussed for the case when the linear combination
is computed using the product exp(Ã)w̃. In Section 4 we give a vector-valued Taylor
series representation for linear combinations of the products ϕℓ(A)wℓ and introduce
a projection based approach to approximate this series. We formulate an Arnoldi-
like algorithm to obtain this approximation and show that the approximation gives
a Padé-type approximant of an order of the size of the underlying Krylov subspace.
The main result of Section 5 is Theorem 5.1, which gives a bound for the error of the
approximation based on the field values of the operator A. The derivation is based
on an exact representation of the error with the help of Cauchy’s integral formula.
The proof closely follows the analysis carried out in [20] for the approximation of the
matrix exponential. As a special case, we derive analytical bounds for the case of Her-
mitian negative semidefinite A. Section 6 is devoted to a posteriori error estimates.
In Theorem 6.1 we show that the error can be represented as the exact solution of an
ODE. The error is based on the notion of a residual that can be obtained from the
iteration. As a consequence of this theorem, we derive an a posteriori error estimate
for the approximation. Section 7 concludes with numerical experiments that illustrate
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the effectiveness of the approximation for several test problems.

2. Preliminaries. The research carried out in this article is motivated by ques-
tions arising in the time integration of stiff problems of the form (1.1). Exponen-
tial integrators for such problems are constructed and analyzed with the help of the
variation-of-constants formula

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (2.1)

As an example we give the simplest exponential integrator, the exponential Euler
method, which is obtained by interpolating the integrand in (2.1) using the known
value u(t0) = u0. The method is given by

u1 = ehAu0 + hϕ1(hA)g(t0, u0),

where h denotes the step size and ϕ1 the entire function

ϕ1(z) =
ez − 1

z
.

The efficient computation of the action of this and similar ϕ functions is the cen-
tral problem in the implementation of exponential integrators. In this work, Krylov
subspace methods will be used for that purpose.

2.1. Krylov subspace methods. Krylov subspace methods are based on the
idea of projecting a high dimensional problem involving a matrix A ∈ Cn×n and a
vector b ∈ Cn onto a low dimensional subspace Kk(A, b), which is defined by

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.

If the generating vectors are linearly independent, this subspace has dimension k
and the well-known Arnoldi iteration provides an orthonormal basis {q1, . . . , qk} of
Kk(A, b), which is usually written as a matrix Qk = [q1, . . . , qk] ∈ Cn×k, and a
Hessenberg matrix Hk = Q∗

kAQk ∈ Ck×k, which represents the action of A in the
subspace Kk(A, b). If A is Hermitian, then Hk is tridiagonal and we get the Lanczos
iteration. Moreover, the recursion

AQk = QkHk + hk+1,kqk+1e
T

k (2.2)

holds, where hk+1,k denotes the corresponding entry in Hk+1 and ek is the kth stan-
dard basis vector in Ck.

The numerical solution of linear systems Ax = b constitutes a typical application
for Krylov subspace methods. There, one way to determine the Krylov approximation
xk ∈ Kk(A, b) to the solution x is to use the Galerkin condition Axk − b ⊥ Kk(A, b),
which implies

xk = QkH
−1
k e1‖b‖2. (2.3)

2.2. Matrix functions. Cauchy’s integral formula states that any analytic func-
tion f defined on a domain D ⊂ C satisfies

f(z) =
1

2πi

∫

Γ

f(λ)

λ− z
dλ,
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where Γ is an appropriate contour in D enclosing z. This formula can be used to
define matrix functions. Replacing z by a square matrix A and considering a path Γ
inside D that encloses the spectrum σ(A), the matrix function f(A) is defined by

f(A) =
1

2πi

∫

Γ

f(λ)(λI −A)−1dλ. (2.4)

For the equivalence of various definitions of matrix functions, we refer to [22] and [18].
A Krylov subspace approximation for the product f(A)b is obtained by inserting

the approximate value (see (2.3))

(λI −A)−1b ≈ Qk(λI −Hk)
−1e1‖b‖2

into Cauchy’s integral formula (2.4). More precisely, we apply (2.4) to the vector b
and choose a contour that encloses the field of values of A:

F(A) = {x∗Ax : x ∈ C
n, ‖x‖2 = 1}.

This choice is motivated by the requirement that the contour has to enclose both σ(A)
and σ(Hk). Obviously, F(A) contains the spectrum σ(A), and since the columns of
Qk are orthonormal, we have the inclusions

σ(Hk) ⊂ F(Hk) = F(Q∗
kAQk) ⊂ F(A).

This justifies the sought-after approximation

f(A)b ≈ 1

2πi

∫

Γ

f(λ)Qk(λI −Hk)
−1e1‖b‖2dλ = Qkf(Hk)e1‖b‖2. (2.5)

For example, the product eAb is approximated by eAb ≈ ‖b‖2Qke
Hke1.

