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Petter Wirfält1, Guillaume Bouleux2, Magnus Jansson1, Petre Stoica3

1 ACCESS Linnaeus Center, Electrical Engineering/Signal Processing lab
KTH – Royal Institute of Technology, Sweden

2University of Lyon, University of Saint Etienne, LASPI, France
3Systems and Control Division, Uppsala University, Uppsala, Sweden

ABSTRACT

In certain frequency estimation applications one or more of the un-

derlying frequencies are known. For example, in rotary machines

the known frequency may be a strong network frequency masking

important closely spaced frequencies. Being able to include this in-

formation in the design of the estimator can be expected to improve

the performance when estimating such closely spaced frequencies.

We present a framework to include such prior information in a class

of subspace-based estimators. Through Monte Carlo simulations and

real-data applications we show the usefulness of our approach.

Index Terms— Frequency estimation; Parameter estimation;

Rotating machines; Failure analysis

1. INTRODUCTION

Frequency estimation is an important tool in a number of signal pro-

cessing applications, including radar, sonar, communications, etc.

Another application that the current article will look more closely at

is performance monitoring of rotating mechanical systems, and es-

pecially the diagnosis of faults in the motors of such systems. In all

of these situations we might have a priori known frequencies in the

signals we analyze, which in the case of an electric motor might cor-

respond to the supply frequency, known gear frequencies, etc. The

crucial point is that these frequencies do not carry any information

that we are interested in but might in fact degrade the estimation of

the unknown, interesting, frequencies.

A number of different methods have been proposed to tackle the

general sinusoids-in-noise estimation problem, but in this article we

focus on eigenanalysis-based methods such as [1], [2]. Not con-

sidered in the previous references is the ability to incorporate prior

knowledge of certain frequencies into the estimation of the remain-

ing frequencies. In [3], [4] some different approaches of doing so are

evaluated. Some of the approaches considered there use orthogonal

projections, which we explicitly want to avoid due to the inherent

information loss.

The diagnosis of rotating machines, and in particular broken ro-

tor bars in induction motors, is a widely researched area, see, e.g. [5]

for an overview of recent developments. Subspace techniques (MU-

SIC [6]) has previously been used in [7], [8], but DFT-methods still

appear to be the prevalent diagnostic tool in the literature [5]. Re-

cently a state-space model capturing physical parameters of the mo-

tor has been proposed in [9], where a motor failure can be detected

and diagnosed from estimated model parameters.

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC grant agreement #228044

In this paper we use the Prior knowLEDGE (PLEDGE) frame-

work of [10] in two existing frequency estimators [1], [2], [11], and

show the performance gains achieved by doing so. In addition, we

apply the proposed estimation method to real data for broken rotor

bar detection in an asynchronous induction motor; the objective of

that analysis is to estimate sideband frequencies to the network fre-

quency in order to diagnose the machine [12].

2. PROBLEM FORMULATION

The frequency estimation problem can be described as follows. We

observe N samples of a scalar valued complex signal y(t) according

to

y(t) =

d∑

k=1

αke
j(ωkt+φk) + n(t), t = 0, . . . , N − 1, (1)

in which, for sinusoid k, αk > 0 is a real valued amplitude, ωk ∈
[0, 2π) is the angular frequency and φk ∈ [0, 2π) is the phase at

t = 0. Further, αk and ωk are deterministic parameters, while φk is

assumed random with a uniform distribution over its possible values.

The number of sinusoids, d, present in the signal is assumed known,

and n(t) is a zero mean circular Gaussian random sequence inde-

pendent of φk for all k, with non-zero second order moment given

by

E[n(t)nc(τ)] = σ2δ(t, τ), (2)

where the superscript c denotes the complex conjugate and δ(t, τ) =
1 for t = τ and 0 otherwise. We additionally assume that a subset

of {ωi}
d
i=1 is known a priori.

3. ESTIMATOR IMPLEMENTATION

In this section we present the general idea of the estimators later on

evaluated. For more thorough explanations see [1], [11].

If we let

x(t) =
[
α1e

j(ω1t+φ1) · · · αde
j(ωdt+φd)

]T
, (3)

where the superscript T denotes the transpose, we can reformulate

the problem (1) into

y(t) = Ax(t) + n(t), t = 0, . . . , N −m (4)



in which we have defined y(t) =
[
y(t) · · · y(t+m− 1)

]T
,

A =








1 · · · 1
ejω1 · · · ejωd

...
...

ej(m−1)ω1 · · · ej(m−1)ωd







, (5)

m is a user parameter, and n(t) is defined similarly to y(t). Equation

(4) is the standard matrix formulation for one-dimensional data, see

e.g. [2]. From (3) it is clear that

P
△
= E [x(t)x∗(t)] =






α2
1 0

. . .

