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Abstract—Mix networks and anonymity networks provide
anonymous communication via relaying, which introduces over-
head and increases the end-to-end message delivery delay. In
practice overhead and delay must often be low, hence it is
important to understand how to optimize anonymity for limited
overhead and delay. In this work we address this question
under passive traffic analysis attacks, whose goal is to learn the
traffic matrix. For our study, we use two anonymity networks:
MCrowds, an extension of Crowds, which provides unbounded
communication delay and Minstrels, which provides bounded
communication delay. We derive exact and approximate analyti-
cal expressions for the relationship anonymity for these systems.
Using MCrowds and Minstrels we show that, contrary to intu-
ition, increased overhead does not always improve anonymity. We
investigate the impact of the system’s parameters on anonymity,
and the sensitivity of anonymity to the misestimation of the
number of attackers.

Index Terms—Relationship anonymity, communication over-
head, traffic analysis, Bayesian analysis.

I. INTRODUCTION

Many communication systems, for example modern indus-

trial networks [1], [2], require high availability between a

fixed set of nodes on a pairwise basis. The nodes can be the

subsidiaries of an enterprise connected by a virtual private

network over the public Internet, or they can be sensors,

actuators and operation centers in a wide area industrial control

system, e.g., in a supervisory control and data acquisition

(SCADA) network. Cryptography may provide authentication,

confidentiality and data integrity for the communication, but

source and destination addresses would still be visible to an

outside attacker who is able to observe one or more network

links. The outside attacker may identify traffic patterns: who is

communicating with whom, when and how often. Using this

information the attacker can infer the importance of messages,

and may perform targeted attacks on the communication

between any two nodes. These targeted attacks might be hard

to detect and can lead to incorrect system operation.

Mix networks [3] are a way to mitigate outside attacks

by providing relationship anonymity, i.e., by making it un-

traceable who communicates with whom [4]. Nodes in a mix

network relay and delay messages such that an outside attacker

cannot trace the route of the individual messages through the

mix. While relaying renders outside attacks more difficult, it

introduces the possibility of inside attacks. Due to the often

long life-cycles of industrial systems, software corruption is

a threat and the complexity of the code-base makes it hard

to detect. Corrupted nodes that are part of the mix network

can perform inside attacks to determine the sender-receiver

pair for messages that are relayed through them. Anonymity

networks can provide some level of relationship anonymity

against inside attackers (e.g., [5], [6]) by hiding the sender or

the receiver from the relay nodes. Good sender (or receiver)

anonymity in itself does not necessarily lead to good relation-

ship anonymity [8], hence we focus on relationship anonymity

in this paper.

The relationship anonymity provided by mix networks and

anonymity networks comes at the price of delay and commu-

nication overhead. Excessive delays can negatively impact the

system performance, while overhead leads to high resource

requirements, so that in practice both have to be kept low. At

the same time, the relationship anonymity may be a function

of the number of nodes in the system and the number of nodes

controlled by the attacker. Since the number of attacker nodes

is unknown, finding the optimal level of overhead can be a

challenging problem in practice.

In this paper we investigate the inherent trade-off between

the communication overhead introduced and the level of re-

lationship anonymity provided by anonymity networks. While

intuition says that increased overhead should result in better

anonymity, our results show that this is not necessarily the

case. The results also show that larger anonymity networks

provide better relationship anonymity for the same ratio of

attacker nodes. Moreover, we show that it is in general better

to overestimate the number of attacker nodes when choosing

the level of overhead.

We consider an attacker whose goal is to perform a traffic

analysis attack in order to determine the communication pat-

terns between a set of communicating nodes, i.e., to learn the

traffic matrix. We consider two methods for traffic analysis:

the Bayesian inference method and the Maximum posteriori
method. According to the Bayesian inference method the

attacker considers all pairs of nodes as possible sender-

receiver pairs for an intercepted message. According to the

Maximum posteriori method the attacker only considers the

most likely pairs of nodes as possible sender-receiver pairs

for an intercepted message.

For our study we use two anonymity networks that provide

relationship anonymity. First, MCrowds, a modification of

Crowds [6], which provides anonymity by introducing un-

bounded message delivery delay. MCrowds provides sender

anonymity using the same mechanism as Crowds, which



was shown to provide optimal sender anonymity for given

average path length [7]. Unlike Crowds, MCrowds hides the

receiver among a small subset of anonymity network nodes.

This modification possibly leads to lower sender anonymity

than in Crowds [7], but this way MCrowds allows us to

explore the best combination of sender and receiver anonymity

that provides optimal relationship anonymity. Second, Min-

strels, which provides relationship anonymity by introducing

bounded message delivery delay. Bounding the path length

is achieved by limiting the number of visited nodes for each

message.
Early works on traffic analysis attacks against anonymity

networks by an external global attacker considered long term

intersection attacks [8], [9], [10]. These attacks exploit the dis-

tribution of message destinations to decrease the relationship

anonymity by relying on cases when the sender’s anonymity

is not beyond suspicion, i.e., the sender is distinguishable from

other nodes. Disclosure attacks considered in [11] formulate

traffic analysis as an optimization problem, under more gen-

eral assumptions. More recent works have formulated traffic

analysis attacks by an external global adversary in the context

of Bayesian inference [8], [12], [13]. These attacks consider

that the receiver is outside the anonymity network. In our

system the sender and the receiver are part of the anonymity

network, and message destinations can have an arbitrary

distribution. We use Bayesian inference, but we consider

an internal adversary instead of an external global observer.