3. Computing series of ϕ functions. Throughout this paper, we consider the
entire functions

ϕ0(z) = ez, ϕℓ(z) =

∫ 1

0

e(1−θ)z θℓ−1

(ℓ− 1)!
dθ, ℓ ≥ 1 (3.1)

which play a crucial role in exponential integrators. They satisfy ϕℓ(0) =
1
ℓ! and the

recurrence relation

ϕℓ+1(z) =
ϕℓ(z)− ϕℓ(0)

z
, ℓ ≥ 0. (3.2)

From (3.2) it follows that their series representation is given by

ϕℓ(z) =

∞∑

j=0

zj

(j + ℓ)!
. (3.3)

Our goal is a fast approximation of expressions of the form

u(h) =

p∑

ℓ=0

hℓϕℓ(hA)wℓ, (3.4)

where A ∈ Cn×n, h ∈ R , and wℓ ∈ Cn, 0 ≤ ℓ ≤ p. Such expressions play a
fundamental role in exponential integrators.
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We first give an auxiliary result, which was already stated in [30] with a different
proof.

Lemma 3.1. Let Γ be a closed contour encircling the points 0 and z ∈ C with
winding number one. Then

ϕℓ(z) =
1

2πi

∫

Γ

eλ

λℓ

1

λ− z
dλ. (3.5)

Proof. The lemma is proved by induction. For ℓ = 0, relation (3.5) clearly holds.
For ℓ > 0, we use the decomposition

1

λℓ+1(λ− z)
=

1

z

(
1

λℓ(λ− z)
− 1

λℓ+1

)
,

and the recursion (3.2).
For the fast computation of (3.4), the following lemma will be of importance. The

result itself is not new and can be found, e.g., in [1, Thm. 2.1]. Our proof, however,
is different and provides an integral representation for (3.4) which will be needed in
the error analysis below.

Lemma 3.2. Let A ∈ Cn×n, W = [wp, wp−1, . . . , w1] ∈ Cn×p, h ∈ R and

Ã =

[
A W
0 J

]
∈ C

(n+p)×(n+p), J =

[
0 Ip−1

0 0

]
, w̃0 =

[
w0

ep

]
∈ C

n+p (3.6)

with ep = [0, . . . , 0, 1]T and Ip the identity matrix of size p. Then we have

u(h) =

p∑

ℓ=0

hℓϕℓ(hA)wℓ =
[
In 0

]
ehÃw̃0. (3.7)

Proof. From (3.6) we see that σ(hÃ) = σ(hA)
⋃
{0}. Now let Γ be a contour in

C that encircles σ(hÃ). Using Cauchy’s integral formula, we get the representation

ehÃw̃0 =
1

2πi

∫

Γ

eλ(λI − hÃ)−1w̃0 dλ. (3.8)

One can easily verify the following representation for the resolvent (λI − hÃ)−1:

(λI − hÃ)−1 =

[
(λI − hA)−1 (λI − hA)−1Wh(λI − hJ)−1

0 (λI − hJ)−1

]
.

As h(λI − hJ)−1 is explicitly given by

h(λI − hJ)−1 =
h

λ

(
I − h

λ
J
)−1

=




h
λ

h2

λ2

h3

λ3 . . . hp

λp

h
λ

h2

λ2

h
λ

. . .
...

. . . h2

λ2

h
λ



, (3.9)

we infer that

[
In 0

]
(λI − hÃ)−1w̃0 = (λI − hA)−1

p∑

ℓ=0

hℓ

λℓ
wℓ.
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By inserting this result into (3.8) and employing Lemma 3.1, we finally get

[
In 0

]
ehÃw̃0 =

1

2πi

∫

Γ

eλ(λI − hA)−1

p∑

ℓ=0

hℓ

λℓ
wℓ dλ (3.10)

=

p∑

ℓ=0

hℓϕℓ(hA)wℓ,

which is the desired result.
With the help of Lemma 3.2, the vector u(h) can be computed as the action of the

exponential function of an enlarged matrix. This approach, combined with a scaling
and squaring, was pursued in [1].

Note that the very structure of (3.7) easily allows one to scale the vectors wj .
For an invertible matrix S ∈ Cp×p, the scaled version of (3.7) is given by

u(h) =
[
In 0

] [In 0
0 S−1

]
ehÃ

[
In 0
0 S

] [
w0

S−1ep

]

=
[
In 0

]
exp

(
h

[
A WS
0 S−1JS

])[
w0

S−1ep

]
.

(3.11)

This scaling of Ã affects the accuracy of (3.7) when the matrix exponential is computed
with a scaling and squaring strategy; see [1], where the authors propose the simple
scaling S = ηIp for some suitably chosen η to avoid large ‖W‖. More precisely, they
took η = 2−⌈log

2
(‖W‖1)⌉. This scaling also affects the propagation of the round-off

errors in the Arnoldi iteration when using the approximation (2.5) for the product
(3.7). This will also be illustrated in the numerical experiments.

The above scaling can further be used to efficiently compute linear combinations
of the form

û(h) = ehAw0 + h

p∑

ℓ=1

ϕℓ(hA)ŵℓ (3.12)

which arise in exponential integrators, see [21]. By choosing

S = diag (hp−1, . . . , h, 1),

one obtains the representation

û(h) =
[
In 0

]
exp

(
h

[
A ŵp, . . . , ŵ1

0 1
h
J

])[
w0

ep

]
, (3.13)

which avoids the badly scaled vectors h1−ℓŵℓ that would arise when using (3.7).

4. A moment-matching Arnoldi iteration. By inserting the Taylor series
representation (3.3) of the ϕ functions into (3.4) we obtain

u(h) =

p∑

ℓ=0

hℓ

∞∑

j=0

hj

(j + ℓ)!
Ajwℓ =

∞∑

j=0

p∑

ℓ=0

hj+ℓ

(j + ℓ)!
Ajwℓ.

