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In ontrast to standard methods, exponential integrators are based on themild solution (variation-of-onstants formula)
u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (2)The idea behind exponential Taylor methods is to replae the nonlinearity
g(τ, u(τ)) in (2) by its Taylor polynomial at τ = t0 and to ompute theintegrals exatly. This proedure de�nes a numerial sheme that makesexpliit use of ertain derivatives of the nonlinearity.Exponential Taylor methods were reently proposed in a paper by Al-Mohy and Higham [1℄. The omputational attrativeness of these methodsomes from the fat that one time step an be omputed by the ation of asingle exponential matrix of an augmented Jaobian of the right-hand sideof (1). The required derivatives an be omputed by standard automatidi�erentiation, see [2, Set. I.8℄ and [3℄. For non-sti� problems, suh Taylormethods are well understood, see [2, 4℄. A possible extension to sti� problemsis desribed in [5℄. Here, we analyze an exponential version of suh methodsfor sti� problems.In setion 2 we derive the lass of exponential Taylor methods and reallits possible numerial implementation from [1℄. The stability and onvergeneproperties of these methods are analyzed in setion 3. In ontrast to thelinear problem, where methods of arbitrary high order exist, the situationis more involved for semilinear problems. It is shown that the exponentialTaylor method of lassial order two is indeed seond order onvergent forsti� problems; higher order methods, however, su�er from instabilities whenapplied to sti� problems. For methods that linearize the vetor �eld in eahstep, the situation is slightly more favorable. It is shown that linearizedexponential Taylor methods up to order three do not su�er from instabilities.The e�ient implementation of exponential Taylor integrators is addressedin setion 4.The remaining setions are devoted to numerial experiments. Setion 5illustrates the instabilities that are inherent in high order exponential Taylormethods when applied to semilinear sti� problems. Setion 6 shows howthe instabilities are triggered by round-o� errors near the stability border.Finally, in setion 7, the numerial e�ieny of exponential Taylor methodsfor linear problems is demonstrated by a omparison with standard MATLABintegrators.
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2. Exponential Taylor methodsFor the time integration of semilinear systems of sti� di�erential equations
u′(t) = f(t, u(t)), u(t0) = u0, (3a)with
f(t, u(t)) = Au(t) + g(t, u(t)) (3b)we onsider exponential integrators. Our fous will be on equations that arisefrom spatial semidisretization of partial di�erential equations of evolution-ary type. In the above problem A denotes a real d× d matrix (with d large),and g is a nonlinear funtion with a moderate Lipshitz onstant.Exponential integrators propagate the linear part A of (3) exatly andan be onstruted with the help of the variation-of-onstants formula

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (4)The simplest method is obtained by replaing the nonlinearity with theknown value g(t0, u0), giving the exponential Euler method
u1 = ehAu0 + hϕ1(hA)g(t0, u0)

= u0 + hϕ1(hA)f(t0, u0),
(5)where h denotes the step size, u1 is the numerial approximation to u(t0 +h),and ϕ1 is the entire funtion

ϕ1(z) =
ez − 1

z
.Higher order exponential multistep methods are obtained in a similar way byreplaing the nonlinearity in (4) by an appropriate interpolation polynomial,see [6℄. The onstrution of high order exponential Runge�Kutta methods,however, is more involved, see [7℄.Here, we onsider one-step methods that are based on the Taylor expan-sion of the nonlinear term g(τ, u(τ)). For its onstrution, we replae thenonlinearity in (4) by its Taylor polynomial of degree p− 1

g(τ, u(τ)) ≈
p−1∑

k=0

(τ − t0)
k

k!

dk

dtk
g(t, u(t))

∣∣
t=t0

. (6)In order to obtain a numerial sheme, we still have to approximate thederivatives of g by known quantities. For linear problems where g does3



not depend on u, this is a straightforward task. Otherwise, we invoke thedi�erential equation and the hain rule to get the required approximations.For notational simpliity, we illustrate this proess for autonomous prob-lems where g = g(u). Using the hain rule, we get for p = 5

d

dt
g(u) = g′(u)u′

d2

dt2
g(u) = g′′(u)(u′, u′) + g′(u)u′′

d3

dt3
g(u) = g′′′(u)(u′, u′, u′) + 3g′′(u)(u′′, u′) + g′(u)u′′′

d4

dt4
g(u) = g(4)(u)(u′, u′, u′, u′) + 6g′′′(u)(u′′, u′, u′)

+ 3g′′(u)(u′′, u′′) + 4g′′(u)(u′′′, u′) + g′(u)u(4).

