Time integrators for ODEs and PDEs and numerical linear algebra. More specifically
Exponential integrators
Krylov subspace methods for matrix functions: methods for structured matrices (e.g., Hamiltonian, symplectic), convergence analysis of the Krylov subspace approximations
Structure preserving integrators for Hamiltonian ODEs
Analysis of Krylov Subspace Approximation to Large Scale Differential Riccati Equations
A. Koskela and H. Mena
preprint (arXiv)
Krylov integrators for Hamiltonian systems
T. Eirola and A. Koskela
preprint (arXiv)
On a generalization of the Bessel function Neumann expansion
A. Koskela and E. Jarlebring
preprint (arXiv)
The infinite Arnoldi exponential integrator for linear inhomogeneous ODEs
A. Koskela and E. Jarlebring.
preprint (arXiv)
Disguised and new quasi-Newton methods for nonlinear eigenvalue problems
E. Jarlebring, A. Koskela, and G. Mele.
preprint (arXiv)
Accepted for publication in Numerical Algorithms.
Krylov approximation of ODEs with polynomial parameterization
A. Koskela, E. Jarlebring and M.E. Hochstenbach.
SIAM J. Matrix Anal. Appl. 37(2), 518-538, 2016.
preprint
Splitting methods for time integration of trajectories in combined electric and
magnetic fields.
C. Knapp, A. Kendl, A. Koskela, A. Ostermann.
Physical Review E 92, 063310, 2015.
DOI 10.1103/PhysRevE.92.063310
preprint
A moment-matching Arnoldi iteration for linear combinations of phi functions.
A. Koskela, A. Ostermann
SIAM J. Matrix Anal. & Appl. 35, 1344-1363, 2014.
DOI 10.1137/130945156
preprint
Artificial viscosity in comoving curvilinear coordinates:
towards a differential geometrically consistent implicit advection scheme.
H.Höller, A.Koskela, E.Dorfi, W.Benger
Computational Astrophysics and Cosmology 1, 1-11, 2014.
DOI: 10.1186/s40668-014-0002-6
article
Ethylene glycol revisited: Molecular
dynamics simulations and visualization of the liquid and its hydrogenbond
network.
A. Kaiser, O. Ismailovaa, A.Koskela, S.E. Huber, M. Ritter, B. Cosenza, W.
Benger, R. Nazmutdinov, M. Probst
Journal of Molecular Liquids 189, 20-29, 2013.
DOI:10.1016/j.molliq.2013.05.033
Exponential Taylor methods: analysis and implementation.
A.Koskela, A. Ostermann
Comput. Math. Appl. 65, 487-499, 2013.
DOI 10.1016/j.camwa.2012.06.004
preprint
Approximating the matrix exponential of an advection-diffusion
operator using the incomplete orthogonalization method.
A. Koskela
In: Numerical Mathematics and Advanced Applications-ENUMATH 2013.
Springer International Publishing, 2015. 345-353.
DOI 10.1007/978-3-319-10705-9__34
preprint
Damping optimization in vibrational systems based on amplitude.
J. Denissen, A. Koskela, H. Mena, Z. Tomljanović
Damping optimization in vibrational systems based on amplitude.
In: 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), 2014. 1222-1227.
ISBN: 978-90-367-6321-9
Investigation of the recombination of the retarded shell of "born-again" CSPNe by time-dependent radiative transfer models.
A. Koskela, S. Dalnodar, R. Kissmann, A. Reimer, A. Ostermann, S. Kimeswenger
In: Planetary Nebulae: An Eye to the Future, IAU Symposium No. 283, 2011
(A. Manchado, L. Stanghellini, and
D. Schönberner, eds.),
Proc. Int. Astron. Union, 7, S283, 412-413, 2012.
DOI 10.1017/S1743921312011684