0 α2
d




 , (6)

where the superscript ∗ denotes the conjugate transpose. Then, from

(4), we find that

R
△
= E [y(t)y∗(t)] = APA

∗ + σ2
I (7)

which is the data covariance matrix. Next, we perform an eigende-

composition of R and let

Es =
[
s1 s2 · · · sd

]
, (8)

in which {si}
d
i=1 correspond to the eigenvectors associated with the

d largest eigenvalues {λi}
d
i=1 of R. With this definition of Es we

can use (7) to write

APA
∗
Es = EsΛ̃ (9)

where

Λ̃ =






λ1 − σ2 0

. . .

0 λd − σ2




 . (10)

Now we define

βk =
[
0 . . . 0
︸ ︷︷ ︸

k−1

b0 . . . bd 0 . . . 0
︸ ︷︷ ︸

m−d−k

]T
(11)

in which {bi} are the polynomial coefficients of

b0z
d + b1z

d−1 + . . .+ bd = b0

d∏

i=1

(z − ejωi), (12)

the roots of which correspond to the frequencies in (1). Defining

{bi} this way, it follows from (11) that A∗βk = 0, k = 1, . . . ,m−
d, and from (9), and the fact that A, P, and Es are all full rank, that

E∗
sβk = 0. This last equality can explicitly be written for all k as

(see e.g. [1])

Fb
△
=






















sc1,1 . . . sc1,d+1

...
...

scd,1 . . . scd,d+1

sc1,2 . . . sc1,d+2

...
...

sc1,m−d . . . sc1,m
...

...
...

scd,m−d . . . scd,m



























b0
...

bd




 = 0 (13)

where si,j is the jth element in si, and b =
[
b0 · · · bd

]T
. In

practice we can only use an estimate of (7),

R̂ =
1

N −m+ 1

N−m∑

t=0

y(t)y∗(t). (14)

We then find an estimate Ês of Es in (8) from R̂, and hence an

estimate F̂ of F; we can then write (13) estimated from data as

F̂b = µ, (15)

where we have accounted for the error in F̂ by introducing the resid-

ual vector µ. In [1], it is shown how to exploit the structure of F

and b in (13) to arrive at an estimator of b which is asymptotically

efficient. Having found b, one can find the sought frequencies from

(12).

The above estimator finds ω through the polynomial coefficients

b. The main idea of [10] was that a prior knowledge of some of the

frequencies ω is equivalent to knowing some factors of (12). This

knowledge can easily be exploited by factoring the polynomial (12)

according to

b0

d∏

i=1

(z − ejωi) = Pu(z)Pk(z), (16)

where Pk(z) = c0
∏dk

i=1(z − ejωk,i) is defined by the known fre-

quencies {ωk,i}
dk
i=1, and dk is the number of known frequencies.

Reverting to vector notation, we can write

b = Cb̃ (17)

where b̃ is the vector containing the polynomial coefficients of

Pu(z) corresponding to the unknown frequencies in (1), and C is

the matrix defined by

C
T =






c0 c1 . . . cdk 0

. . .
. . .

. . .

0 c0 c1 . . . cdk




 (18)

in which the coefficients {ci}
dk
i=0 are the coefficients of Pk(z). Us-

ing (17) we rewrite (15) as

F̂Cb̃ = µ. (19)

In a certain sense what we have done is to filter the data F̂ by C

in order to find a, presumably, more accurate b̃ which only depends

on the unknown frequencies. Thus we have integrated the prior fre-

quency knowledge into the data.

Note that re-writing (15) as in (19) is not limited to the estimator

developed in [1]. All estimators that use such a polynomial rooting

can be expected to benefit from using the proposed PLEDGE frame-

work: MODE [11] is such an example, where we have an expression

on the form of (15) but with a different definition of F; in [11] the

data has been weighted in a specific way as to achieve asymptotical

efficiency in the related direction of arrival-estimation scenario. We

examine the extension of MODE as well in the following sections.

4. SIMULATIONS

To study the practical performance improvements offered by the

method in Section 3 we perform numerical Monte Carlo simulations

in which ω =
[
2π0.5 2π0.52 2π0.56

]T
, where we consider
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Fig. 1. RMSE of estimates corresponding to ω1 = 2π0.5, vs. m.

2π0.52 to be known. The sinusoids are equally strong with an SNR

= 20dB, which we define as SNRk = α2
k/σ

2 for the kth sinusoid.

N = 30 samples according to (1) are created, on which the respec-

tive algorithms (see below) are allowed to operate. We repeat the

simulations 10000 times.

The implemented methods are: MODE as in [11]; ESPRIT (us-

ing a forward-backward averaging of data), see e.g. [1]; Markov [1],

[2]; and MODE and Markov modified according to Section 3 in this

paper, referred to as MODE PLEDGE and Markov PLEDGE.