(7)
Using the di�erential equation, we de�ne reursively

u
(k)
0 = Au

(k−1)
0 + wk, k ≥ 1and

w1 = g(u0)

w2 = g′(u0)u
′
0

w3 = g′′(u0)(u
′
0, u

′
0) + g′(u0)u

′′
0

w4 = g′′′(u0)(u
′
0, u

′
0, u

′
0) + 3g′′(u0)(u

′′
0, u

′
0) + g′(u0)u

′′′
0

w5 = g(4)(u0)(u
′
0, u

′
0, u

′
0, u

′
0) + 6g′′′(u0)(u

′′
0, u

′
0, u

′
0) + 3g′′(u0)(u

′′
0, u

′′
0)

+ 4g′′(u0)(u
′′′
0 , u

′
0) + g′(u0)u

(4)
0 .

(8)
Inserting the approximations

wk ≈ dk−1

dtk−1
g(t, u(t))

∣∣
t=t0into (6), (4) and omputing the arising integrals de�nes the numerial sheme

u1 = ehAu0 +

p∑

k=1

hkϕk(hA)wk (9a)
= u0 + hϕ1(hA)f(t0, u0) +

p∑

k=2

hkϕk(hA)wk, (9b)4



whih heneforth will be alled the exponential Taylor method. Reall thatthe entire funtions
ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1 (10)satisfy the normalization ϕk(0) = 1/k! and the reurrene relation

ϕk+1(z) =
ϕk(z) − ϕk(0)

z
, ϕ0(z) = ez . (11)As shown in [1, Thm. 2.1℄, the series (9a) an be represented as the prod-ut of the exponential of a (d+ p) × (d+ p) matrix and a vetor. Thereforean expliit omputation of the ations of the operators ϕk(hA), k ≥ 1, isavoided, whih makes the method omputationally attrative. In the follow-ing lemma we give an alternative proof for this result.Lemma 1. Let A ∈ R

d×d, W = [wp, wp−1, . . . , w1] ∈ R
d×p, h ∈ R and

Ã =

[
A W
0 J

]
∈ R

(d+p)×(d+p), J =

[
0 Ip−1

0 0

]
, v0 =

[
u0

ep

]
∈ R

d+p (12)with ep = [0, . . . , 0, 1]T. Then the approximation (9) is obtained from
u1 =

[
Id 0

]
eh eAv0. (13)Proof. Using the integral equation (4) and the representation (10) of the

ϕk-funtions, one easily sees that the approximation
û(t) = etAu0 +

p∑

k=1

tkϕk(tA)wkis the exat solution of the di�erential equation
û′(t) = Aû(t) + w1 + tw2 + ...+

tp−1

(p− 1)!
wp, û(0) = u0.The oe�ients of the inhomogeneity,

yi(t) =
ti−1

(i− 1)!
, i ≥ 1,verify y′1(t) = 0 and y′i(t) = yi−1 for i ≥ 2. Thus the funtion

v(t) =




û(t)
yp(t)...
y1(t)


 ∈ R

d+p5



satis�es the initial value problem
v′(t) =

[
A W
0 J

]
v(t) = Ãv(t), v0 =

[
u0

ep

]with exat solution v(t) = et eAv0. From this the laim follows.Remark. In the ase of (9b), we get the approximation u1 by replaing thevetors w1 by f(t0, u0) and v0 by ed+p, respetively. When f beomes small,this approah is bene�ial for the numerial approximation of the matrixexponential.3. Stability and onvergeneIn this setion we analyze the onvergene properties of exponential Taylormethods for sti� problems. Let the involved matrix exponential satisfy thebound
‖e tA‖ ≤ C0e

