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Abstract. In this paper we give first results for the approximation of eAb, i.e. the
matrix exponential times a vector, using the incomplete orthogonalization method.
The benefits compared to the Arnoldi iteration are clear: shorter orthogonalization
lengths make the algorithm faster and a large memory saving is also possible. For
the case of three term orthogonalization recursions, simple error bounds are derived
using the norm and the field of values of the projected operator. In addition, an a
posteriori error estimate is given which in numerical examples is shown to work well
for the approximation. In the numerical examples we particularly consider the case
where the operator A arises from spatial discretization of an advection-diffusion
operator.

1 Introduction

An efficient numerical computation of the product eAb for a matrix A ∈ Cn×n
and a vector b ∈ Cn is of importance in several fields of applied mathematics.
For various applications and numerical methods, see [3].

One large source of problems of this form comes from the implementa-
tion of exponential integrators [5]. These integrators have been shown to be
particularly efficient for ODEs coming from a spatial semidiscretization of
semilinear PDEs. In this case A is usually sparse and has a large norm and
dimension. A widely used approach in this case are Krylov subspace methods,
see e.g. [4] and [8].

Krylov subspace methods are based on the idea of projecting a matrix
A ∈ Cn×n and a vector b ∈ Cn onto a lower dimensional subspace Kk(A, b)
defined by

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.

The Arnoldi iteration performs a Gram–Schmidt orthogonalization for this
subspace and gives an orthonormal matrix Qk = [q1, . . . , qk] ∈ Cn×k which
provides a basis of Kk(A, b), and a Hessenberg matrix Hk = Q∗kAQk ∈ Ck×k,

The work was mostly carried out at the University of Innsbruck, Austria, and
was supported by the FWF doctoral program ‘Computational Interdisciplinary
Modelling’ W1227.



2 Antti Koskela

which represents the action of A in the subspace Kk(A, b). If A is Hermitian
or skew-Hermitian, Hk will be tridiagonal and we get the Lanczos iteration.
Moreover, the recursion

AQk = QkHk + hk+1,kqk+1e
T
k

holds, where hk+1,k denotes the corresponding entry in Hk+1 and ek is the
kth standard basis vector in Ck.

Using the basis Qk and the Hessenberg matrix Hk, the product eAb can
be then approximated as (see e.g. [8])

eAb ≈ QkeHke1‖b‖.

In case that A is not (skew-)Hermitian the Arnoldi iteration has to be used.
The drawback of this approach is that the orthogonalization recursions grow
longer which slows down the iteration, and that it needs increasingly memory
as k grows. As a remedy for this the restarted Krylov subspace method has
been proposed [2].

The objective of this paper is to show that the incomplete orthogonaliza-
tion method is a good alternative for approximating the product eAb for non-
normal matrices A when long orthogonalization recursions should be avoided.
The method has been considered before for eigenvalue problems [7] and for
solving linear systems [9]. As the numerical experiments and the short anal-
ysis of this paper show, it also provides a good alternative for approximating
the matrix exponential.

Class of test problems A reasonable example of nonnormal large and
sparse matrices is obtained from the spatial discretization of the 1-d advection-
diffusion equation

∂tu = ε∂xxu+ α∂xu. (1)

Choosing Dirichlet boundary conditions on the interval [0, 1] and performing
the discretization using central finite differences gives the ordinary differential
equation y′ = Ay, where the operator is the form A = ε∆n + α∇n ∈ Rn×n
with

∆n =
1

(∆x)2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 , ∇n =
1

2∆x


−1

1 −1
. . .

. . .
. . .

1 −1
1

 , (2)

where ∆x = 1/(n+ 1). We define the grid Péclet number

Pe =
α∆x

2ε
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as in the numerical comparisons of [1]. By the Péclet number the nonnormal-
ity of A can be controlled.

Throughout the paper, 〈·, ·〉 denotes the Euclidean inner product and ‖ ·‖
denotes the corresponding norm or its induced matrix norm. The Hermitian
part of a matrix A is defined as AH = (A∗ + A)/2, and the skew-Hermitian
part as AS = (A∗ −A)/2.

2 The incomplete orthogonalization method

In the incomplete orthogonalization method (IOM) (see e.g. [7]), Aqi is orthog-
onalized at step i only against m previous vectors {qi−m+1, . . . , qi} instead
of all the previous basis vectors. The coefficients hij are collected as in the
Arnoldi iteration. The incomplete orthogonalization method with orthogo-
nalization length m is denoted as IOM(m) for the rest of the paper. As a
result of k steps of IOM(m) we get the matrix

Qk,m =
[
q1 . . . qk

]
giving the basis of Kk(A, b), where q1 = b/‖b‖, and the vectors qi are orthog-
onal locally, i.e.,

〈qi, qi〉 = 1,

〈qi, qj〉 = 0, if |i− j| ≤ m, i 6= j.

The iteration also gives a Hessenberg matrix with an upper bandwidth length
m,

Hk,m :=



h11 . . . h1m 0

h21
. . .

. . .

. . .
. . . hk−m+1,k

. . .
. . .

