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In 
ontrast to standard methods, exponential integrators are based on themild solution (variation-of-
onstants formula)
u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (2)The idea behind exponential Taylor methods is to repla
e the nonlinearity
g(τ, u(τ)) in (2) by its Taylor polynomial at τ = t0 and to 
ompute theintegrals exa
tly. This pro
edure de�nes a numeri
al s
heme that makesexpli
it use of 
ertain derivatives of the nonlinearity.Exponential Taylor methods were re
ently proposed in a paper by Al-Mohy and Higham [1℄. The 
omputational attra
tiveness of these methods
omes from the fa
t that one time step 
an be 
omputed by the a
tion of asingle exponential matrix of an augmented Ja
obian of the right-hand sideof (1). The required derivatives 
an be 
omputed by standard automati
di�erentiation, see [2, Se
t. I.8℄ and [3℄. For non-sti� problems, su
h Taylormethods are well understood, see [2, 4℄. A possible extension to sti� problemsis des
ribed in [5℄. Here, we analyze an exponential version of su
h methodsfor sti� problems.In se
tion 2 we derive the 
lass of exponential Taylor methods and re
allits possible numeri
al implementation from [1℄. The stability and 
onvergen
eproperties of these methods are analyzed in se
tion 3. In 
ontrast to thelinear problem, where methods of arbitrary high order exist, the situationis more involved for semilinear problems. It is shown that the exponentialTaylor method of 
lassi
al order two is indeed se
ond order 
onvergent forsti� problems; higher order methods, however, su�er from instabilities whenapplied to sti� problems. For methods that linearize the ve
tor �eld in ea
hstep, the situation is slightly more favorable. It is shown that linearizedexponential Taylor methods up to order three do not su�er from instabilities.The e�
ient implementation of exponential Taylor integrators is addressedin se
tion 4.The remaining se
tions are devoted to numeri
al experiments. Se
tion 5illustrates the instabilities that are inherent in high order exponential Taylormethods when applied to semilinear sti� problems. Se
tion 6 shows howthe instabilities are triggered by round-o� errors near the stability border.Finally, in se
tion 7, the numeri
al e�
ien
y of exponential Taylor methodsfor linear problems is demonstrated by a 
omparison with standard MATLABintegrators.
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2. Exponential Taylor methodsFor the time integration of semilinear systems of sti� di�erential equations
u′(t) = f(t, u(t)), u(t0) = u0, (3a)with
f(t, u(t)) = Au(t) + g(t, u(t)) (3b)we 
onsider exponential integrators. Our fo
us will be on equations that arisefrom spatial semidis
retization of partial di�erential equations of evolution-ary type. In the above problem A denotes a real d× d matrix (with d large),and g is a nonlinear fun
tion with a moderate Lips
hitz 
onstant.Exponential integrators propagate the linear part A of (3) exa
tly and
an be 
onstru
ted with the help of the variation-of-
onstants formula

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (4)The simplest method is obtained by repla
ing the nonlinearity with theknown value g(t0, u0), giving the exponential Euler method
u1 = ehAu0 + hϕ1(hA)g(t0, u0)

= u0 + hϕ1(hA)f(t0, u0),
(5)where h denotes the step size, u1 is the numeri
al approximation to u(t0 +h),and ϕ1 is the entire fun
tion

ϕ1(z) =
ez − 1

z
.Higher order exponential multistep methods are obtained in a similar way byrepla
ing the nonlinearity in (4) by an appropriate interpolation polynomial,see [6℄. The 
onstru
tion of high order exponential Runge�Kutta methods,however, is more involved, see [7℄.Here, we 
onsider one-step methods that are based on the Taylor expan-sion of the nonlinear term g(τ, u(τ)). For its 
onstru
tion, we repla
e thenonlinearity in (4) by its Taylor polynomial of degree p− 1

g(τ, u(τ)) ≈
p−1∑

k=0

(τ − t0)
k

k!

dk

dtk
g(t, u(t))

∣∣
t=t0

. (6)In order to obtain a numeri
al s
heme, we still have to approximate thederivatives of g by known quantities. For linear problems where g does3



not depend on u, this is a straightforward task. Otherwise, we invoke thedi�erential equation and the 
hain rule to get the required approximations.For notational simpli
ity, we illustrate this pro
ess for autonomous prob-lems where g = g(u). Using the 
hain rule, we get for p = 5

d

dt
g(u) = g′(u)u′

d2

dt2
g(u) = g′′(u)(u′, u′) + g′(u)u′′

d3

dt3
g(u) = g′′′(u)(u′, u′, u′) + 3g′′(u)(u′′, u′) + g′(u)u′′′

d4

dt4
g(u) = g(4)(u)(u′, u′, u′, u′) + 6g′′′(u)(u′′, u′, u′)

+ 3g′′(u)(u′′, u′′) + 4g′′(u)(u′′′, u′) + g′(u)u(4).

(7)
Using the di�erential equation, we de�ne re
ursively

u
(k)
0 = Au

(k−1)
0 + wk, k ≥ 1and

w1 = g(u0)

w2 = g′(u0)u
′
0

w3 = g′′(u0)(u
′
0, u

′
0) + g′(u0)u

′′
0

w4 = g′′′(u0)(u
′
0, u

′
0, u

′
0) + 3g′′(u0)(u

′′
0, u

′
0) + g′(u0)u

′′′
0

w5 = g(4)(u0)(u
′
0, u

′
0, u

′
0, u

′
0) + 6g′′′(u0)(u

′′
0, u

′
0, u

′
0) + 3g′′(u0)(u

′′
0, u

′′
0)

+ 4g′′(u0)(u
′′′
0 , u

′
0) + g′(u0)u

(4)
0 .

(8)
Inserting the approximations

wk ≈ dk−1

dtk−1
g(t, u(t))

∣∣
t=t0into (6), (4) and 
omputing the arising integrals de�nes the numeri
al s
heme

u1 = ehAu0 +

p∑

k=1

hkϕk(hA)wk (9a)
= u0 + hϕ1(hA)f(t0, u0) +

p∑

k=2

hkϕk(hA)wk, (9b)4



whi
h hen
eforth will be 
alled the exponential Taylor method. Re
all thatthe entire fun
tions
ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1 (10)satisfy the normalization ϕk(0) = 1/k! and the re
urren
e relation

ϕk+1(z) =
ϕk(z) − ϕk(0)

z
, ϕ0(z) = ez . (11)As shown in [1, Thm. 2.1℄, the series (9a) 
an be represented as the prod-u
t of the exponential of a (d+ p) × (d+ p) matrix and a ve
tor. Thereforean expli
it 
omputation of the a
tions of the operators ϕk(hA), k ≥ 1, isavoided, whi
h makes the method 
omputationally attra
tive. In the follow-ing lemma we give an alternative proof for this result.Lemma 1. Let A ∈ R

d×d, W = [wp, wp−1, . . . , w1] ∈ R
d×p, h ∈ R and

Ã =

[
A W
0 J

]
∈ R

(d+p)×(d+p), J =

[
0 Ip−1

0 0

]
, v0 =

[
u0

ep

]
∈ R

d+p (12)with ep = [0, . . . , 0, 1]T. Then the approximation (9) is obtained from
u1 =

[
Id 0

]
eh eAv0. (13)Proof. Using the integral equation (4) and the representation (10) of the

ϕk-fun
tions, one easily sees that the approximation
û(t) = etAu0 +

p∑

k=1

tkϕk(tA)wkis the exa
t solution of the di�erential equation
û′(t) = Aû(t) + w1 + tw2 + ...+

tp−1

(p− 1)!
wp, û(0) = u0.The 
oe�
ients of the inhomogeneity,

yi(t) =
ti−1

(i− 1)!
, i ≥ 1,verify y′1(t) = 0 and y′i(t) = yi−1 for i ≥ 2. Thus the fun
tion

v(t) =




û(t)
yp(t)...
y1(t)


 ∈ R

d+p5



satis�es the initial value problem
v′(t) =

[
A W
0 J

]
v(t) = Ãv(t), v0 =

[
u0

ep

]with exa
t solution v(t) = et eAv0. From this the 
laim follows.Remark. In the 
ase of (9b), we get the approximation u1 by repla
ing theve
tors w1 by f(t0, u0) and v0 by ed+p, respe
tively. When f be
omes small,this approa
h is bene�
ial for the numeri
al approximation of the matrixexponential.3. Stability and 
onvergen
eIn this se
tion we analyze the 
onvergen
e properties of exponential Taylormethods for sti� problems. Let the involved matrix exponential satisfy thebound
‖e tA‖ ≤ C0e

ωt, t ≥ 0 (14)for some nonnegative 
onstants C0 and ω. It turns out that our 
onvergen
ebounds will only depend on these 
onstants and not on the very form of A,in parti
ular not on its dimension d. This fa
t is important for appli
ationswhere A is a dis
retization of a spatial di�erential operator.We further note for later use that (14) implies the bound
‖ϕk(tA)‖ ≤ C0e

ωt

k!
, t ≥ 0. (15)This follows at on
e from the representation (10).3.1. The linear 
aseApplied to the linear problem

u′(t) = Au(t) + g(t), u(t0) = u0, t0 ≤ t ≤ T (16)the exponential Taylor method assumes the form
un+1 = ehAun +

p∑

k=1

hkϕk(hA)g(k−1)(tn), n ≥ 0. (17)Its error en+1 = un+1 − u(tn+1) satis�es the re
ursion
en+1 = ehAen − δn+1,where

δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)p−1

(p− 1)!
g(p)(tn + ξ) dξ dτ.This implies the following theorem whose proof is straightforward.6



Theorem 2. Let the inhomogeneity g in (16) be p times di�erentiable with
g(p) ∈ L1(0, T ). Then, the exponential Taylor method (17) is 
onvergent oforder p.We remark that this 
onvergen
e result extends to variable step sizes inan obvious way.3.2. The semilinear 
aseExponential Taylor methods for semilinear problems (3) possess an inherentinstability for p ≥ 3, 
f. our dis
ussion below. Therefore, we 
onsider hereonly1 the Taylor s
heme with p = 2. It has the form

un+1 = ehAun + hϕ1(hA)g(tn, un)

+ h2ϕ2(hA)
(
gt(tn, un) + gu(tn, un)(Aun + g(tn, un))

)
.

(18)Let ũn = u(tn) denote the exa
t solution of (3). We assume that ψ(t) =
g(t, u(t)) is su�
iently smooth. The exa
t solution satis�es the re
ursion
ũn+1 = ehAũn + hϕ1(hA)g(tn, ũn)

+ h2ϕ2(hA)
(
gt(tn, ũn) + gu(tn, ũn)(Aũn + g(tn, ũn))

)
+ δn+1,

(19)where
δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)
d2g

dt2
(
t, u(t)

)∣∣
t=tn+ξ

dξ dτ. (20)Let en = un − ũn. Taking the di�eren
e of (18) and (19) gives the errorre
ursion
en+1 = ehAen + hϕ1(hA)

(
g(tn, un) − g(tn, ũn)

)

+ h2ϕ2(hA)
(
gt(tn, un) − gt(tn, ũn)

)

+ h2ϕ2(hA)gu(tn, un)
(
Aen + g(tn, un) − g(tn, ũn)

)

+ h2ϕ2(hA)
(
gu(tn, un) − gu(tn, ũn)

)
u′(tn) − δn+1

(21)whi
h we have to solve. As g is smooth, we 
an bound the di�eren
es of
g, and of its derivatives, respe
tively, by Lips
hitz 
onditions. In order toadequately treat the term Aen whi
h appears on the right-hand side of (21),we premultiply the whole re
ursion by hA and use the re
urren
e relation (11)of the ϕ-fun
tions. This gives a 
oupled system of re
ursions that 
an be1The s
heme with p = 1 is the well-known exponential Euler method. It was analyzedin [7℄. 7



easily solved with the help of a standard Gronwall lemma. One �nally obtainsthe estimate
‖en‖ + h‖Aen‖ ≤ C

n∑

j=1

(
‖e(n−j)hAδj‖ + h‖Ae(n−j)hAδj‖

) (22)with a 
onstant C that is independent of the norm of A.Theorem 3. Let the inhomogeneity ψ(t) = g(t, u(t)) in (3) be twi
e di�er-entiable and ψ′′ ∈ L1(0, T ). Then, the exponential Taylor method (18) isse
ond order 
onvergent.Proof. Inserting the defe
ts (20) into the estimate (22) and integrating on
eby parts yields the desired result.The above proof also shows that the s
heme (18) is stable with respe
tto perturbations. Let
ûn+1 = ehAûn + hϕ1(hA)g(tn, ûn)

+ h2ϕ2(hA)
(
gt(tn, ûn) + gu(tn, ûn)(Aûn + g(tn, ûn))

)
+ θn+1

(23)denote the perturbed s
heme with perturbations θn+1. In the same way asabove we get
‖un − ûn‖ ≤ C

n∑

j=1

(
‖e(n−j)hAθj‖ + h‖Ae(n−j)hAθj‖

) (24)whi
h 
an simply be estimated by
‖un − ûn‖ ≤ Cn(1 + h‖A‖) max

1≤j≤n
‖θj‖. (25)Better estimates are possible if A or parts of it 
ommute with gu. We omitthe details.Exponential Taylor methods with p ≥ 3, however, are inherently unstablefor sti� problems. This is already obvious from the linear problem

u′(t) = Au(t) + u(t)for whi
h the exponential Taylor method with p = 3 reads
un+1 = ehAun + hϕ1(hA)un + h2ϕ2(hA)(A+ I)un + h3ϕ3(hA)(A+ I)2un.This re
ursion 
ontains the term

hϕ3(hA)(hA)2whi
h will give rise to exponential instabilities, see also se
tion 5.8



3.3. A linearized s
hemeThe analysis of the previous paragraph limits the order of stable exponen-tial Taylor methods to two. For linearized s
hemes, however, order threeis possible, as will be shown now. For notational simpli
ity, we restri
t thepresentation here to autonomous problems
u′(t) = Au(t) + g(u(t)), u(t0) = u0, (26)where we denote again the right-hand side by f(u(t)) for short. Given thenumeri
al approximation un at time tn, we linearize the di�erential equationat this state. This yields
v′(t) = Jnv(t) + gn(v(t)), v(tn) = un, (27)where Jn denotes the Fré
het derivative of f and gn the remainder, i.e.

Jn = f ′(un) = A+ g′(un),

gn(u) = f(u) − Jnu = g(u) − g′(un)u.Applying an exponential Taylor method to (27) yields a so-
alled linearizedexponential Taylor method. Linearized exponential integrators were �rstproposed by Pope [8℄, see also [9, 7℄. By 
onstru
tion, the remainder in (27)satis�es
g′n(un) = 0.Therefore, the linearized exponential Taylor s
heme for p = 3 has the form2

un+1 = ehJnun + hϕ1(hJn)gn(un)

+ h3ϕ3(hJn)g′′(un)
(
Jnun + gn(un), Jnun + gn(un)

)

= un + hϕ1(hJn)f(un) + h3ϕ3(hJn)f ′′(un)
(
f(un), f(un)

)
.

(28)For p ≥ 4 and h‖A‖ large the s
hemes are unstable. In order to show that(28) is indeed a third order method we pro
eed as in se
tion 3.2. The exa
tsolution ũn = u(tn) satis�es the re
ursion
ũn+1 = eh eJn ũn + hϕ1(hJ̃n)g̃n(ũn)

+ h3ϕ3(hJ̃n)g′′(ũn)
(
J̃nũn + g̃n(ũn), J̃nũn + g̃n(ũn)

)
+ δn+1,

(29)where
J̃n = f ′(u(tn)), g̃n(u) = f(u) − J̃nu2For p = 1 and p = 2, the method redu
es to the exponential Rosenbro
k�Euler method,whi
h is of order two (see [7℄). 9



and
δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)2

2

d3g̃n

dt3
(
u(t)

)∣∣
t=tn+ξ

dξ dτ. (30)Let en = un − u(tn). In order to solve the error re
ursion, we need thefollowing lemma.Lemma 4. Under the above assumptions, the following estimates hold
‖J̃n+1 − J̃n‖ ≤ Ch, (31a)
‖Jn+1 − Jn‖ ≤ C(h+ ‖en‖ + ‖en+1‖), (31b)

‖ehJn − eh eJn‖ ≤ Ch‖en‖, (31
)
‖ϕk(hJn) − ϕk(hJ̃n)‖ ≤ Ch‖en‖, k ≥ 1, (31d)

‖gn(un) − g̃n(ũn)‖ ≤ C‖en‖. (31e)Proof. The estimates (31a) and (31b) follow from the smoothness of the exa
tsolution and the Lips
hitz 
ondition on g. The bound (31
) follows from thedi�erential equation
v′(t) = hJnv(t) = hJ̃nv(t) + h(Jn − J̃n)v(t), v(0) = Iwith solution
v(1) = ehJn = eh eJn + h

∫ 1

0

e(1−τ)h eJn(Jn − J̃n)eτhJn dτ.The bound (31d) follows in a similar way by taking into a

ount that ϕk(hJ)is the solution of the di�erential equation
v′(t) = Jv(t) +

tk−1

(k − 1)!
I, v(0) = 0at t = 1. The last bound is a 
onsequen
e of

gn(un) = g(un) − g′(un)un, g̃n(ũn) = g(ũn) − g′(ũn)ũnand the Lips
hitz 
onditions on g and g′.We are now in the position to state the following 
onvergen
e result.Theorem 5. Let the inhomogeneity ψ(t) = g(u(t)) in (26) be three timesdi�erentiable with ψ′′′ ∈ L1(0, T ). Then, the exponential Taylor method (28)is 
onvergent of order three, i.e.
‖un − u(tn)‖ ≤ Ch3with a 
onstant C that is uniform on 
ompa
t intervals 0 ≤ nh ≤ T .10



Proof. The proof is straightforward and 
arried out in a similar way as thatof Theorem 3. The fa
t that the numeri
al and the exa
t solution involvedi�erent matri
es Jn and J̃n makes the proof, however, tedious. For instan
e,the term
ehJnun − eh eJnũn = ehJnen +

(
ehJn − eh eJn

)
ũn,whi
h is part of the error re
ursion, be
omes after multipli
ation with Jn+1and J̃n+1, respe
tively

Jn+1e
hJnun − J̃n+1e

h eJn ũn =
(
Jn+1 − J̃n+1

)
ehJnun + J̃n+1

(
ehJnun − eh eJn ũn

)
.Further, we have

J̃n+1

(
ehJnun − eh eJnũn

)
=

(
J̃n+1 − J̃n

)(
ehJnun − eh eJnũn

)

+ (J̃n − Jn)e
hJnun + ehJnJnun − eh eJn J̃nũnand it remains to rewrite

ehJnJnun − eh eJnJ̃nũn = ehJn(Jnun − J̃nũn) +
(
ehJnun − eh eJn

)
J̃nũn.All these terms are now appropriately bounded with the help of Lemma 4.The remaining terms in the re
ursion are treated in a similar way and leftas an exer
ise. The required stability bounds for the produ
ts ehJn · · · ehJℓ ,

ℓ ≤ n are given in [9℄.4. ImplementationThe implementation of exponential Taylor methods essentially 
onsists of twoparts: the 
omputation of the derivatives wi (8), and the approximation of thematrix exponential times a ve
tor (13). In this se
tion e�
ient methods forboth parts are provided, and a standard step size 
ontrol s
heme is des
ribed.For 
omputing the ve
tors wi only the semilinear 
ase is 
onsidered as thelinear 
ase (16) is trivial.4.1. Computation of the derivatives for semilinear problemsUsing ideas of automati
 di�erentiation (AD), the 
omputation of the deriva-tives wi for semilinear equations is straightforward. For the implementationof Taylor methods AD was already 
onsidered in [2, 5℄; an extensive dis
us-sion of the AD paradigm 
an be found in [3℄.For the purpose of this arti
le the following re
ursion proved useful. Itwas derived using the 
hain rule and is easy to implement for the equations11




onsidered. For the autonomous problem (26), the ve
tors wi of the expo-nential Taylor method (9b) are given by
w1 = f (0)

w2 = J (0)f (0)

i ≥ 2






f (i−1) = Af (i−2) + wi

wi+1 =
i−1∑
k=0

(
i−1
k

)
J (i−1−k)f (k),where

f (k) =
dk

dtk
f(u(t))

∣∣
u=un

and J (k) =
dk

dtk
g′(u(t))

∣∣
u=un

.A similar re
ursion holds for the linearized s
heme (27).4.2. Computation of the matrix exponential times a ve
torFor sparse matri
es, methods that employ matrix times ve
tor multipli
ationsgive e�
ient means for evaluating the a
tion of a matrix fun
tion on a ve
tor.For approximating the produ
t (13) we use Krylov methods.Krylov subspa
e methods are based on the idea of proje
ting the largeproblem onto a lower-dimensional Krylov subspa
e Kk(A, b), whi
h is de�nedfor a matrix A ∈ R
d×d and a ve
tor b ∈ R

d by
Kk(A, b) = span{b, Ab, A2b, ..., Ak−1b}.The well-known Arnoldi iteration performs the Gram�S
hmidt orthogonal-ization for this basis and gives as a result an orthonormal matrix Vk ∈ R

d×kand a Hessenberg matrix Hk = V T

k AVk ∈ R
k×k, whi
h represents the a
tionof A in the subspa
e Kk(A, b). If A is symmetri
, Hk is tridiagonal and weget the Lan
zos iteration. The produ
t eAb is then approximated by

eAb ≈ Vke
HkV T

k b = ‖b‖2Vke
Hke1. (32)The exponential of the smaller matrix Hk 
an be 
omputed in MATLABby the expm fun
tion whi
h uses the diagonal Padé approximant 
ombinedwith s
aling and squaring [10℄.The 
onvergen
e of the Krylov approximation (32) generally depends onthe �eld of values of the matrix [11℄. Although the �eld of values of the aug-mented matrix (12) may be 
onsiderably larger than that of A, numeri
allythe 
onvergen
e is found satisfying. We note that the spe
trum satis�es therelation spe
 (Ã) = spe
 (A) ∪ {0}. 12



To illustrate the good 
onvergen
e behavior of the Arnoldi iteration whenapplied to the augmented matrix, we 
onsider a �nite di�eren
e spatial dis-
retization of the semilinear problem
∂tu = ∂xxu+ u(1 − u), x ∈

[
−5

2
, 5

2

]
,subje
t to periodi
 boundary 
onditions, and with initial value

u0(x) = e−10x2

.The number of spatial dis
retization points is 500, the time step h is 
hosensu
h that ‖hA‖2 ≈ 80, where A is the dis
retized Lapla
ian. The augmentedmatrix Ã is formed for the exponential Taylor method with p = 5 and re
ur-sions (8) at t = 0. The quantities v0 and W are as in (12). In this exampleit holds ‖hW‖2 ≈ 2.7 · 105.In Figure 1 (left) the solid line depi
ts the error of the Lan
zos approx-imation ‖ehAu0 − Vke
HkV T

k b‖2, and the dashed line the 
orresponding errorfor the produ
t eh eAv0 using the Arnoldi iteration. We note that as A is sym-metri
, the Lan
zos approximation for ehAu0 
onverges fast, and thus the
onvergen
e for eh eAv0 is also very satisfa
tory.As noted by Al-Mohy and Higham [1℄, the relation (13) 
an be equiva-lently expressed as
[
Id 0

]
exp

(
h

[
A W
0 J

]) [
u0

ep

]
=

[
Id 0

]
exp

(
h

[
A ηW
0 J

])[
u0

η−1ep

]
,where η ∈ R. This is easy to see from the proof of Lemma 1. In double pre
i-sion arithmeti
, however, the 
hoi
e of η 
an be seen to a�e
t the numeri
alstability of the Krylov iteration. Figure 1 (right) depi
ts the 
onvergen
e ofthe Krylov approximation of eh eAv0 for several 
hoi
es of η. Here, the ex-ponential of hHk was simply 
omputed by MATLAB's expm fun
tion. Thequantities Ã, v0 and h are 
hosen as above.4.3. Lo
al error and step size 
ontrolAn error 
ontrol for the exponential Taylor integrator

u
[p]
1 = ehAu0 +

p∑

k=1

hkϕk(hA)wk
an be obtained from the last term of the sum, sin
e for small h we mayapproximate
‖u(t0 + h) − u

[p−1]
1 ‖2 ≈ ‖u[p]

1 − u
[p−1]
1 ‖2 = ‖hpϕp(hA)wp‖2.13
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η=1e-10

η=1e-5

η=1

η=1e5Figure 1: The errors of the Krylov approximations vs. the dimension of the Krylov sub-spa
e (left); the in�uen
e of the s
aling parameter η (right).Setting Ŵ = [wp, 0, . . . , 0] ∈ R
d×p and

Â =

[
A Ŵ
0 J

]
∈ R

(d+p)×(d+p),we get [
Id 0

]
eh bAed+p = hpϕp(hA)wp.So this term 
an be 
omputed by one matrix exponential.For the step size 
ontrol a standard algorithm as des
ribed in [12℄ isimplemented. The lo
al error v = hpϕp(hA)wp is measured in the weightedand s
aled norm

‖v‖E =

√√√√1

d

d∑

i=1

(
vis
ali )2

, s
ali = atol+ rtol · max(|un,i| , |un+1,i|),where the time step is a

epted whenever ‖v‖E ≤ 1.The new step size is 
omputed both after a

epted and reje
ted steps by
hnew = hmin

{
νmax,max

{
νmin, ν‖v‖−1/p

E

}}
,where the values νmax = 1.5, νmin = 0.5, and ν = 0.85 are used.

14



5. A simple test equation and a

umulation of the lo
al errorsTo illustrate the instabilities of exponential Taylor methods for p ≥ 3 (and
p ≥ 4 for the linearized s
heme) we 
onsider a simple one-dimensional partialdi�erential equation

∂tu = ∂xxu+ γu(1 − u), x ∈
[
−5

2
, 5

2

]
, (33)subje
t to periodi
 boundary 
onditions, and with initial value

u(x, 0) = e−10x2

.We 
hoose γ = 10 and dis
retize (33) in spa
e using standard �nite di�er-en
es, whi
h gives for the linear part the dis
retized Lapla
ian
A =

1

(∆x)2




−2 1 1
1 −2 1. . . . . . . . .

1 −2 1
1 1 −2



, (34)where ∆x = L/d. As we know, A has its eigenvalues on the negative realaxis, the smallest satisfying λmin ≈ −4/(∆x)2. As a result of this spatialdis
retization we get the semilinear problem

u′(t) = Au(t) + g(u(t)), u(0) = u0.When applying the non-linearized s
heme, we see from the expressions (8)that the term wp 
ontains the highest powers of A, namely g′(un)Ap−1un.Using the rough approximation
|g′(u)| = γ|1 − 2u| ≈ γwe �nd that the stability of the exponential Taylor s
heme is governed bythe fa
tor ∣∣γhpϕp(hλmin)λ

p−1
min

∣∣whi
h has to be power-bounded, i.e.
γhpϕp(hλmin) |λmin|p−1 ≤ 1. (35)This (approximate) stability 
ondition for high order exponential Taylormethods restri
ts the step sizes for stable 
omputations.15



p d = 500 d = 10003 1.4E-2 / 1.5E-2 8.6E-3 / 8.5E-34 3.7E-3 / 3.3E-3 1.9E-3 / 1.6E-35 1.8E-3 / 1.6E-3 7.9E-4 / 5.9E-4Table 1: Step sizes determined by 
ondition (35) (left 
olumn) vs. experimentally observedmaximal step sizes for stable 
omputations (right 
olumn) for exponential Taylor methodsof (
lassi
al) order p and d = 500 and 1000 spatial dis
retization points, respe
tively.Table 1 gives a 
omparison of the step sizes 
omputed from 
ondition (35)with numeri
ally observed maximal step sizes for stable 
omputations, re-spe
tively. The results show on
e more that instabilities o

ur for p ≥ 3. Fig-ure 2 shows an exponential growth of the 2-norms of the terms hkϕk(hA)wkfor step sizes slightly beyond the stability limit.When applying the linearized s
heme of order p, we have g′n(un) = 0.Therefore, the term (p − 1)g′′(un)(u
(p−2)
n , u′n) is expe
ted to start growing�rst. Now g′′(u) = −2γ, and based on numeri
al experiments we approximate

u′n = f(un) ≈ 1. Then, similarly as above, we derive an approximate stability
ondition
2(p− 1)γhpϕ(hλmin) |λmin|p−2 ≤ 1. (36)
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Figure 2: 2-norms of the terms hkϕk(hA)wk as a fun
tion of time for the exponentialTaylor methods with p = 3 (left) and p = 5 (right), respe
tively. The experiment was
arried out with d = 1000, and the step sizes were h = 1.3 · 10−3 (left) and h = 1.8 · 10−4(right).
16



p n = 500 n = 10004 1.7E-2 / 1.6E-2 10.0E-3 / 8.0E-35 3.1E-3 / 3.1E-3 2.2E-3 / 1.6E-36 1.1E-3 / 1.3E-3 8.9E-4 / 6.8E-4Table 2: Step sizes determined by 
ondition (36) (left 
olumn) vs. experimentally observedmaximal step sizes for stable 
omputations (right 
olumn) for linearized exponential Tay-lor methods of (
lassi
al) order p and d = 500 and 1000 spatial dis
retization points,respe
tively.In 
ontrast to 
ondition (35), it 
ontains one power of |λmin| less. Ta-ble 2 gives again a 
omparison of the step sizes 
omputed from 
ondition(36) with numeri
ally observed maximal step sizes for stable 
omputations,respe
tively. We see that the methods are unstable for p ≥ 4. Figure 3 showsan exponential growth of the 2-norms of the terms hkϕk(hJn)wk for step sizesslightly beyond the stability limit.
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Figure 3: 2-norms of the terms hkϕk(hJn)wk as a fun
tion of time for the linearized expo-nential Taylor methods with p = 4 (left) and p = 5 (right), respe
tively. The experimentwas 
arried out with d = 500, and the step sizes were h = 1.7 ·10−2 (left) and h = 3.3 ·10−3(right).6. A

umulation of round-o� errorsWhen applying the non-linearized integrator (with p = 6) to the test equa-tion (33) with step size h = 10−4, we �nd that the higher order terms wi arestrongly a�e
ted by round-o� errors (see Figure 4). Due to the smoothing17
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Figure 4: Left: 2-norm of the terms hkϕk(hA)wk with h = 10−4 as a fun
tion of time for
k = 5 and k = 6. Right: the term w4 at time t = 1.property of the equation, however, the round-o� errors settle in a neighbor-hood of the solution and will not amplify before 
ondition (35) is violated.To observe the ampli�
ation of the round-o� errors numeri
ally, we applythe method to a hyperboli
 equation, the nonlinear S
hrödinger equationi∂tψ = −∆ψ − |ψ|2 ψ, x ∈ [−π, π], (37)subje
t to periodi
 boundary 
onditions. As initial value we take

ψ(x, 0) = ψ0(x) =
1 + i

1 + sin2 x
. (38)The spatial dis
retization is performed with 
entral di�eren
es, the dis
retizedLapla
ian A is again given by (34). The dis
retization of the initial valuegives a perturbed ve
tor

ψ̃0 = ψ0 + ε,where ε ∈ R
d is the round-o� error. It is observed numeri
ally that theseerrors are approximately normally distributed, see Figure 5.
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Figure 5: Histogram of the round-o� errors εi, i = 1, . . . , d in single pre
ision arithmeti
for d = 1200 and d = 12000 dis
retization points, respe
tively. The 
orresponding normaldistributions are �tted with MATLAB's histfit 
ommand.This experiment justi�es the assumption that the elements of ε are nor-mally distributed, i.e., for all 1 ≤ i ≤ d

εi ∼ N (0, σ2) i.i.d.The assumption that the round-o� errors are statisti
al variables was alreadyused, for example, in [13℄. A dis
ussion in
luding several referen
es 
an befound in [14℄.If A arises from the Lapla
ian with periodi
 boundary 
onditions, we seethat
[Aε]i =

εi−1 − 2εi + εi+1

(∆x)2
∼ N

(
0, 6σ2(∆x)−4

)
,where the indi
es are taken modulo d. Sin
e

(∆x)4‖Aε‖2
2 =

d∑

i=1

(
6ε2

i + εi−1εi+1 − 4εiεi+1

)
,the expe
tation values satisfy E(ε2

i ) = σ2 and the variables εi are assumedto be independent, we get
E(‖Aε‖2

2) =
6dσ2

(∆x)4
,and further

E (‖Aε‖2
2)

E(‖ε‖2
2)

=
6

(∆x)4
.19
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Figure 6: 2-norms of the terms hkϕk(hA)wk when using the exponential Taylor methodwith p = 6 and d = 1200 dis
retization points. Left �gure: α ≈ 0.8 (h = 3.4 · 10−5); right�gure: α ≈ 1.0 (h = 4 · 10−5).Let
α =

√
6h

(∆x)2
.Figure 6 shows the evolution of the 2-norms of the terms hkϕk(hA)wk for

k = 4, 5, 6 when using the 6th order s
heme for equation (37) with d = 1200.The �gure indi
ates that the growth of the round-o� errors starts alreadynear α = 1.7. A linear example with inhomogeneityTo illustrate the favorable properties of exponential Taylor methods when ap-plied to equations with linear inhomogeneities, we 
onsider a �nite di�eren
espatial dis
retization (with 500 points)
∂tu = ∂xxu+ 10 e−10tx(1 − x), x ∈ [0, 1], t ∈ [0, 0.1]

u(x, 0) = 16x2(1 − x)2,

u(0, t) = u(1, t) = 0.

(39)As expe
ted, no instabilities o

ur in the linear 
ase. Using the step size
ontrol as des
ribed in 
hapter 4, we �nd that the method with p = 5 is ableto take larger step sizes than the standard impli
it integrators ode15s andode23s of MATLAB. Figure 7 shows the resulting step size sequen
es whenrequiring a relative error 10−7 at time t = 0.1. The methods take 11, 14820



and 868 steps, respe
tively. To enhan
e the performan
e of the MATLABintegrators, a fun
tion handle is provided to evaluate the linear part.
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Figure 7: Step sizes taken by the exponential Taylor method with p = 5, ode15s andode23s, respe
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