ωt, t ≥ 0 (14)for some nonnegative onstants C0 and ω. It turns out that our onvergenebounds will only depend on these onstants and not on the very form of A,in partiular not on its dimension d. This fat is important for appliationswhere A is a disretization of a spatial di�erential operator.We further note for later use that (14) implies the bound
‖ϕk(tA)‖ ≤ C0e

ωt

k!
, t ≥ 0. (15)This follows at one from the representation (10).3.1. The linear aseApplied to the linear problem

u′(t) = Au(t) + g(t), u(t0) = u0, t0 ≤ t ≤ T (16)the exponential Taylor method assumes the form
un+1 = ehAun +

p∑

k=1

hkϕk(hA)g(k−1)(tn), n ≥ 0. (17)Its error en+1 = un+1 − u(tn+1) satis�es the reursion
en+1 = ehAen − δn+1,where

δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)p−1

(p− 1)!
g(p)(tn + ξ) dξ dτ.This implies the following theorem whose proof is straightforward.6



Theorem 2. Let the inhomogeneity g in (16) be p times di�erentiable with
g(p) ∈ L1(0, T ). Then, the exponential Taylor method (17) is onvergent oforder p.We remark that this onvergene result extends to variable step sizes inan obvious way.3.2. The semilinear aseExponential Taylor methods for semilinear problems (3) possess an inherentinstability for p ≥ 3, f. our disussion below. Therefore, we onsider hereonly1 the Taylor sheme with p = 2. It has the form

un+1 = ehAun + hϕ1(hA)g(tn, un)

+ h2ϕ2(hA)
(
gt(tn, un) + gu(tn, un)(Aun + g(tn, un))

)
.

(18)Let ũn = u(tn) denote the exat solution of (3). We assume that ψ(t) =
g(t, u(t)) is su�iently smooth. The exat solution satis�es the reursion
ũn+1 = ehAũn + hϕ1(hA)g(tn, ũn)

+ h2ϕ2(hA)
(
gt(tn, ũn) + gu(tn, ũn)(Aũn + g(tn, ũn))

)
+ δn+1,

(19)where
δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)
d2g

dt2
(
t, u(t)

)∣∣
t=tn+ξ

dξ dτ. (20)Let en = un − ũn. Taking the di�erene of (18) and (19) gives the errorreursion
en+1 = ehAen + hϕ1(hA)

(
g(tn, un) − g(tn, ũn)

)

+ h2ϕ2(hA)
(
gt(tn, un) − gt(tn, ũn)

)

+ h2ϕ2(hA)gu(tn, un)
(
Aen + g(tn, un) − g(tn, ũn)

)

+ h2ϕ2(hA)
(
gu(tn, un) − gu(tn, ũn)

)
u′(tn) − δn+1

(21)whih we have to solve. As g is smooth, we an bound the di�erenes of
g, and of its derivatives, respetively, by Lipshitz onditions. In order toadequately treat the term Aen whih appears on the right-hand side of (21),we premultiply the whole reursion by hA and use the reurrene relation (11)of the ϕ-funtions. This gives a oupled system of reursions that an be1The sheme with p = 1 is the well-known exponential Euler method. It was analyzedin [7℄. 7



easily solved with the help of a standard Gronwall lemma. One �nally obtainsthe estimate
‖en‖ + h‖Aen‖ ≤ C

n∑

j=1

(
‖e(n−j)hAδj‖ + h‖Ae(n−j)hAδj‖

) (22)with a onstant C that is independent of the norm of A.Theorem 3. Let the inhomogeneity ψ(t) = g(t, u(t)) in (3) be twie di�er-entiable and ψ′′ ∈ L1(0, T ). Then, the exponential Taylor method (18) isseond order onvergent.Proof. Inserting the defets (20) into the estimate (22) and integrating oneby parts yields the desired result.The above proof also shows that the sheme (18) is stable with respetto perturbations. Let
ûn+1 = ehAûn + hϕ1(hA)g(tn, ûn)

+ h2ϕ2(hA)
(
gt(tn, ûn) + gu(tn, ûn)(Aûn + g(tn, ûn))