In Fig. 1 we show the root mean squared error (RMSE) of the

estimates corresponding to ω1 = 2π0.5 as a function of m, the vec-

tor length in (4). The estimates pertaining to the second unknown

frequency follow the same pattern. For any value of m, Markov

PLEDGE produces significantly more accurate results than the other

methods. Since MODE is not specifically tailored for frequency es-

timation, it is not surprising that it gives worse results; however,

MODE PLEDGE is more accurate than the methods not utilizing

the prior information.

While the Esprit method is performing as well as the unmodified

Markov method, it is not compatible with the PLEDGE concept as

described in this paper, and we cannot inherently exploit the prior

knowledge. Due to its lower computational complexity, it is other-

wise an attractive estimator.

5. BROKEN ROTOR BAR DIAGNOSIS

We also apply the methodology described in this paper to real data

acquired from the current signal extracted from an induction motor.

In order to interpret the results, we give a brief background to the

problem; see e.g. [13], [9] for more details.

Here we are interested in defects of rotor bars, which can be

diagnosed by the slip speed of the motor. The slip speed is a measure

relating the rotation speed of the motor to the current fluctuations in

the stator; the stator is driving the motor rotation. The slip speed is

defined by

s =
vstat − vrot

vstat
, (20)

expressed in percent, where vrot is the actual speed and vstat the

oscillation frequency in the stator. For industrial induction motors,

the slip speed is typically between 1 and 2 %.

A useful indicator of broken rotor bars is based on sideband

components [12], [14] around the network frequency fNET. These

sidebands are located in the current spectrum at frequencies fB =
(1±2ks)fNET, where k assumes integer values. Since fNET is sig-

nificantly stronger than all other frequencies in the spectrum, it can

be expected to hamper the estimation of closely spaced frequencies;

the idea then is to utilize the knowledge of fNET, in order to detect

fB and thus to find s.

Comparing to, e.g., [7] the methods described herein produce

frequency estimates without any associated amplitude estimate. We

can however find estimates of the (complex) amplitudes based on

(4), with m = N , according to

x̂ = A
†
NyN (21)

where the subscript N denotes that we include all N data-points,

i.e. yN =
[
y(0) · · · y(N − 1)

]T
and AN defined accord-

ingly, cf. (5). Additionally, in (21) A
†
N denotes the Moore-Penrose

pseudo-inverse of AN . The amplitude corresponding to the esti-

mated frequency ωi can thus be found as αi = |x̂i|.

The data analyzed consisted of 1 · 105 samples acquired with a

sampling frequency of 10 kHz. For such data lengths, the DFT, with

proper windowing, can be expected to resolve and correctly diagnose

the side band frequencies. Thus we can use the DFT of the full data

set as a benchmark to compare against.

A more interesting scenario is when fewer data points are avail-

able; hence, we use 5 · 103 data points, which we then down sample

by a factor of 40 producing N = 125 samples which we analyze

with the methods proposed in Section 3. The down sampling serves

two purposes: the subspace methods are more expensive to imple-

ment for large m, and it also narrows the frequency band within

which frequency estimates are found. Choosing the largest eigen-

values of R̂ suggests d = 5. Further, m = 62 (roughly N/2) is

chosen.

Fig. 2 shows several plots: “Reference DFT” is the DFT spec-

trum based on the entire dataset, which can be seen as a reference to

compare against. The proposed methods, utilizing the lesser amount

of data, are also shown together with the DFT spectrum based on the

reduced number of samples, “Data DFT”.

We can see in Fig. 2 that the estimates produced by the proposed

methods correspond to peaks in the reference spectrum. These es-

timated peaks match the theoretical expected values at f = (1 ±
ks)fNET for k = 1, which are the strongest side band frequen-

cies. Thus, both methods accurately detect the side band compo-

nents, which allows an estimate of the slip speed s. We can also see

that for the investigated data length, detection using the DFT-based

method is impossible due to the inherent low resolution of that ap-

proach.

In the studied case, it seems MODE PLEDGE gives about as

accurate predictions as Markov PLEDGE. Further studies are needed

in order to verify the theoretical accuracy-increase of Fig. 1.

6. CONCLUSIONS

In this paper we have shown how to incorporate prior information

into an existing class of subspace-based frequency estimators. In

the simulated data cases, significant gains can be achieved through

using a priori known frequency information. We also investigated

the estimator performance on real data and showed that the amount

of data needed to estimate relevant parameters based on frequency

spectra is reduced.
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Fig. 2. Estimated frequency content of the acquired motor current signal – proposed methods and “Data DFT” are using N = 5000 samples

sampled at 10 kHz, with m = 62, d = 5. The “Reference DFT” is using the entire data set consisting of 1 · 105 samples corresponding to 10
seconds. Comparing the proposed methods to the reference, we can see that the proposed methods successfully identify the frequency peaks

of interest.
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