This can be expressed as a Taylor series

u(h) =

∞∑

ν=0

hν

ν!
mν (4.1)
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with moments mν =
∑min(ν,p)

ℓ=0 Aν−ℓwℓ that satisfy the recursion

m0 = w0, (4.2a)

mν = Amν−1 + wν , for 1 ≤ ν ≤ p, (4.2b)

mν = Amν−1, for ν > p. (4.2c)

This shows that u(h) lies in the closure of span{m0,m1, . . .} and consequently leads
us to define the enriched Krylov subspace

Kk(A,w0, . . . , wp) = span{m0,m1, . . . ,mk−1}, (4.3)

where A ∈ Cn×n, and the basis vectors mi are given by the recursion (4.2).
The main idea here is to perform an Arnoldi-like iteration for obtaining an or-

thonormal basis Qk ∈ C
n×k of the subspace Kk(A,w0, . . . , wp), and to approximate

u(h) in this lower dimensional space by using the projection of A onto this subspace,

Fk = Q∗
kAQk. (4.4)

To this end, we set W = [wp, . . . , w1] and J as in (3.6),

V = [vp, . . . , v1] = Q∗
kW, v0 = Q∗

kw0, F̃k =

[
Fk V
0 J

]
and ṽ0 =

[
v0
ep

]
.

The sought-after approximation uk(h) ≈ u(h) is given by

uk(h) = Qkvk(h), (4.5a)

where, due to Lemma 3.2,

vk(h) =

p∑

ℓ=0

hℓϕℓ(hFk)vℓ =
[
Ik 0

]
ehF̃k ṽ0. (4.5b)

This approximation has the following property.
Lemma 4.1. The approximation (4.5) gives a kth order approximant for u(h),

i.e., it holds

u(h)− uk(h) = O(hk).

Proof. From (4.5), we see that

uk(h) = Qk

∞∑

j=0

hj

j!
m̃j ,

where the vectors m̃j satisfy the recursion (4.2) with A replaced by Fk and wν replaced
by vν . We will show by induction that

m̃j = Q∗
kmj , 0 ≤ j < k.

For j = 0, this relation clearly holds. For 1 ≤ j ≤ p, we have by induction

m̃j = Fkm̃j−1 + vj = Q∗
kAQkQ

∗
kmj−1 +Q∗

kwj .
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Since mj ∈ R(Qk) for j < k, we have QkQ
∗
kmj = mj and consequently by (4.2b)

m̃j = Q∗
k (Amj−1 + wj) = Q∗

kmj .

For j > p, the result follows from (4.2c), since then

m̃j = Fkm̃j−1 = Q∗
kAQkQ

∗
kmj−1 = Q∗

kAmj−1 = Q∗
kmj .

Thus,

uk(h) = Qk

k−1∑

ℓ=0

hℓ

ℓ!
Q∗

kmℓ +O(hk) =

k−1∑

ℓ=0

hℓ

ℓ!
mℓ +O(hk), (4.6)

which implies the assertion of the lemma.
Similar methods for matching moments of transfer functions using Krylov sub-

space techniques can be found in the context of reduced-order modeling of large-scale
systems, see e.g. [2] and [10].

An interesting characterization, similar to the polynomial approximation property
of the Krylov subspaces, is the following: for every polynomial q of degree at most
k − 1 it holds that

q(A)w0 + q(1)(A)w1 + · · ·+ q(p)(A)wp ∈ Kk(A,w0, . . . , wp),

where

q(ℓ)(z) =
q(ℓ−1)(z)− q(ℓ−1)(0)

z
, 1 ≤ ℓ ≤ p, q(0)(z) = q(z).

This follows from the definition of the subspace (4.3) and the recursion (4.2).
From the recursion (4.2b) we see that the enriched subspace (4.3) can also be

viewed as an augmented Krylov subspace

Kk(A,w0, . . . , wp) = Kk−p(A,mp) +W , (4.7)

where W = span{m0, . . . ,mp−1}. In augmented Krylov subspace methods (see
e.g. [13], [28]) the Krylov subspace is commonly enriched with eigenvectors or almost
eigenvectors of A. For example, augmenting with almost eigenvectors corresponding
to the smallest eigenvalues of A may speed up the convergence of iterative solvers of
linear systems. For theoretical results, see [28].

In our situation, the vectors mk spanning W are not almost eigenvectors of A, in
general. However, an orthonormal basis Qk of Kk(A,w0, . . . , wp) can be obtained by
performing an Arnoldi iteration for Kk−p(A,mp) and then augmenting the produced
basis by W . Note that in this way short orthogonalization recursions are possible in
case A is (skew-) Hermitian. A drawback, however, is that the explicit computation of
the vector mp may make the algorithm numerically unstable. Moreover, an Arnoldi-
like relation (4.11) does not hold, which makes the derivation of a posteriori estimates
more difficult.

In the next subsection we derive an iteration which gives an almost Arnoldi-like
relation (4.10) employable for error estimates, and which avoids the explicit com-
putation of the vectors m1, . . . ,mp. The decomposition (4.7) also shows up in the
error analysis of Section 5, where the error estimation is carried out using polynomial
approximation techniques in the complex plane.
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We further note that the series (3.4) could also be approximated by using block
Krylov subspace methods (see e.g. [16], [25], [29]), since

Kk(A,w0, . . . , wp) ⊂ Kk(A,w0) +Kk−1(A,w1) + · · ·+Kk−p(A,wp).

This can be again seen from the recursion (4.2). However, since running a block
Krylov method needs p times more matrix-vector multiplications than our approach,
we will not consider block Krylov methods here.

4.1. Arnoldi-like iteration for the enriched Krylov subspace. In this sub-
section we describe a Krylov iteration for constructing an orthonormal basis of the
enriched Krylov subspace (4.3). This is achieved by using the QR decomposition of
the matrix

Kk+1 = [m0,m1, . . . ,mk]. (4.8)

In the kth step, we start from the unique QR decomposition

Kk = QkRk,

where the diagonal elements of Rk are all positive, and the columns of Qk constitute
an orthonormal basis of Kk(A,w0, . . . , wp). The vector qk+1 is obtained by orthogo-
nalizing mk against the columns of Qk. If Kk+1 has full rank, this vector is unique
upon choosing rk+1,k+1 > 0. In this way, we obtain

Kk+1 = Qk+1Rk+1, (4.9a)

where the matrices Qk+1 and Rk+1 have the following structure:

Qk+1 =
[
Qk qk+1

]
, Rk+1 =

[
Rk ×
0 rk+1,k+1

]
. (4.9b)

The next lemma shows the existence of a relation similar to (2.2) for this Arnoldi-
like iteration.

Lemma 4.2. For A ∈ Cn×n and {w0, ..., wp} ⊂ Cn there exists a matrix Fk ∈
Ck×k such that

AQk = QkFk − (I −QkQ
∗
k) Ŵk R

−1
k + hk+1,kqk+1e

T

k (4.10)

with Qk+1 and Rk as in (4.9). The matrix Ŵk ∈ Cn×k is defined as

Ŵk =

{
[w1, w2, . . . , wk] for k ≤ p,

[w1, w2, . . . , wp, 0, . . . , 0] for k > p,

and hk+1,k is related to the entry fk+1,k = (Fk+1)k+1,k as

hk+1,k = fk+1,k + qTk+1ŴkR
−1
k ek.

Proof. From the definition of the moments (4.2), we deduce the recursion

Kk+1 =
[
w0 AKk

]
+
[
0 Ŵk

]
.



10 ANTTI KOSKELA AND ALEXANDER OSTERMANN

Let

t1 = [r11, 0, . . . , 0]
T ∈ C

k, t2 = [0, . . . , 0, rk+1,k+1]
T ∈ C

k.

Using the QR decomposition of Kk+1 we get

Kk+1 = Qk+1Rk+1 =
[
Qk qk+1

] [t1 H̃k

0 t2

]

=
[
w0 AQkRk

]
+
[
0 Ŵk

]
,

where H̃k = Rk+1(1 : k, 2 : k + 1) ∈ Ck×k is a Hessenberg matrix. From this we infer
the following relation

AQkRk + Ŵk = QkH̃k + rk+1,k+1qk+1e
T

k ,

and furthermore

AQk + ŴkR
−1
k = QkHk + hk+1,kqk+1e

T

k , (4.11)

where Hk is the Hessenberg matrix Hk = H̃kR
−1
k , and hk+1,k = rk+1,k+1/rk,k the

corresponding entry of Hk+1. The (k × k) matrix (4.4) is now given by

Fk = Q∗
kAQk = Hk −Q∗

kŴkR
−1
k . (4.12)

Substituting (4.12) to (4.11), we finally get (4.10).

4.2. The algorithm. Multiplying (4.11) by ek from the right-hand side yields

Aqk + ŴkR
−1
k ek = QkHkek + hk+1,kqk+1, (4.13)

which directly gives an algorithm to update the basis Qk for the enriched Krylov
subspace Kk(A,w0, . . . , wp):

1. Compute the vector s := Aqk + ŴkR
−1
k ek;

2. Orthogonalize s against Qk to obtain hk+1,kqk+1 and the kth column of Hk;

3. Normalize hk+1,kqk+1;

4. Update the (k + 1)st column of Rk+1 with help of the relations

Rk+1(1 : k, k + 1) = H̃kek = H̃kR
−1
k Rkek = HkRkek

and hk+1,k = rk+1,k+1/rk,k.

A pseudocode for this algorithm is provided in Algorithm 1. We recall that the
matrices Rk+1 and Hk are defined recursively by (4.9) and (4.12).

The (k × k) matrix Fk can be obtained by the multiplication Q∗
kAQk at the end,

which is a relatively cheap operation if A is sparse. This approach is used in all of
the numerical experiments.

However, when orthogonalizing the vectors Aqk and ŴkR
−1
k ek separately in the

Gram–Schmidt procedure, also the upper-triangular part of Fk is obtained. If A is
Hermitian, then also is Fk, and the whole Fk is obtained. This option doubles the
number of inner-products during the iteration, but avoids the matrix multiplication
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Algorithm 1 Moment-matching Arnoldi iteration for the enriched Krylov subspace
Kk(A,w0, ..., wp) using the modified Gram–Schmidt orthogonalization, see also (4.13)

r1,1 ← ‖w0‖
q1 ← w0/r1,1
for i = 1, 2, . . . , k − 1 do

l ← min(i, p)
s← R−1

i ei
s← Aqi + Ŵls(1 : l)
for j = 1 to i do
hj,i ← (s, qj)
s← s− hj,iqj

end for

Ri+1(1 : i, i+ 1)← HiRi(1 : i, i)
hi+1,i ← ‖s‖2
qi+1 ← s/hi+1,i

ri+1,i+1 ← ri,ihi+1,i

end for

Q∗
kAQk. In the non-Hermitian case, the lower-triangular part of Fk can be computed

also by saving the vectors AQk and performing the missing inner-products at the end
of the iteration.

To evaluate the small dimensional expression in (4.5),

p∑

ℓ=0

hℓϕℓ(hFk)vℓ =
[
Ik 0

]
ehF̃k ṽ0,

we have used the Padé approximation of the matrix exponential with scaling and
squaring (command expm in MATLAB [19]). Another possibility would be to evaluate
the terms ϕℓ(hFk)vℓ separately using Padé approximations of the ϕ functions [18,
Thm. 10.31].

As the matrix A may have a very large norm (e.g. when A is coming from a
spatial discretization of a differential operator), the norms of the columns of the
matrix Kk in (4.8) grow rapidly. This results in an ill-conditioned upper triangular
matrix Rk of the QR decomposition of Kk and in stagnation of the iteration. This is
a drawback compared to the classical Arnoldi iteration, where the upper-triangular
matrix Rk of the QR decomposition of the Krylov matrix does not appear explicitly.
However, this problem can be circumvented by employing higher precision for Rk, as
Rk is always of relatively moderate size. This is done in the numerical experiments
of Section 7. Moreover, when using double precision, this stagnation was found to
happen at Krylov subspace sizes sufficient for accurate time integration of PDEs. In
each numerical experiment we point out the threshold caused by the ill-conditioning
of Rk.

5. An a priori error representation. Our error analysis of the moment-
matching Arnoldi iteration is strongly guided by the ideas presented in [20]. However,
we note that other techniques could be used to show the a priori superlinear conver-
gence of the method, see e.g. [3].

Let Γ be a closed contour that encircles the numerical range of hA with winding
number one. The application of Lemma 3.1 to (3.4) and (4.5), respectively, provides
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us with the following integral representations of the solution

u(h) =
1

2πi

∫

Γ

eλ(λI − hA)−1

p∑

ℓ=0

hℓ

λℓ
wℓ dλ

and the numerical approximation

uk(h) =
1

2πi

∫

Γ

eλQk(λI − hFk)
−1Q∗

k

p∑

ℓ=0

hℓ

λℓ
wℓ dλ.

The error εk(h) of the moment-matching approximation (4.5) after k ≥ p steps is thus
given by

εk(h) = u(h)− uk(h) =
1

2πi

∫

Γ

eλ∆k,λ

p∑

ℓ=0

hℓ

λℓ
wℓ dλ, (5.1a)

where

∆k,λ = (λI − hA)−1 −Qk(λI − hFk)
−1Q∗

k. (5.1b)

To estimate the right-hand side of (5.1a), we first note that

∆k,λ(λI − hA)Kk = 0

and recall from (4.2b) the relation

AKp = Kp+1

[
0
Ip

]
− Ŵp.

With x =
[
1

λ
,
h

λ2
, . . . ,

hp−1

λp

]T
we find that

p∑

ℓ=0

hℓ

λℓ
wℓ − (λI − hA)Kpx =

hp

λp
mp,

and consequently

∆k,λ

p∑

ℓ=0

hℓ

λℓ
wℓ = ∆k,λ

(
hp

λp
mp + (λI − hA)Kk

[
0
y

])

for all k > p and all y ∈ Ck−p. We have thus shown that

∆k,λ

p∑

ℓ=0

hℓ

λℓ
wℓ = hp∆k,λpk−p(hA)mp

for every polynomial pk−p of degree at most k − p, normalized by pk−p(λ) = λ−p.
Our approach to bound the error εk(h) is to use this freedom in (5.1a) to choose
different polynomial pk−p for each λ ∈ Γ on some contour Γ ⊂ C and to estimate the
representation

εk(h) =
hp

2πi

∫

Γ

eλ∆k,λpk−p(hA)mpdλ. (5.2)
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From [31, Thm. 5.1] we infer that

‖∆k,λ‖ ≤ 2 dist
(
Γ,F(A)

)−1
.

If A is normal, the estimate

‖pk−p(hA)‖ ≤ max
z∈σ(A)

|pk−p(z)|

is straightforward. For arbitrary A, also a theorem by Crouzeix [5] can be used, which
states that

‖p(A)‖ ≤ 11.08 max
z∈F(A)

|p(z)|

for every polynomial p and matrix A ∈ Cn×n. In our analysis, Cauchy’s integral
formula is used to bound ‖pk−p(hA)‖.

We are now in the position to state our first error bound, which is a slight adap-
tation of [20, Lemma 1].

Theorem 5.1. Let E be a convex and compact subset of C containing the field
of values of hA, let φ be the conformal mapping that maps the exterior of E onto
the exterior of the unit circle (with φ(z) = z/̺ + O(1) for z → ∞, where ρ is the
logarithmic capacity of E), and let Γ be the boundary curve of a piecewise smooth,
bounded region G that contains E. Then

‖εk(h)‖2 ≤
M‖mp‖2hp

2π

∫

Γ

∣∣eλ
∣∣ · |φ(λ)|−(k−p) · |λ|−p · |dλ| , (5.3)

where M = length(∂E)/
(
dist

(
∂E,F(hA)

)
· dist

(
Γ,F(hA)

))
. If E is a straight line

segment, then (5.3) holds with M = 6/ dist
(
Γ,F(hA)

)
.

Proof. The proof is very similar to that of [20, Lemma 1]. Taking into ac-
count (5.2), we choose now the polynomial

pk−p(z) =
φk−p(z)− φk−p(λ) + φ(λ)k−p

φ(λ)k−pλp
,

where φk−p(z) is the Faber polynomial of degree k − p related to φ(z). This choice
implies that

max
z∈E
|pk−p(z)| ≤

3

|φ(λ)k−p| · |λp| ,

and the result now follows literally as in the proof of [20, Lemma 1].

5.1. Hermitian negative semidefinite case. In the case of a Hermitian ma-
trix hA with eigenvalues in the interval E = [−4ρ, 0], we proceed as in [20]. The affine
transformation

λ 7→ µ = 1 +
λ

2ρ

maps E to [−1, 1] and reveals that φ(λ) = Φ(µ) = µ +
√

µ2 − 1. In these new
coordinates, we choose as contour the parabola with parametrization

Π : θ 7→ µ = (1 + ǫ)
(
1− 1

2
θ2
)
+ iθ

√
2ǫ+ ǫ2, −∞ < θ <∞.
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This parabola is osculating to the ellipse with vertex µ = 1+ǫ and foci ±1. Therefore,
its minimal distance to [−1, 1] is ǫ, i.e. λ = 2ρǫ in the original coordinates. From (5.3)
we thus get the estimate

εk(h) ≤
3hp‖mp‖2
πǫ(2ρ)p

∫

Π

∣∣∣e2ρ(µ−1)
∣∣∣ · |Φ(µ)|−(k−p) · |µ− 1|−p · |dµ| . (5.4)

For µ = µ(θ) on the parabola, we have the following estimates:

Φ(1 + ǫ) ≤ |Φ(µ)|, |µ− 1|−1 ≤ a(θ2 + c)−1,

Re(µ− 1)2ρ ≤ 2ǫρ− ρθ2, |dµ| ≤
(
(1 + ǫ) |θ|+

√
2ǫ+ ǫ2

)
|dθ|

with a = 2
1+ǫ

, c = 2ǫ
(1+ǫ)2 . Inserting theses estimates into (5.4) gives us the following

result.

Theorem 5.2. Let A be a Hermitian negative semidefinite matrix such that hA
has its eigenvalues in the interval [−4ρ, 0]. Then the error of the moment-matching
Arnoldi iteration (4.5) after k ≥ p steps satisfies the bound

εk(h) ≤
3hpe2ρǫ‖mp‖2

πǫρp
(
Φ(1 + ǫ)

)k−p
(1 + ǫ)p

(√
2ǫ+ ǫ2 Ip + 2(1 + ǫ)Jp

)
(5.5a)

with

Ip =

∫ ∞

−∞

e−ρθ2

(θ2 + c)p
dθ and Jp =

∫ ∞

0

θe−ρθ2

(θ2 + c)p
dθ. (5.5b)

The parameter ǫ > 0 in this bound can be chosen freely for each k.

Integration by parts shows that the integrals (5.5b) satisfy the following recurrence
relations (for p ≥ 1):

Ip+1 =
2p− 1− 2cρ

2pc
Ip +

ρ

pc
Ip−1, I0 =

√
π

ρ
, I1 =

πeρc√
c

(
1− erf(

√
ρc)

)
,

Jp+1 =
1

2pcp
− ρ

p
Jp, J0 =

1

2ρ
, J1 = −eρc

2
Ei(−ρc),

where Ei(x) denotes the exponential integral (see [15, formula 8.2111]):

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0.

The result for I1 is formula 3.4661 in [15], that for J1 follows from

∫ ∞

0

θe−ρθ2

θ2 + c
dθ =

1

2

∫ ∞

0

e−ρs

s+ c
ds =

1

2

∫ ∞

ρc

eρc−t

t
dt.

Figure 7.1 depicts on the right the upper bound (5.5a) compared to the actual con-
vergence for the symmetric problem of subsection 7.1. The bound is optimized nu-
merically with respect to the free parameter ǫ.
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6. An a posteriori error estimate. In this section we follow the ideas pre-
sented in [4] and [9], where a residual notion for the approximation of the matrix
exponential is used. The following theorem gives the residual (as defined in [4]) for
the moment-matching approximation.

Theorem 6.1. The error εk(t) = u(t)− uk(t) of the moment-matching approxi-
mation is the solution of the ODE

ε′k(t) = Aεk(t) + rk(t), εk(0) = 0,

where the residual rk(t) is given by

rk(t) = hk+1,kqk+1e
T

kvk(t) + (I −QkQ
∗
k)

( p∑

ℓ=1

tℓ−1

(ℓ− 1)!
wℓ − ŴkR

−1
k vk(t)

)
. (6.1)

Proof. With the help of the variation-of-constants formula (2.1) and the definition
of the ϕ functions (3.1), we see that u(t) as given in (3.4) is the solution of the
inhomogeneous differential equation

u′(t) = Au(t) +

p∑

ℓ=1

tℓ−1

(ℓ− 1)!
wℓ, u(0) = w0. (6.2)

Likewise, we see from (4.5) that uk(t) solves the differential equation

u′
k(t) = Qkv

′
k(t) = QkFkvk(t) +QkQ

∗
k

p∑

ℓ=1

tℓ−1

(ℓ− 1)!
wℓ, vk(0) = Q∗

kw0. (6.3)

Substituting the relation (4.10) to (6.3), we find that uk(t) satisfies

u′
k(t) = Auk(t) + (I −QkQ

∗
k)ŴkR

−1
k vk(t)− hk+1,kqk+1e

T
k vk(t) +QkQ

∗
k

tℓ−1

(ℓ− 1)!
wℓ.

Consequently, the error εk(t) = u(t)− uk(t) is the solution of

ε′k(t) = Aεk(t) + rk(t), εk(0) = 0,

with rk(t) given by (6.1).
The variation-of-constants formula (2.1) yields the representation

εk(h) =

∫ h

0

e(h−s)Ark(s) ds. (6.4)

Note that all quantities in (6.1) are computable. Therefore, (6.4) (or an appropriate
approximation to it) can be used as an error estimate.

A directly computable estimate for (6.4) is obtained by making the approximation
(see (4.6) and (4.8))

uk(t) ≈
k−1∑

ℓ=0

tℓ

ℓ!
mℓ = Kk

[
1 t . . . tℓ−1

(ℓ−1)!

]T
,

i.e.,

R−1
k vk(t) ≈

[
1 t . . . tℓ−1

(ℓ−1)!

]T
, (6.5)
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as

uk(t) = Qkvk(t) = QkRkR
−1
k vk(t) = KkR

−1
k vk(t).

Substituting (6.5) to (6.1) gives

rk(t) ≈ hk+1,kqk+1e
T

kvk(t). (6.6)

Substituting (6.6) into (6.4), and recalling (4.5), we obtain an approximation

εk(h) ≈ hk+1,k

∫ h

0

e(h−s)Aqk+1e
T

k

[
Ik 0

]
esF̃k ṽ0 ds, (6.7)

where

F̃k =

[
Fk V
0 J

]
and ṽ0 =

[
v0
ep

]
.

Expressing the matrix exponential e(h−s)A in terms of the ϕ1 function shows that

e(h−s)Aqk+1 = qk+1 + (h− s)ϕ1((h− s)A)Aqk+1.

A cheaply computable estimate is obtained by neglecting the second term. We thus
define

errk = hk+1,k qk+1 h e
T

k

[
Ik 0

]
ϕ1(hF̃k)ṽ0. (6.8)

Figure 7.1 shows on the right the efficiency of the estimate (6.8) when the iteration
is applied to the symmetric problem of subsection 7.1.

7. Numerical experiments. To illustrate the behavior of the new algorithm,
we compare it with the standard Arnoldi iteration for some test problems. We also
illustrate the effect of the scaling (3.11) for the augmented matrix Ã. Finally, we
illustrate the benefit of using the moment-matching Arnoldi iteration for the imple-
mentation of exponential Runge–Kutta methods.

The experiments are carried out on a desktop machine using MATLAB. No com-
parisons of execution times are made. We simply note that using the current im-
plementation, the moment-matching Arnoldi iteration is about twice as slow as the
Arnoldi iteration applied to the exponential of the augmented matrix Ã (see (3.7)).

7.1. Illustration of convergence and error estimates. In the first numerical
experiment we take a diagonal matrix A ∈ R200×200 and vectors w0, ..., w5 ∈ R200 such
that the elements wk,i are independently normally distributed with variance 102k,
0 ≤ k ≤ 5. To illustrate the convergence, we compare the moment-matching Arnoldi
approximation of the sum (3.4) to the Arnoldi approximation of the product ehAw0.

In the first comparison the diagonal elements of A are set as

aii = −4ρ sin2
(

iπ

2(n+ 1)

)
, 1 ≤ i ≤ n ≤ 200,

which gives a Hermitian matrix. In the second experiment, we choose

aii = −4iρ sin2
(

iπ

2(n+ 1)

)
, 1 ≤ i ≤ n ≤ 200,
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which gives a skew-Hermitian matrix. Note that the above entries are the eigenvalues
of the central difference discretization of the one-dimensional Laplacian ∆ and i∆,
respectively, with homogeneous Dirichlet boundary conditions. We set ρ = 80, and
h = 0.1. Then ‖hA‖2 ≈ 32, and ‖hkwk‖2 ≈ 13, 1 ≤ k ≤ 5, which corresponds to a
stiff nonlinearity g in (1.1).

The left part of Figure 7.1 shows that in both cases the relative error of the
moment-matching approximation for (3.4) is very close to that of the Arnoldi approx-
imation for ehAw0. In the skew-symmetric case the convergence is considerably slower
than in the symmetric case, as can be expected from the analysis of [20].

To illustrate the a priori error bound (5.5) and the a posteriori bound (6.8), we
take the Hermitian case from above with h = 0.05. The results are shown on the right
of Figure 7.1. We note that in double precision the algorithm stagnated at around
Krylov subspace size 30.
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Fig. 7.1. Left: Convergence of the moment-matching iteration for (3.4) and of the Arnoldi
iteration for eAw0, both for the Hermitian and skew-Hermitian test cases. Right: Error bounds and
the actual convergence of the moment-matching iteration for the Hermitian test case.