)
+ θn+1

(23)denote the perturbed sheme with perturbations θn+1. In the same way asabove we get
‖un − ûn‖ ≤ C

n∑

j=1

(
‖e(n−j)hAθj‖ + h‖Ae(n−j)hAθj‖

) (24)whih an simply be estimated by
‖un − ûn‖ ≤ Cn(1 + h‖A‖) max

1≤j≤n
‖θj‖. (25)Better estimates are possible if A or parts of it ommute with gu. We omitthe details.Exponential Taylor methods with p ≥ 3, however, are inherently unstablefor sti� problems. This is already obvious from the linear problem

u′(t) = Au(t) + u(t)for whih the exponential Taylor method with p = 3 reads
un+1 = ehAun + hϕ1(hA)un + h2ϕ2(hA)(A+ I)un + h3ϕ3(hA)(A+ I)2un.This reursion ontains the term

hϕ3(hA)(hA)2whih will give rise to exponential instabilities, see also setion 5.8



3.3. A linearized shemeThe analysis of the previous paragraph limits the order of stable exponen-tial Taylor methods to two. For linearized shemes, however, order threeis possible, as will be shown now. For notational simpliity, we restrit thepresentation here to autonomous problems
u′(t) = Au(t) + g(u(t)), u(t0) = u0, (26)where we denote again the right-hand side by f(u(t)) for short. Given thenumerial approximation un at time tn, we linearize the di�erential equationat this state. This yields
v′(t) = Jnv(t) + gn(v(t)), v(tn) = un, (27)where Jn denotes the Fréhet derivative of f and gn the remainder, i.e.

Jn = f ′(un) = A+ g′(un),

gn(u) = f(u) − Jnu = g(u) − g′(un)u.Applying an exponential Taylor method to (27) yields a so-alled linearizedexponential Taylor method. Linearized exponential integrators were �rstproposed by Pope [8℄, see also [9, 7℄. By onstrution, the remainder in (27)satis�es
g′n(un) = 0.Therefore, the linearized exponential Taylor sheme for p = 3 has the form2

un+1 = ehJnun + hϕ1(hJn)gn(un)

+ h3ϕ3(hJn)g′′(un)
(
Jnun + gn(un), Jnun + gn(un)

)

= un + hϕ1(hJn)f(un) + h3ϕ3(hJn)f ′′(un)
(
f(un), f(un)

)
.

(28)For p ≥ 4 and h‖A‖ large the shemes are unstable. In order to show that(28) is indeed a third order method we proeed as in setion 3.2. The exatsolution ũn = u(tn) satis�es the reursion
ũn+1 = eh eJn ũn + hϕ1(hJ̃n)g̃n(ũn)

+ h3ϕ3(hJ̃n)g′′(ũn)
(
J̃nũn + g̃n(ũn), J̃nũn + g̃n(ũn)

)
+ δn+1,

(29)where
J̃n = f ′(u(tn)), g̃n(u) = f(u) − J̃nu2For p = 1 and p = 2, the method redues to the exponential Rosenbrok�Euler method,whih is of order two (see [7℄). 9



and
δn+1 =

∫ h

0

e(h−τ)A

∫ τ

0

(τ − ξ)2

2

d3g̃n

dt3
(
u(t)

)∣∣
t=tn+ξ

dξ dτ. (30)Let en = un − u(tn). In order to solve the error reursion, we need thefollowing lemma.Lemma 4. Under the above assumptions, the following estimates hold
‖J̃n+1 − J̃n‖ ≤ Ch, (31a)
‖Jn+1 − Jn‖ ≤ C(h+ ‖en‖ + ‖en+1‖), (31b)

‖ehJn − eh eJn‖ ≤ Ch‖en‖, (31)
‖ϕk(hJn) − ϕk(hJ̃n)‖ ≤ Ch‖en‖, k ≥ 1, (31d)

‖gn(un) − g̃n(ũn)‖ ≤ C‖en‖. (31e)Proof. The estimates (31a) and (31b) follow from the smoothness of the exatsolution and the Lipshitz ondition on g. The bound (31) follows from thedi�erential equation
v′(t) = hJnv(t) = hJ̃nv(t) + h(Jn − J̃n)v(t), v(0) = Iwith solution
v(1) = ehJn = eh eJn + h

∫ 1

0

e(1−τ)h eJn(Jn − J̃n)eτhJn dτ.The bound (31d) follows in a similar way by taking into aount that ϕk(hJ)is the solution of the di�erential equation
v′(t) = Jv(t) +

tk−1

(k − 1)!
I, v(0) = 0at t = 1. The last bound is a onsequene of

gn(un) = g(un) − g′(un)un, g̃n(ũn) = g(ũn) − g′(ũn)ũnand the Lipshitz onditions on g and g′.We are now in the position to state the following onvergene result.Theorem 5. Let the inhomogeneity ψ(t) = g(u(t)) in (26) be three timesdi�erentiable with ψ′′′ ∈ L1(0, T ). Then, the exponential Taylor method (28)is onvergent of order three, i.e.
‖un − u(tn)‖ ≤ Ch3with a onstant C that is uniform on ompat intervals 0 ≤ nh ≤ T .10



Proof. The proof is straightforward and arried out in a similar way as thatof Theorem 3. The fat that the numerial and the exat solution involvedi�erent matries Jn and J̃n makes the proof, however, tedious. For instane,the term
ehJnun − eh eJnũn = ehJnen +

(
ehJn − eh eJn

)
ũn,whih is part of the error reursion, beomes after multipliation with Jn+1and J̃n+1, respetively

Jn+1e
hJnun − J̃n+1e

h eJn ũn =
(
Jn+1 − J̃n+1

)
ehJnun + J̃n+1

(
ehJnun − eh eJn ũn

)
.Further, we have

J̃n+1

(
ehJnun − eh eJnũn

)
=

(
J̃n+1 − J̃n

)(
ehJnun − eh eJnũn

)

+ (J̃n − Jn)e
hJnun + ehJnJnun − eh eJn J̃nũnand it remains to rewrite

ehJnJnun − eh eJnJ̃nũn = ehJn(Jnun − J̃nũn) +
(
ehJnun − eh eJn

)
J̃nũn.All these terms are now appropriately bounded with the help of Lemma 4.The remaining terms in the reursion are treated in a similar way and leftas an exerise. The required stability bounds for the produts ehJn · · · ehJℓ ,

ℓ ≤ n are given in [9℄.4. ImplementationThe implementation of exponential Taylor methods essentially onsists of twoparts: the omputation of the derivatives wi (8), and the approximation of thematrix exponential times a vetor (13). In this setion e�ient methods forboth parts are provided, and a standard step size ontrol sheme is desribed.For omputing the vetors wi only the semilinear ase is onsidered as thelinear ase (16) is trivial.4.1. Computation of the derivatives for semilinear problemsUsing ideas of automati di�erentiation (AD), the omputation of the deriva-tives wi for semilinear equations is straightforward. For the implementationof Taylor methods AD was already onsidered in [2, 5℄; an extensive disus-sion of the AD paradigm an be found in [3℄.For the purpose of this artile the following reursion proved useful. Itwas derived using the hain rule and is easy to implement for the equations11



onsidered. For the autonomous problem (26), the vetors wi of the expo-nential Taylor method (9b) are given by
w1 = f (0)

w2 = J (0)f (0)

i ≥ 2






f (i−1) = Af (i−2) + wi

wi+1 =
i−1∑
k=0

(
i−1
k

)
J (i−1−k)f (k),where

f (k) =
dk

dtk
f(u(t))

∣∣
u=un

and J (k) =
dk

dtk
g′(u(t))

∣∣
u=un

.A similar reursion holds for the linearized sheme (27).4.2. Computation of the matrix exponential times a vetorFor sparse matries, methods that employ matrix times vetor multipliationsgive e�ient means for evaluating the ation of a matrix funtion on a vetor.For approximating the produt (13) we use Krylov methods.Krylov subspae methods are based on the idea of projeting the largeproblem onto a lower-dimensional Krylov subspae Kk(A, b), whih is de�nedfor a matrix A ∈ R
d×d and a vetor b ∈ R

d by
Kk(A, b) = span{b, Ab, A2b, ..., Ak−1b}.The well-known Arnoldi iteration performs the Gram�Shmidt orthogonal-ization for this basis and gives as a result an orthonormal matrix Vk ∈ R