...
0 hk,k−1 hkk


, (3)

where the nonzero elements are given as

hij = 〈Aqj , qi〉.

We can see that by construction the following relation holds

AQk,m = Qk,mHk,m + hk+1,kqk+1e
T
k . (4)

It is easy to verify that if dimKk(A, b) = k, then Kk(A, b) ⊂ R(Qk,m), where
R(Qk,m) denotes the range of Qk,m. However, if it happens that R(Qk+1) =
R(Qk), the subdiagonal element hk,k+1 will not necessarily be zero like in the
case of the Arnoldi iteration.
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2.1 Polynomial approximation property

Using (4) recursively we see that for 0 ≤ j ≤ k − 1

AjQk,m = Qk,mH
j
k,m +

j−1∑
i=0

cie
T
k−i

for some vectors ci. Multiplying this by e1 from the right side, we see that
for 0 ≤ j ≤ k − 1 it holds

Ajb = Qk,mH
j
k,me1‖b‖.

This results as the following lemma.

Lemma 1. Let A ∈ Cn×n and let Qk,m, Hk,m be the results of k steps of
IOM(m) applied to A with starting vector b. Then for any polynomial pk−1
of degree up to k − 1 the following equality holds:

pk−1(A)b = Qk,mpk−1(Hk,m)e1‖b‖.

This leads us to make the approximation

eAb ≈ Qk,meHk,me1‖b‖. (5)

By Lemma 1, the error εk of this approximation is given as

εk =

∞∑
`=k

A`

`!
b−Qk,m

∞∑
`=k

H`
k,m

`!
e1‖b‖. (6)

3 Bounds for the error

To bound the error (6), we consider bounds using the norm and the field of
values of the Hessenberg matrix Hk,2.

Using the representation (see also the analysis of [8])

∞∑
`=k

x`

`!
= xk

1∫
0

e (1−θ)x θk−1

(k − 1)!
dθ

and the bound ‖eA‖ ≤ eµ(A), where µ(A) is the numerical abscissa of A, i.e.,
the largest eigenvalue of AH (see [3, Thm. 10.11]), we get the bound

‖εk‖ ≤
eµ(A)‖A‖k + eµ(Hk,m)‖Qk,m‖‖Hk,m‖k

k!
‖b‖. (7)

Note that in the case of the advection-diffusion operator (2), µ(A) ≤ 0.
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In (7) the norm ‖Qk,m‖ cannot be bounded, in general. In numerical
experiments ‖Qk,m‖ was found to stay of order 1 for advection-diffusion op-
erators of the form (2) for all values of n, Pe, k and m. A discussion on the
effect of the parameter m to the size of ‖Qk,m‖ can be found in [9].

In the same way as in the analysis of [8], it can be shown that

Qk,meHk,me1‖b‖ = p(A)b,

where p is the unique polynomial that interpolates the exponential function
in the Hermite sense at the eigenvalues of Hk,m. Then, if the field of values
F(Hk,m) can be bounded with respect to F(A), the superlinear convergence
of the approximation can be shown in the same way as in the proof of [2,
Thm. 4.2] for the case of the restarted Krylov method.

When viewing the incomplete orthogonalization method as an oblique
projection method [9], also the results [4, Lemma 7 and 8] can be applied.

3.1 Bounds for the field of values and the norm of Hk,2.

In this subsection we show how to bound the norm and the field of values of
the Hessenberg matrix Hk,2, i.e., for the case of IOM(2). The field of values
of a matrix A ∈ Cn×n is defined as

F(A) = {x∗Ax : x ∈ Cn, ‖x‖2 = 1}.

We first give the following auxiliary lemma.

Lemma 2. Let A ∈ Cn×n be normal, and let the 0-field of values be defined
as

F0(A) = {〈x,Ay〉 : 〈x, y〉 = 0 , ‖x‖ = ‖y‖ = 1}.
Then,

F0(A) = {z ∈ C : |z| ≤ r}, where r =
1

2
max

λi,λj∈σ(A)
|λi − λj | .

Proof. Since A is normal, it is unitary similar to a diagonal matrix with the
eigenvalues of A on the diagonal, A = UΛU∗. Let x, y ∈ Cn×n such that
〈x, y〉 = 0 , ‖x‖ = ‖y‖ = 1. Then 〈x,Ay〉 = 〈U∗x, (Λ− cI)U∗y〉 for all c ∈ C.
By choosing c to be the center of the smallest disc containing σ(A), and by
using the Cauchy–Schwartz inequality, we see that

|〈x,Ay〉| ≤ ‖Λ− cI‖ ≤ 1

2
max

λi,λj∈σ(A)
|λi − λj | .

By choosing x = ui/
√

2 + uj/
√

2 and y = ui/
√

2 − uj/
√

2, where ui and uj
are eigenvectors of A corresponding to eigenvalues λi and λj , we see that

〈x,Ay〉 =
1

2
(λi − λj).

Thus, the inequality above is sharp. Since F0(A) is a disc centered at the
origin [6], the claim follows. ut
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Using Lemma 2, we may now obtain a bound for the field of values of Hk,2.