The relationship between anonymity and traffic overhead was

investigated in [15] for a global adversary. The authors con-

sidered an anonymity network in which routes have a fixed

length, and padding (i.e., dummy traffic) is sent over links to

hide traffic patterns. In our work the overhead is measured

in terms of route length and the adversary cannot observe

the global traffic, only traffic traversing compromised nodes.

Sender anonymity in the presence of compromised nodes

was considered for Crowds [7] and for systems inspired by

Crowds [15]. In our work, we consider relationship anonymity

instead of sender anonymity, and address the trade-off between

anonymity and overhead.
The rest of the paper is organized as follows. Section II

describes our system model, the anonymity metric, and the

traffic analysis methods. Section III describes of the MCrowds

and Minstrels anonymity networks. In Section IV we develop

analytical models of the relationship anonymity provided by

MCrowds and Minstrels, and we show numerical results based

on the models in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND METRICS

We consider an anonymity network that consists of a set N
of nodes, N = ||N ||. The nodes act as sources, destinations
and as relay nodes for each others’ messages. The underlying

communication network is a complete graph. We consider that

encryption and authentication are done end-to-end between the

sender and the receiver, but the relay nodes do not perform

cryptographic operations on the messages in order to limit

their computational burden.
The inside attacker is in control of a set C ⊂N (C = ||C ||)

of compromised nodes. The attacker can observe the messages

traversing the nodes in C and the protocol specific information

contained in the messages. It can make use of the payload

of the messages to recognize if the same message visits

several compromised nodes. The attacker has an a-priori belief

of the system traffic matrix in the form of the distribution

P(S(a),R(b)) for every pair of nodes (a,b) : a ∈ N ,b ∈
N \{a} (nodes do not send messages to themselves over the

anonymity network.). For every message that the attacker ob-

serves, it calculates the a-posteriori probability P(Ŝ(a), R̂(b))
for every pair of trusted (not compromised) nodes that it is

the sender-receiver pair of the message. The attacker maintains

a real-valued counter for every pair of nodes (a,b), and it

increases the counters with values that are calculated from

the a-posteriori probabilities for every observed message. The

attacker uses the counters to estimate the number of exchanged

messages between every pair of nodes in a given time interval,

that is, to learn the actual traffic matrix. The attacker starts the

estimation by initializing the counters to zero.

We consider two metrics: the overhead of the anonymity

network and the relationship anonymity. We define the over-
head as the average number of nodes E[K] that an arbitrary

message visits. We quantify the relationship anonymity by

the average increase of the counter corresponding to the real

sender-receiver pair (s,r) for every message sent by (s,r).
Consequently, for the messages that are not observed by

the attacker, the counter is not incremented. The lower the

relationship anonymity is, the more difficult it is for the

attacker to learn the intensity of messages sent from node s
to node r. Note that the relationship anonymity may not be

the same for (s,r) and for (r,s). In general, the relationship

anonymity depends on two factors. First, on the probability

of having an attacker node on the path. Second, on the

a-posteriori probability assigned to the sender-receiver pair

P(Ŝ(s), R̂(r)) by an attacker node on the path. Both factors

are functions of the anonymity protocol, the number of nodes

N and the number of inside attacker nodes C. Furthermore,

the probability P(Ŝ(s), R̂(r)) is used to determine the value by

which the corresponding counter is incremented. This value

depends on the method that the attacker uses for counting.

We consider two counting methods.

A. Bayesian inference method

Using the Bayesian Inference (BI) method, when the at-

tacker intercepts a message, it increments the corresponding

counters with the a-posteriori probabilities. Let us denote by

P(H1+|S(s),R(r)) the probability that an attacker node occurs

on the path given that (s,r) is the sender-receiver pair, and by

P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) the a-posteriori probability that

the attacker identifies (s,r) as the sender-receiver pair given its

occurrence on the path. Then we can express the relationship

anonymity under the BI method as

PrelB(s,r) = P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) ·P(H1+|S(s),R(r)),
(1)

B. Maximum posteriori method
Using the Maximum Posteriori (MP) method, when the

attacker intercepts a message, it populates the set Q of most
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likely sender-receiver pairs with the pairs of nodes that have

the highest a-posteriori probability. In the worst case the set

Q is a singleton, ||Q||= 1, and the anonymity is likely to be

low. At the other extreme, Q can contain all possible send-

receiver pairs, ||Q||= (N−C) ·(N−C−1), which corresponds

to perfect relationship anonymity. In general (a,b) ∈ Q does

not imply that (a,b) is the actual sender-receiver pair, not

even when ||Q||= 1. Nevertheless, intuitively, we can say that

(s,r) ∈ Q is more likely than (s,r) /∈ Q.

Let us denote by P((s,r) ∈ Q|H1+,S(s),R(r)) the proba-

bility that the sender-receiver pair is one of the most likely

sender-receiver pairs, i.e., (s,r) ