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Abstract

For the time integration of semilinear systems of differential equations, a class
of multiderivative exponential integrators is considered. The methods are
based on a Taylor series expansion of the semilinearity about the numerical
solution, the required derivatives are computed by automatic differentiation.
Inserting these derivatives into the variation-of-constants formula results in
an exponential integrator which requires the action of the exponential of an
augmented Jacobian only.

The convergence properties of such exponential integrators are analyzed,
and potential sources of numerical instabilities are identified. In particular, it
is shown that local linearization gives rise to better stability for stiff problems.
A number of numerical experiments illustrate the theoretical results.
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1. Introduction

In this paper we are concerned with the numerical analysis of multiderivative
exponential integrators for stiff problems. In particular, we consider methods
for the solution of semilinear systems of initial value problems

u'(t) = Au(t) + g(t, u(t)), u(ty) = up. (1)
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In contrast to standard methods, exponential integrators are based on the
mild solution (variation-of-constants formula)

¢
u(t) = et Ay, + / DA (1, u(r)) dr. (2)

to

The idea behind exponential Taylor methods is to replace the nonlinearity
g(7,u(7)) in (2) by its Taylor polynomial at 7 = ¢, and to compute the
integrals exactly. This procedure defines a numerical scheme that makes
explicit use of certain derivatives of the nonlinearity.

Exponential Taylor methods were recently proposed in a paper by Al-
Mohy and Higham [1]. The computational attractiveness of these methods
comes from the fact that one time step can be computed by the action of a
single exponential matrix of an augmented Jacobian of the right-hand side
of (1). The required derivatives can be computed by standard automatic
differentiation, see |2, Sect. [.8] and [3]. For non-stiff problems, such Taylor
methods are well understood, see [2, 4]. A possible extension to stiff problems
is described in [5]. Here, we analyze an exponential version of such methods
for stiff problems.

In section 2 we derive the class of exponential Taylor methods and recall
its possible numerical implementation from [1]. The stability and convergence
properties of these methods are analyzed in section 3. In contrast to the
linear problem, where methods of arbitrary high order exist, the situation
is more involved for semilinear problems. It is shown that the exponential
Taylor method of classical order two is indeed second order convergent for
stiff problems; higher order methods, however, suffer from instabilities when
applied to stiff problems. For methods that linearize the vector field in each
step, the situation is slightly more favorable. It is shown that linearized
exponential Taylor methods up to order three do not suffer from instabilities.
The efficient implementation of exponential Taylor integrators is addressed
in section 4.

The remaining sections are devoted to numerical experiments. Section 5
illustrates the instabilities that are inherent in high order exponential Taylor
methods when applied to semilinear stiff problems. Section 6 shows how
the instabilities are triggered by round-off errors near the stability border.
Finally, in section 7, the numerical efficiency of exponential Taylor methods
for linear problems is demonstrated by a comparison with standard MATLAB
integrators.



2. Exponential Taylor methods

For the time integration of semilinear systems of stiff differential equations

u'(t) = f(tu(®), ulto) = uo, (3a)

with
[t u(t) = Au(t) + g(t, u(t)) (3b)

we consider exponential integrators. Our focus will be on equations that arise
from spatial semidiscretization of partial differential equations of evolution-
ary type. In the above problem A denotes a real d x d matrix (with d large),
and ¢ is a nonlinear function with a moderate Lipschitz constant.

Exponential integrators propagate the linear part A of (3) exactly and
can be constructed with the help of the variation-of-constants formula

t
u(t) = el =104y, + / M Ag(r, u(r)) dr. (4)

to

The simplest method is obtained by replacing the nonlinearity with the

known value g(ty, uo), giving the exponential Euler method
Uy = ehAuo + thl(hA)g(to, Uo)

= ug + hp1(hA) f(to, up), )

where h denotes the step size, u; is the numerical approximation to u(ty+h),
and ¢, is the entire function

Higher order exponential multistep methods are obtained in a similar way by
replacing the nonlinearity in (4) by an appropriate interpolation polynomial,
see [6]. The construction of high order exponential Runge-Kutta methods,
however, is more involved, see [7].

Here, we consider one-step methods that are based on the Taylor expan-
sion of the nonlinear term ¢(7,u(7)). For its construction, we replace the
nonlinearity in (4) by its Taylor polynomial of degree p — 1

iy T — t() k
= S gttt (6)
k=0

In order to obtain a numerical scheme, we still have to approximate the
derivatives of g by known quantities. For linear problems where g does



not depend on u, this is a straightforward task. Otherwise, we invoke the

differential equation and the chain rule to get the required approximations.

For notational simplicity, we illustrate this process for autonomous prob-
lems where g = g(u). Using the chain rule, we get for p =5

o) = o (u)u

d2 _ " / / / "

() = g (W) (W) + ¢’ (W

d3
@g(u) _ g///(u) (u/7 u/) u/) + 3g//(u)(u//7 u/) + g/(u)u///
d4

_g(u) _ g(4) (’LL)(’LL/, ’LL/, ’LL/, u/) + 69”’(’&)(’&”, u/’ ’LL/)

dtt
+3¢" () (", u") + 49" () (u", ') + ' (w)u'.

Using the differential equation, we define recursively

u(()k) = Au(()k_l) +w,, k>1

and
wy = g(uo)
wy = g (uo)ug
w3 = g" (ug) (ug, uy) + g'(uo)ug
" (8)

ws = g" (uo) (ug, ug, up) + 39" (o) (ug, ug) + g’ (uo)ug
ws = g (uo) (up, upy, ug, up) + 69" (uo) (ug, ug, up) + 39" (o) (ug, ug)
o+ 4g" (uo) (g p) + ¢ (o) up”
Inserting the approximations

gt uo)],,

Wy ~

dtkfl 9

into (6), (4) and computing the arising integrals defines the numerical scheme

p
uy = e™ug + Z R* o (R A)wy, (9a)
k=1
p
= ug + b1 (hA) f (to, uo) + > hFpr(hA)wy, (9b)
k=2



which henceforth will be called the exponential Taylor method. Recall that
the entire functions

1 (1-0) ek—l
g —b)z >
i (2) /o e G do, k>1 (10)

satisfy the normalization ¢x(0) = 1/k! and the recurrence relation

ou(2) = u(0) :
)= S AEL ) =t (1)

As shown in |1, Thm. 2.1|, the series (9a) can be represented as the prod-
uct of the exponential of a (d + p) x (d + p) matrix and a vector. Therefore
an explicit computation of the actions of the operators pr(hA), k > 1, is
avoided, which makes the method computationally attractive. In the follow-

ing lemma we give an alternative proof for this result.

Lemma 1. Let A € R™ W = [wy, wy_1,...,w;] € R*P h € R and

A= [61 V}/] c R(Uler)X(oler)7 J = {8 Ipo—l] .= {UO] c R4tP (12)

1z

with e, = [0,...,0,1]7. Then the approzimation (9) is obtained from
Uy = [Id 0] ehgl)o. (13)

Proof. Using the integral equation (4) and the representation (10) of the
pr-functions, one easily sees that the approximation

P
a(t) = e"ug + Z tFop (tA)wy,
k=1

is the exact solution of the differential equation

- ~ ! -
u'(t) = Au(t) + wy + twe + ... + = 1)'wp, 1(0) = ug.
The coefficients of the inhomogeneity,
ti—l
i(t) = —, =1,
verify y1(t) = 0 and yj(t) = y;—; for i > 2. Thus the function
u(t)
t
v(t) = yp_( ) € R&P
(1)



satisfies the initial value problem

’ A w Y . Uo
o=y o=, w=|
with exact solution v(t) = e’ vo From this the claim follows. O

Remark. In the case of (9b), we get the approximation u; by replacing the
vectors wy by f(to,uo) and vy by eq4p, respectively. When f becomes small,
this approach is beneficial for the numerical approximation of the matrix
exponential.

3. Stability and convergence

In this section we analyze the convergence properties of exponential Taylor
methods for stiff problems. Let the involved matrix exponential satisfy the
bound

e ]| < Coe*t,  t>0 (14)

for some nonnegative constants Cy and w. It turns out that our convergence
bounds will only depend on these constants and not on the very form of A,
in particular not on its dimension d. This fact is important for applications
where A is a discretization of a spatial differential operator.

We further note for later use that (14) implies the bound

Cewt
linftA)ll < =,

This follows at once from the representation (10).

t>0. (15)

3.1. The linear case
Applied to the linear problem

u'(t) = Au(t) + g(t), u(to) = uo, to<t<T (16)

the exponential Taylor method assumes the form

Upig =" un+th (hA)g*V(t,), n>0. (17)
k=1
Its error €,41 = u,4+1 — u(t,41) satisfies the recursion

hA
€ntl1 = € €p — Opy1,

where

h T -1
[T [T )
5"“_/0 o /O gt O dedr,

This implies the following theorem whose proof is straightforward.



Theorem 2. Let the inhomogeneity g in (16) be p times differentiable with
g®) € LY(0,T). Then, the exponential Taylor method (17) is convergent of
order p. ]

We remark that this convergence result extends to variable step sizes in
an obvious way.

3.2. The semilinear case

Exponential Taylor methods for semilinear problems (3) possess an inherent
instability for p > 3, cf. our discussion below. Therefore, we consider here
only! the Taylor scheme with p = 2. It has the form

Unt1 = e, + ho1(hA)g(tn, u,)

+ h2902(hA) (gt(tna un) + gu(tm un)(Aun + g(tm u"))) (18)

Let w, = u(t,) denote the exact solution of (3). We assume that ¢ (t) =
g(t,u(t)) is sufficiently smooth. The exact solution satisfies the recursion

anJrl = ehAﬂn + hgpl(hA)g(tna ﬂn)

125 (0A) (G0t ) + Gl ) (ATl + 9t T))) + Ot )

where
h her)A T d29
Ont1 :/0 el /0 (T=O3n (t,u(®))] oy, 1 dEAT. (20)

Let e, = u, — u,. Taking the difference of (18) and (19) gives the error
recursion

eni1 = eMe, + hgol(hA)( (tn, un) — g(tn, ﬂn))
+ oo (hA) (gi(tn, tun) — gi(tn, Un))
+ 1203 (hA)gu(tn, un) (Aen + g(tn, un) = g(tn, Un))
+ B2 02 (hA) (gutns Un) — Gu(tn, Un) )0 (t0) — Gpn

(21)

which we have to solve. As ¢ is smooth, we can bound the differences of
g, and of its derivatives, respectively, by Lipschitz conditions. In order to
adequately treat the term Ae, which appears on the right-hand side of (21),
we premultiply the whole recursion by hA and use the recurrence relation (11)
of the ¢-functions. This gives a coupled system of recursions that can be

!The scheme with p = 1 is the well-known exponential Euler method. It was analyzed
in [7].



easily solved with the help of a standard Gronwall lemma. One finally obtains
the estimate

leall + hllAenll < € D7 (e M4g)(| 4 hll Ae™ =455 ) (22)
j=1
with a constant C' that is independent of the norm of A.

Theorem 3. Let the inhomogeneity ¥ (t) = g(t,u(t)) in (3) be twice differ-
entiable and " € LY(0,T). Then, the exponential Taylor method (18) is
second order convergent.

Proof. Inserting the defects (20) into the estimate (22) and integrating once
by parts yields the desired result. O

The above proof also shows that the scheme (18) is stable with respect
to perturbations. Let

Upy1 = ", + ho1(hA)g(tn, w,)
+ h2902(hA) (gt(tm an) + gu(tm an)(Aan + g(tm an))) + ‘9n+1

denote the perturbed scheme with perturbations 6,,.;. In the same way as
above we get

(23)

ltn = @l < © 3 (1o =465 + b Aet="46; ) (24)

j=1
which can simply be estimated by
[ttn = Un| < Cn(1 + R[|Al]) max [|6;]]. (25)
1<j<n
Better estimates are possible if A or parts of it commute with g,. We omit
the details.

Exponential Taylor methods with p > 3, however, are inherently unstable
for stiff problems. This is already obvious from the linear problem

u'(t) = Au(t) + u(t)
for which the exponential Taylor method with p = 3 reads
tngr = €My + hpr (hA)un + W2 @2(RA) (A + Dy + W2 p3(hA) (A + I)?uy.
This recursion contains the term
hips(hA)(hA)*

which will give rise to exponential instabilities, see also section 5.

8



3.3. A linearized scheme

The analysis of the previous paragraph limits the order of stable exponen-
tial Taylor methods to two. For linearized schemes, however, order three
is possible, as will be shown now. For notational simplicity, we restrict the
presentation here to autonomous problems

u'(t) = Au(t) + g(u(t),  ulto) = uo, (26)

where we denote again the right-hand side by f(u(t)) for short. Given the
numerical approximation u,, at time t,, we linearize the differential equation
at this state. This yields

V() = Jo(t) + ga(v(t), v(t,) = un, (27)
where J,, denotes the Fréchet derivative of f and g, the remainder, i.e.

Sy = f/(un) = A+ gl(un)a
gn(u) = fu) = Jou = g(u) = g'(un)u.
Applying an exponential Taylor method to (27) yields a so-called linearized
exponential Taylor method. Linearized exponential integrators were first

proposed by Pope [8], see also |9, 7|. By construction, the remainder in (27)
satisfies

gn(u,) = 0.

Therefore, the linearized exponential Taylor scheme for p = 3 has the form?

Unt1 = ey + hpy (hdy) gn(un)
+ h3§03(th)g”(un) (Jnun + Gn(tn), Jpun + gn(un)) (28)
= up + hp1 () f(un) + h3903(hjn)f”(un) (f(un)a f(un))
For p > 4 and hl||A|| large the schemes are unstable. In order to show that

(28) is indeed a third order method we proceed as in section 3.2. The exact
solution @, = u(t,) satisfies the recursion

an-i—l - ethan + hgol(hj;l)gn(an) (29)
+ h3903(h<]n)g”(an) (Jnan + gn(an)a Jnan + gn(an)) + 5n+17

where

Jn = f(u(tn),  Gn(u) = f(u) = Jpu

2For p = 1 and p = 2, the method reduces to the exponential Rosenbrock-Euler method,
which is of order two (see [7]).



and

h T _£\2 d3~
5n+1 = /0 e(h_T)A /0 (7— 9 6) df;n (U(t)) }tzthr& df dr. (30)

Let e, = wu, — u(t,). In order to solve the error recursion, we need the
following lemma.

Lemma 4. Under the above assumptions, the following estimates hold

s = Jull < Ch, (31a)

[ Tss = Jull < C(h+ lleall + llentall), (31b)

le"" — e || < Chlleyl, (31¢)
lor(hdn) = pr(hT)| < Chllenll, k> 1, (31d)
19 (ttn) = Gu(@n) | < Cllen]|- (31e)

Proof. The estimates (31a) and (31b) follow from the smoothness of the exact
solution and the Lipschitz condition on g. The bound (31c) follows from the
differential equation

V' (t) = hJyo(t) = hJyo(t) + h(J, — J)o(t),  v(0) =1

with solution
_ 1 _ B
v(l) = ehdn — ehn 4 h/ e(l’T)hJ"(Jn — Jn)eThJ” dr.
0

The bound (31d) follows in a similar way by taking into account that ¢y (hJ)
is the solution of the differential equation

k—1

V'(t) = Ju(t) + m[,

v(0) =0
at t = 1. The last bound is a consequence of
gn(n) = g(un) — ¢ (Un)tin,  Gn(tn) = g(tn) — ¢'(Un)tn
and the Lipschitz conditions on ¢ and ¢'. O

We are now in the position to state the following convergence result.

Theorem 5. Let the inhomogeneity 1 (t) = g(u(t)) in (26) be three times
differentiable with ¢ € L*(0,T). Then, the exponential Taylor method (28)

s convergent of order three, i.e.
[un — u(t,)]| < ch’

with a constant C' that is uniform on compact intervals 0 < nh <T.

10



Proof. The proof is straightforward and carried out in a similar way as that
of Theorem 3. The fact that the numerical and the exact solution involve
different matrices J,, and J,, makes the proof, however, tedious. For instance,
the term B B

My, — ehng — eMne 4 (eh‘]" _ eh‘]”)ﬂn,

which is part of the error recursion, becomes after multiplication with J,,;,
and J,,1, respectively

hJ 7 hJp~ 7 hJ 7 hJ, hp~
Jnp1€" " Uy — Jp€" " Uy, = (Jn+1 — JnH)e "Wy + g1 (e Uy — € "un)

Further, we have

Jn-i—l (ehjnun - ehjnan) = (J'n—I—l - <7n) (ehjnun - ehjnan)

T hJn hdn hin T ~
+ (Jp — Jp)e" " uy, + e Jpuy, — et L,
and it remains to rewrite
e Ty, — e I, = e (T, — Jntin) + (eh‘]"un — eh‘]”)Jnﬂn.

All these terms are now appropriately bounded with the help of Lemma 4.
The remaining terms in the recursion are treated in a similar way and left
as an exercise. The required stability bounds for the products e/» .. .e"/t,
¢ < n are given in [9]. O

4. Implementation

The implementation of exponential Taylor methods essentially consists of two
parts: the computation of the derivatives w; (8), and the approximation of the
matrix exponential times a vector (13). In this section efficient methods for
both parts are provided, and a standard step size control scheme is described.
For computing the vectors w; only the semilinear case is considered as the
linear case (16) is trivial.

4.1. Computation of the derivatives for semilinear problems

Using ideas of automatic differentiation (AD), the computation of the deriva-
tives w; for semilinear equations is straightforward. For the implementation
of Taylor methods AD was already considered in [2, 5|; an extensive discus-
sion of the AD paradigm can be found in [3].

For the purpose of this article the following recursion proved useful. It
was derived using the chain rule and is easy to implement for the equations

11



considered. For the autonomous problem (26), the vectors w; of the expo-
nential Taylor method (9b) are given by

where
w _ & W= &
f® = @f(u(t))‘u:un and JY = dtkg (u(t))}u:un

A similar recursion holds for the linearized scheme (27).

4.2. Computation of the matriz exponential times a vector

For sparse matrices, methods that employ matrix times vector multiplications
give efficient means for evaluating the action of a matrix function on a vector.
For approximating the product (13) we use Krylov methods.

Krylov subspace methods are based on the idea of projecting the large
problem onto a lower-dimensional Krylov subspace ICi(A, b), which is defined
for a matrix A € R¥9 and a vector b € R? by

Ki(A,b) = span{b, Ab, A%, ..., A¥"1b}.

The well-known Arnoldi iteration performs the Gram—Schmidt orthogonal-
ization for this basis and gives as a result an orthonormal matrix V;, € R
and a Hessenberg matrix Hy = V,T AV, € R** which represents the action
of A in the subspace KCi(A,b). If A is symmetric, Hj, is tridiagonal and we
get the Lanczos iteration. The product e?b is then approximated by

eb =~ Ve V,Th = ||b]|oVieHre; . (32)

The exponential of the smaller matrix Hy can be computed in MATLAB
by the expm function which uses the diagonal Padé approximant combined
with scaling and squaring [10].

The convergence of the Krylov approximation (32) generally depends on
the field of values of the matrix [11]. Although the field of values of the aug-
mented matrix (12) may be considerably larger than that of A, numerically
the convergence is found satisfying. We note that the spectrum satisfies the

relation spec (A) = spec (A) U {0}.

12



To illustrate the good convergence behavior of the Arnoldi iteration when
applied to the augmented matrix, we consider a finite difference spatial dis-
cretization of the semilinear problem

Ou = Ogpu+u(l —u), x€ [—g, g},

subject to periodic boundary conditions, and with initial value

up(z) = e 107",

The number of spatial discretization points is 500, the time step h is chosen
such that ||hA||2 = 80, where A is the discretized Laplacian. The augmented
matrix A is formed for the exponential Taylor method with p = 5 and recur-
sions (8) at ¢ = 0. The quantities vy and W are as in (12). In this example
it holds ||AW ||y & 2.7 - 10°.

In Figure 1 (left) the solid line depicts the error of the Lanczos approx-
imation |[e"uy — Vie® V7|5, and the dashed line the corresponding error
for the product e"v, using the Arnoldi iteration. We note that as A is sym-
metric, the Lanczos approximation for e"4uy converges fast, and thus the
convergence for e, is also very satisfactory.

As noted by Al-Mohy and Higham [1], the relation (13) can be equiva-
lently expressed as

v o[t -t o (2 D

where n € R. This is easy to see from the proof of Lemma 1. In double preci-
sion arithmetic, however, the choice of 1 can be seen to affect the numerical
stability of the Krylov iteration. Figure 1 (right) depicts the convergence of
the Krylov approximation of e"4w, for several choices of 7. Here, the ex-
ponential of hHj was simply computed by MATLAB’s expm function. The
quantities A, vy and h are chosen as above.

4.8. Local error and step size control
An error control for the exponential Taylor integrator

p
u[lp] = ehyg + Z h* o (hA)wy,
k=1

can be obtained from the last term of the sum, since for small h we may
approximate

-1 -1
lu(to + k) — ulP ™y & [[ulf! — w7y = [P, (hA)w, |-

13
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Figure 1: The errors of the Krylov approximations vs. the dimension of the Krylov sub-
space (left); the influence of the scaling parameter 1 (right).

Setting W = [w,,0,...,0] € R*P and

~ (AW
A= R (d+p)x(d+p)
o ] ememe

we get ~
[I; 0] e"eqr, = WP (hA)w,.

So this term can be computed by one matrix exponential.

For the step size control a standard algorithm as described in [12] is
implemented. The local error v = hPp,(hA)w, is measured in the weighted
and scaled norm

d 2

1 v;

lv||le = y E (scail-) , scal; = atol + rtol - max (|| , [tns1.4l),
i=1 !

where the time step is accepted whenever ||v|g < 1.
The new step size is computed both after accepted and rejected steps by

sy = Poanin{ Vmas, maoc{ v, v 0] "7}

where the values vy, = 1.5, Vmin = 0.5, and v = 0.85 are used.

14



5. A simple test equation and accumulation of the local errors

To illustrate the instabilities of exponential Taylor methods for p > 3 (and
p > 4 for the linearized scheme) we consider a simple one-dimensional partial
differential equation

Y

Oy = O + yu(l — u), T € [—

Nt
Nt

Ik (33)
subject to periodic boundary conditions, and with initial value
u(z,0) = e~ 104",

We choose v = 10 and discretize (33) in space using standard finite differ-
ences, which gives for the linear part the discretized Laplacian

1
(Az)?

A= , (34)

where Az = L/d. As we know, A has its eigenvalues on the negative real
axis, the smallest satisfying Apnin &~ —4/(Az)?. As a result of this spatial
discretization we get the semilinear problem

' (t) = Au(t) + g(u(t)), u(0) = ug.

When applying the non-linearized scheme, we see from the expressions (8)
that the term w, contains the highest powers of A, namely ¢'(u,)AP u,.
Using the rough approximation

9" ()] =1 = 2u| = v

we find that the stability of the exponential Taylor scheme is governed by
the factor

min

’Pyhp(pp(h)\min))\pil

which has to be power-bounded, i.e.
ﬂ}/hp('pp(hf)\min) ’)\min’p_l < 1. (35)

This (approximate) stability condition for high order exponential Taylor
methods restricts the step sizes for stable computations.

15



d = 500 d = 1000
14E2 / 15E-2 8.6E-3 / 8.5E-3
3.7E-3 / 3.3E-3 1.9E-3 / 1.6E-3
1.8E-3 / 1.6BE-3 7.9E-4 / 5.9E-4

(SN NUL b

Table 1: Step sizes determined by condition (35) (left column) vs. experimentally observed
maximal step sizes for stable computations (right column) for exponential Taylor methods
of (classical) order p and d = 500 and 1000 spatial discretization points, respectively.

Table 1 gives a comparison of the step sizes computed from condition (35)
with numerically observed maximal step sizes for stable computations, re-
spectively. The results show once more that instabilities occur for p > 3. Fig-
ure 2 shows an exponential growth of the 2-norms of the terms h*p,(hA)wy
for step sizes slightly beyond the stability limit.

When applying the linearized scheme of order p, we have g/ (u,) = 0.

Therefore, the term (p — 1)g”(un)(u(p_2),u’) is expected to start growing

n

first. Now ¢”(u) = —27, and based on numerical experiments we approximate
/

u,, = f(u,) =~ 1. Then, similarly as above, we derive an approximate stability
condition
2(p — )yhPo(hAmin) ’)‘min’p_2 <L (36)
, [—k=1
10 -=--k=2
k=3
10°

0 0.1 0.2 0.3 0 0.05 0.1 0.15
time time

Figure 2: 2-norms of the terms hFgy(hA)wy as a function of time for the exponential
Taylor methods with p = 3 (left) and p = 5 (right), respectively. The experiment was
carried out with d = 1000, and the step sizes were h = 1.3 - 10~3 (left) and h = 1.8 - 10~*
(right).
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D n = 500 n = 1000

4 1.7E-2 / 1.6E-2 10.0E-3 / 8.0E-3
)
6

3.1E-3 / 3.1E-3 2.2E-3 / 1.6E-3
1.1E-3 / 1.3E-3  8.9E-4 / 6.8E-4

Table 2: Step sizes determined by condition (36) (left column) vs. experimentally observed
maximal step sizes for stable computations (right column) for linearized exponential Tay-
lor methods of (classical) order p and d = 500 and 1000 spatial discretization points,
respectively.

In contrast to condition (35), it contains one power of |Ann| less. Ta-
ble 2 gives again a comparison of the step sizes computed from condition
(36) with numerically observed maximal step sizes for stable computations,
respectively. We see that the methods are unstable for p > 4. Figure 3 shows
an exponential growth of the 2-norms of the terms hkgpk(th)wk for step sizes
slightly beyond the stability limit.

107

—k=1
---k=3
10° {1 k=4
107
E
o
T
~ 107
10°F el ___ _____
107 ‘
0 0.05 0.1

Figure 3: 2-norms of the terms hkcpk(th)wk as a function of time for the linearized expo-
nential Taylor methods with p = 4 (left) and p = 5 (right), respectively. The experiment
was carried out with d = 500, and the step sizes were h = 1.7-1072 (left) and h = 3.3-1073
(right).

6. Accumulation of round-off errors

When applying the non-linearized integrator (with p = 6) to the test equa-
tion (33) with step size h = 1074, we find that the higher order terms w; are
strongly affected by round-off errors (see Figure 4). Due to the smoothing
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Figure 4: Left: 2-norm of the terms h*py(hA)wy with h = 10~% as a function of time for
k=5 and k = 6. Right: the term wy at time ¢t = 1.

property of the equation, however, the round-off errors settle in a neighbor-

hood of the solution and will not amplify before condition (35) is violated.
To observe the amplification of the round-off errors numerically, we apply

the method to a hyperbolic equation, the nonlinear Schrédinger equation

10 = —Ay — [Y[*,  z€[-mm], (37)

subject to periodic boundary conditions. As initial value we take

b(z,0) = o) = —

L 38
1+sin’x ( )

The spatial discretization is performed with central differences, the discretized
Laplacian A is again given by (34). The discretization of the initial value
gives a perturbed vector

1;021/)0‘1‘5,

where € € R? is the round-off error. It is observed numerically that these
errors are approximately normally distributed, see Figure 5.
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Figure 5: Histogram of the round-off errors ¢;, ¢ = 1,...,d in single precision arithmetic

for d = 1200 and d = 12000 discretization points, respectively. The corresponding normal
distributions are fitted with MATLAB’s histfit command.

This experiment justifies the assumption that the elements of € are nor-
mally distributed, i.e., for all 1 <7 < d

g; ~ N(0,0%) iid.

The assumption that the round-off errors are statistical variables was already
used, for example, in [13]. A discussion including several references can be
found in [14].

If A arises from the Laplacian with periodic boundary conditions, we see
that

_ G —28itEi 2 4
[Ae]; = A ./\/(0,60 (Ax) ),

where the indices are taken modulo d. Since
d
(Az)*||Ae]l3 = Z(65? +€im18it1 — 4€igi41),
i=1

2

the expectation values satisfy E(¢?) = o2 and the variables ¢; are assumed

to be independent, we get
6do?
(Az)*

E(]|Az])3) =

and further )
E ([[Aell3) 6

E(llel3)  (Az)*
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Figure 6: 2-norms of the terms h* oy (hA)w;, when using the exponential Taylor method
with p = 6 and d = 1200 discretization points. Left figure: o ~ 0.8 (h = 3.4 -107°); right
figure: « ~ 1.0 (h =4-1075).

Let
V6h

o = W
Figure 6 shows the evolution of the 2-norms of the terms h*g(hA)wy, for
k =4,5,6 when using the 6th order scheme for equation (37) with d = 1200.
The figure indicates that the growth of the round-off errors starts already
near a = 1.

7. A linear example with inhomogeneity

To illustrate the favorable properties of exponential Taylor methods when ap-
plied to equations with linear inhomogeneities, we consider a finite difference
spatial discretization (with 500 points)

Ou = Oppu+10e V2(1 —2), x€]0,1], t€]0,0.1]
u(z,0) = 162%(1 — x)?, (39)
u(0,t) = u(l,t) = 0.

As expected, no instabilities occur in the linear case. Using the step size
control as described in chapter 4, we find that the method with p = 5 is able
to take larger step sizes than the standard implicit integrators ode15s and
ode23s of MATLAB. Figure 7 shows the resulting step size sequences when
requiring a relative error 1077 at time ¢ = 0.1. The methods take 11, 148
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and 868 steps, respectively. To enhance the performance of the MATLAB
integrators, a function handle is provided to evaluate the linear part.

step size

4 —Taylor p=5
i ---o0del5s
! == 0de23s
0 0.02 0.04 0.06 0.08
time

Figure 7: Step sizes taken by the exponential Taylor method with p = 5, odelbs and
ode23s, respectively, when applied to problem (39).
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