Theorem 3. Let A ∈ Cn×n and let Hk,2 be the Hessenberg matrix obtained
after k steps of IOM(2) applied to A. Then it holds that

F(Hk,2) ⊂ { z ∈ C : d(z,F(A)) ≤ 1
2 (‖AH‖+ ‖AS‖) }.

Proof. First, we extend Hk,2 to a matrix H̃ ∈ C(k+2)×(k+2) by adding zeros
such that

H̃ =

0 . . . 0
... Hk,2

...
0 . . . 0


and set q0 = qk+1 = 0. It clearly holds that F(Hk,2) ⊂ F(H̃).

Let x =
[
x0 . . . xk+1

]T ∈ Ck+2, ‖x‖ = 1. Then, by inspecting (3), we see
that

x∗H̃x =
1

2

k∑
i=0

[
xi
xi+1

]∗ [ 〈Aqi, qi〉 〈Aqi+1, qi〉
〈Aqi, qi+1〉 〈Aqi+1, qi+1〉

] [
xi
xi+1

]

+
1

2

k−1∑
i=1

[
xi
xi+1

]∗ [
0 〈Aqi+1, qi〉

〈Aqi, qi+1〉 0

] [
xi
xi+1

]
.

(8)

Due to the local orthogonality of the basis vectors {qi} and the convexity of
F(A), we see that the first term of (8) is in F(A). For the second term, we
split A = AH +AS and use the Lemma 2 to see that∣∣∣∣[ xi

xi+1

]∗ [
0 〈Aqi+1, qi〉

〈Aqi, qi+1〉 0

] [
xi
xi+1

]∣∣∣∣ ≤ |xi| |xi+1| (‖AH‖+ ‖AS‖).

By the inequality
∑k−1
i=1 |xi| |xi+1| ≤

∑k
i=1 |xi|

2
, the claim follows. ut

Using Lemma 2 we now obtain also a bound for ‖Hk,2‖.

Theorem 4. Let A ∈ Cn×n and let Hk,2 be the Hessenberg matrix obtained
after k steps of IOM(2) applied to A. Then it holds that

‖Hk,2‖ ≤ r(A) + 1
2 (‖AH‖+ ‖AS‖),

where r(A) = max
z∈F(A)

|z|.

Proof. Let x ∈ Cn, ‖x‖ = 1. Then for 1 < i < k it holds that

(Hk,2x)i = xi〈Aqi, qi〉+ 〈Aqi, (xi−1qi−1 + xi+1qi+1)〉.

By using the triangle inequality, splitting A = AH + AS, local orthogonality
of the vectors {qi} and Lemma 2, the claim follows. ut

Although we consider in the analysis of F(Hk,m) and ‖Hk,m‖, and also in
the numerical comparisons only the case m = 2, we note that in numerical
experiments the approximation (5) was found to improve for increasing m.



IOM approximation of the matrix exponential 7

4 A posteriori error estimate

An a posteriori error estimate follows from the relation (4) and can be derived
in the same way as the estimate for the Arnoldi iteration, see [8, Thm. 5.1].

Theorem 5. The error produced by the incomplete orthogonalization method
of eAb satisfies the expansion

eAb−Qk,m exp(Hk,m)e1 = hk+1,k

∞∑
`=1

eTkϕ`(Hk,m)e1A
`−1qk+1,

where ϕ`(z) =
∑∞
k=0

zk

(k+`)! . In numerical experiments we estimate the error

using the norm of the first term, i.e. by using the estimate

‖εk‖ ≈ hk+1,k

∣∣eTkϕ1(Hk,m)e1
∣∣ , (9)

which can be obtained with small computational cost by computing the ex-
ponential of

H̃m =

[
Hk,m e1

0 0

]
, since e H̃m =

[
eHk,m ϕ1(Hk,m)e1

0 1

]
.

5 Numerical examples

For the first example, we take A = ε∆n + α∇n ∈ Rn×n, where ∆n and ∇n
are as in (2). The vector b is taken as a discretization of the function u0(x) =
16((1 − x)x)2, x ∈ [0, 1]. We set n = 400 and ε = 1, and consider the cases
of a weak advection and a strong advection. We approximate the product
ehAb using IOM(2) and compare it with the standard Arnoldi iteration and
the restarted Krylov method with restarting interval 3. We also compute the
estimate (9) for IOM. Figure 1 shows the convergence of the three methods.
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Fig. 1. Left: h = 3 · 10−4, Pe = 6.2 · 10−3. Right: h = 2 · 10−4, Pe = 10.0.
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In the second example, A, n and ε are as above, and b is taken randomly.
We compare the methods using larger h for the cases of a weak advection
and a mild advection. Figure 2 shows the convergence of the three methods.

The differences in the computational costs come mainly from the differ-
ences in the lengths of the orthogonalization recursions, the Arnoldi iteration
taking O(k2) and the other two methods O(k) inner products. In these nu-
merical examples, the Arnoldi iteration was for k = 50 about 4 times slower
and for k = 100 about 8 times slower than the other two methods.
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Fig. 2. Left: h = 1 · 10−3, Pe = 6.2 · 10−3. Right: h = 6 · 10−4, Pe = 1.3 · 10−1.
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