d×kand a Hessenberg matrix Hk = V T

k AVk ∈ R
k×k, whih represents the ationof A in the subspae Kk(A, b). If A is symmetri, Hk is tridiagonal and weget the Lanzos iteration. The produt eAb is then approximated by

eAb ≈ Vke
HkV T

k b = ‖b‖2Vke
Hke1. (32)The exponential of the smaller matrix Hk an be omputed in MATLABby the expm funtion whih uses the diagonal Padé approximant ombinedwith saling and squaring [10℄.The onvergene of the Krylov approximation (32) generally depends onthe �eld of values of the matrix [11℄. Although the �eld of values of the aug-mented matrix (12) may be onsiderably larger than that of A, numeriallythe onvergene is found satisfying. We note that the spetrum satis�es therelation spe (Ã) = spe (A) ∪ {0}. 12



To illustrate the good onvergene behavior of the Arnoldi iteration whenapplied to the augmented matrix, we onsider a �nite di�erene spatial dis-retization of the semilinear problem
∂tu = ∂xxu+ u(1 − u), x ∈

[
−5

2
, 5

2

]
,subjet to periodi boundary onditions, and with initial value

u0(x) = e−10x2

.The number of spatial disretization points is 500, the time step h is hosensuh that ‖hA‖2 ≈ 80, where A is the disretized Laplaian. The augmentedmatrix Ã is formed for the exponential Taylor method with p = 5 and reur-sions (8) at t = 0. The quantities v0 and W are as in (12). In this exampleit holds ‖hW‖2 ≈ 2.7 · 105.In Figure 1 (left) the solid line depits the error of the Lanzos approx-imation ‖ehAu0 − Vke
HkV T

k b‖2, and the dashed line the orresponding errorfor the produt eh eAv0 using the Arnoldi iteration. We note that as A is sym-metri, the Lanzos approximation for ehAu0 onverges fast, and thus theonvergene for eh eAv0 is also very satisfatory.As noted by Al-Mohy and Higham [1℄, the relation (13) an be equiva-lently expressed as
[
Id 0

]
exp

(
h

[
A W
0 J

]) [
u0

ep

]
=

[
Id 0

]
exp

(
h

[
A ηW
0 J

])[
u0

η−1ep

]
,where η ∈ R. This is easy to see from the proof of Lemma 1. In double prei-sion arithmeti, however, the hoie of η an be seen to a�et the numerialstability of the Krylov iteration. Figure 1 (right) depits the onvergene ofthe Krylov approximation of eh eAv0 for several hoies of η. Here, the ex-ponential of hHk was simply omputed by MATLAB's expm funtion. Thequantities Ã, v0 and h are hosen as above.4.3. Loal error and step size ontrolAn error ontrol for the exponential Taylor integrator

u
[p]
1 = ehAu0 +

p∑

k=1

hkϕk(hA)wkan be obtained from the last term of the sum, sine for small h we mayapproximate
‖u(t0 + h) − u

[p−1]
1 ‖2 ≈ ‖u[p]

1 − u
[p−1]
1 ‖2 = ‖hpϕp(hA)wp‖2.13
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η=1e-5

η=1

η=1e5Figure 1: The errors of the Krylov approximations vs. the dimension of the Krylov sub-spae (left); the in�uene of the saling parameter η (right).Setting Ŵ = [wp, 0, . . . , 0] ∈ R
d×p and

Â =

[
A Ŵ
0 J

]
∈ R

(d+p)×(d+p),we get [
Id 0

]
eh bAed+p = hpϕp(hA)wp.So this term an be omputed by one matrix exponential.For the step size ontrol a standard algorithm as desribed in [12℄ isimplemented. The loal error v = hpϕp(hA)wp is measured in the weightedand saled norm

‖v‖E =

√√√√1

d

d∑

i=1

(
visali )2

, sali = atol+ rtol · max(|un,i| , |un+1,i|),where the time step is aepted whenever ‖v‖E ≤ 1.The new step size is omputed both after aepted and rejeted steps by
hnew = hmin

{
νmax,max

{
νmin, ν‖v‖−1/p

E

}}
,where the values νmax = 1.5, νmin = 0.5, and ν = 0.85 are used.

14



5. A simple test equation and aumulation of the loal errorsTo illustrate the instabilities of exponential Taylor methods for p ≥ 3 (and
p ≥ 4 for the linearized sheme) we onsider a simple one-dimensional partialdi�erential equation

∂tu = ∂xxu+ γu(1 − u), x ∈
[
−5

2
, 5

2

]
, (33)subjet to periodi boundary onditions, and with initial value

u(x, 0) = e−10x2

.We hoose γ = 10 and disretize (33) in spae using standard �nite di�er-enes, whih gives for the linear part the disretized Laplaian
A =

1

(∆x)2




−2 1 1
1 −2 1. . . . . . . . .

1 −2 1
1 1 −2



, (34)where ∆x = L/d. As we know, A has its eigenvalues on the negative realaxis, the smallest satisfying λmin ≈ −4/(∆x)2. As a result of this spatialdisretization we get the semilinear problem

u′(t) = Au(t) + g(u(t)), u(0) = u0.When applying the non-linearized sheme, we see from the expressions (8)that the term wp ontains the highest powers of A, namely g′(un)Ap−1un.Using the rough approximation
|g′(u)| = γ|1 − 2u| ≈ γwe �nd that the stability of the exponential Taylor sheme is governed bythe fator ∣∣γhpϕp(hλmin)λ

p−1
min

∣∣whih has to be power-bounded, i.e.
γhpϕp(hλmin) |λmin|p−1 ≤ 1. (35)This (approximate) stability ondition for high order exponential Taylormethods restrits the step sizes for stable omputations.15



p d = 500 d = 10003 1.4E-2 / 1.5E-2 8.6E-3 / 8.5E-34 3.7E-3 / 3.3E-3 1.9E-3 / 1.6E-35 1.8E-3 / 1.6E-3 7.9E-4 / 5.9E-4Table 1: Step sizes determined by ondition (35) (left olumn) vs. experimentally observedmaximal step sizes for stable omputations (right olumn) for exponential Taylor methodsof (lassial) order p and d = 500 and 1000 spatial disretization points, respetively.Table 1 gives a omparison of the step sizes omputed from ondition (35)with numerially observed maximal step sizes for stable omputations, re-spetively. The results show one more that instabilities our for p ≥ 3. Fig-ure 2 shows an exponential growth of the 2-norms of the terms hkϕk(hA)wkfor step sizes slightly beyond the stability limit.When applying the linearized sheme of order p, we have g′n(un) = 0.Therefore, the term (p − 1)g′′(un)(u
(p−2)
n , u′n) is expeted to start growing�rst. Now g′′(u) = −2γ, and based on numerial experiments we approximate

u′n = f(un) ≈ 1. Then, similarly as above, we derive an approximate stabilityondition
2(p− 1)γhpϕ(hλmin) |λmin|p−2 ≤ 1. (36)
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Figure 2: 2-norms of the terms hkϕk(hA)wk as a funtion of time for the exponentialTaylor methods with p = 3 (left) and p = 5 (right), respetively. The experiment wasarried out with d = 1000, and the step sizes were h = 1.3 · 10−3 (left) and h = 1.8 · 10−4(right).
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p n = 500 n = 10004 1.7E-2 / 1.6E-2 10.0E-3 / 8.0E-35 3.1E-3 / 3.1E-3 2.2E-3 / 1.6E-36 1.1E-3 / 1.3E-3 8.9E-4 / 6.8E-4Table 2: Step sizes determined by ondition (36) (left olumn) vs. experimentally observedmaximal step sizes for stable omputations (right olumn) for linearized exponential Tay-lor methods of (lassial) order p and d = 500 and 1000 spatial disretization points,respetively.In ontrast to ondition (35), it ontains one power of |λmin| less. Ta-ble 2 gives again a omparison of the step sizes omputed from ondition(36) with numerially observed maximal step sizes for stable omputations,respetively. We see that the methods are unstable for p ≥ 4. Figure 3 showsan exponential growth of the 2-norms of the terms hkϕk(hJn)wk for step sizesslightly beyond the stability limit.
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Figure 3: 2-norms of the terms hkϕk(hJn)wk as a funtion of time for the linearized expo-nential Taylor methods with p = 4 (left) and p = 5 (right), respetively. The experimentwas arried out with d = 500, and the step sizes were h = 1.7 ·10−2 (left) and h = 3.3 ·10−3(right).6. Aumulation of round-o� errorsWhen applying the non-linearized integrator (with p = 6) to the test equa-tion (33) with step size h = 10−4, we �nd that the higher order terms wi arestrongly a�eted by round-o� errors (see Figure 4). Due to the smoothing17
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Figure 4: Left: 2-norm of the terms hkϕk(hA)wk with h = 10−4 as a funtion of time for
k = 5 and k = 6. Right: the term w4 at time t = 1.property of the equation, however, the round-o� errors settle in a neighbor-hood of the solution and will not amplify before ondition (35) is violated.To observe the ampli�ation of the round-o� errors numerially, we applythe method to a hyperboli equation, the nonlinear Shrödinger equationi∂tψ = −∆ψ − |ψ|2 ψ, x ∈ [−π, π], (37)subjet to periodi boundary onditions. As initial value we take

ψ(x, 0) = ψ0(x) =
1 + i

1 + sin2 x
. (38)The spatial disretization is performed with entral di�erenes, the disretizedLaplaian A is again given by (34). The disretization of the initial valuegives a perturbed vetor

ψ̃0 = ψ0 + ε,where ε ∈ R
d is the round-o� error. It is observed numerially that theseerrors are approximately normally distributed, see Figure 5.
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Figure 5: Histogram of the round-o� errors εi, i = 1, . . . , d in single preision arithmetifor d = 1200 and d = 12000 disretization points, respetively. The orresponding normaldistributions are �tted with MATLAB's histfit ommand.This experiment justi�es the assumption that the elements of ε are nor-mally distributed, i.e., for all 1 ≤ i ≤ d

εi ∼ N (0, σ2) i.i.d.The assumption that the round-o� errors are statistial variables was alreadyused, for example, in [13℄. A disussion inluding several referenes an befound in [14℄.If A arises from the Laplaian with periodi boundary onditions, we seethat
[Aε]i =

εi−1 − 2εi + εi+1

(∆x)2
∼ N

(
0, 6σ2(∆x)−4

)
,where the indies are taken modulo d. Sine

(∆x)4‖Aε‖2
2 =

d∑

i=1

(
6ε2

i + εi−1εi+1 − 4εiεi+1

)
,the expetation values satisfy E(ε2

i ) = σ2 and the variables εi are assumedto be independent, we get
E(‖Aε‖2

2) =
6dσ2

(∆x)4
,and further

E (‖Aε‖2
2)

E(‖ε‖2
2)

=
6

(∆x)4
.19
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Figure 6: 2-norms of the terms hkϕk(hA)wk when using the exponential Taylor methodwith p = 6 and d = 1200 disretization points. Left �gure: α ≈ 0.8 (h = 3.4 · 10−5); right�gure: α ≈ 1.0 (h = 4 · 10−5).Let
α =

√
6h

(∆x)2
.Figure 6 shows the evolution of the 2-norms of the terms hkϕk(hA)wk for

k = 4, 5, 6 when using the 6th order sheme for equation (37) with d = 1200.The �gure indiates that the growth of the round-o� errors starts alreadynear α = 1.7. A linear example with inhomogeneityTo illustrate the favorable properties of exponential Taylor methods when ap-plied to equations with linear inhomogeneities, we onsider a �nite di�erenespatial disretization (with 500 points)
∂tu = ∂xxu+ 10 e−10tx(1 − x), x ∈ [0, 1], t ∈ [0, 0.1]

u(x, 0) = 16x2(1 − x)2,

u(0, t) = u(1, t) = 0.

(39)As expeted, no instabilities our in the linear ase. Using the step sizeontrol as desribed in hapter 4, we �nd that the method with p = 5 is ableto take larger step sizes than the standard impliit integrators ode15s andode23s of MATLAB. Figure 7 shows the resulting step size sequenes whenrequiring a relative error 10−7 at time t = 0.1. The methods take 11, 14820



and 868 steps, respetively. To enhane the performane of the MATLABintegrators, a funtion handle is provided to evaluate the linear part.
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