7.2. Effect of scaling of Ã on the Arnoldi iteration and selection of

an optimal scaling parameter. The following numerical example illustrates the
effect of the scaling (3.11) on the convergence of the Arnoldi approximation of u(h) =[
In 0

]
ehÃw̃0, when the simple scaling S = ηI is used.

We take a matrix A ∈ R100×100 with elements Aij that are normally distributed
with variance σ2 = 100, and set the vectors w0, . . . , w5 such that the elements of wi,
0 ≤ i ≤ 5, are normally distributed with variance σ2 = 50002i. The time step h is set
to 0.25. This is an extremal case as the norms of the vectors hkwk are considerably
larger than that of hA. This corresponds for example to one step of a high-order
exponential Taylor method [24] applied to a semilinear equation (1.1), where the
stiffness arises from the nonlinear part.

Figure 7.2 shows the relative errors for the approximations of (3.4) obtained with
the moment-matching iteration and the Arnoldi iteration applied to the exponential
of the augmented matrix with scalings η = 10−5, 10−10, 10−15, 10−20. We note that
in double precision the moment matching iteration did not stagnate.

We see that the scaling has a considerable effect on the numerical stability of the
Arnoldi iteration, and that with the scaling η = 10−20 the convergence of the Arnoldi
method and moment-matching iteration are almost identical. In [1] the scaling S = ηI
with η = 2−⌈log

2
(‖W‖1)⌉ is used, which scales the (1,2)-block of the augmented matrix
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Ã down to an order of one and speeds up the Taylor method [1] for computing ehÃũ0.
In this case ‖W‖2 ≈ 2 · 1020, so that η = ‖W‖−1

2 gives likewise a good scaling factor

when using the Arnoldi iteration to approximate ehÃũ0.
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Fig. 7.2. Relative approximation errors for the Arnoldi iteration with different scalings η and
for the moment-matching method for the example of subsection 7.2

7.3. Diffusion-reaction equation and a 4th order exponential Runge–

Kutta method. In this example, we consider a finite difference spatial discretization
of the semilinear problem

∂tu = ∂xxu+ γu(1− u), x ∈
[
−2, 2

]
, (7.1)

subject to homogeneous Dirichlet boundary conditions, and with initial value

u0(x) = sin
(
π
4x

)
− 0.5x.

The number of spatial discretization points is set to 800, resulting in a system of stiff
ODEs

u′(t) = Au(t) + g(u(t)), u(t0) = u0,

where A denotes the discretized second derivative. We perform one time step using a
4th order exponential integrator given by the Butcher tableau (see [21, Sec. 2.3])

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − ϕ2,3 ϕ2,3

1 ϕ1,4 − 2ϕ2,4 ϕ2,4 ϕ2,4
1
2

1
2ϕ1,5 − a5,2 − 1

4ϕ2,5 a5,2 a5,2
1
4ϕ2,5 − a5,2

ϕ1 − 3ϕ2 + 4ϕ3 0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3

where

a5,2 =
1

2
ϕ2,5 − ϕ3,4 +

1

4
ϕ2,4 −

1

2
ϕ3,5.
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We compare the computation of the final stage of the integrator

u1 = ehAu0 + h

5∑

i=1

bi(hA)G0,i, (7.2)

using the moment-matching iteration and the Arnoldi iteration for the augmented
matrix Ã (with and without scaling). The vectors G0,i coming from the stages of the
method are computed to machine precision. To get (7.2) into a suitable form for these
iterations, we rewrite it as (3.12).

The time step is set to h = 2.0 · 10−3, and we compare the algorithms for the
cases γ = 200 and 1000. The scaling (3.11) of the augmented matrix Ã is done using
S = η−1, where η = ‖W‖2, which was found to be a good choice in the numerical
experiment of subsection 7.2. In this case ‖hA‖2 ≈ 320, and ‖hg′(u0)‖ ≈ 0.4 for
γ = 200 while ‖hg′(u0)‖ ≈ 2 for γ = 1000. For comparison we compute in addition
the Arnoldi approximation of the product ehAu0. In double precision arithmetic the
algorithm stagnated at a Krylov subspace size of around 30.

From Figure 7.3 we infer that the moment-matching approximation gives in both
cases a smaller error for a given subspace size than the Arnoldi approximation of the
augmented matrix Ã. We also note that the augmented Krylov subspace method,
as explained in Section 4, converged to a relative 2-norm error of 10−13 and was
considerably faster than applying the Arnoldi iteration to the augmented matrix Ã.

10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

subspace dimension

re
la

tiv
e 

2−
no

rm
 e

rr
or

 

 

Arnoldi for augmented A
Arnoldi for augmented A, with scal.
moment-matching Arnoldi

Arnoldi for eAu0

10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

subspace dimension

re
la

tiv
e 

2−
no

rm
 e

rr
or

 

 

Arnoldi for augmented A
Arnoldi for augmented A, with scal.
moment-matching Arnoldi

Arnoldi for eAu0

Fig. 7.3. Convergence of different methods for the approximation of the final stage (7.2) with
γ = 200 (left) and γ = 1000 (right). The Arnoldi approximation of the augmented matrix is
performed with and without scaling.
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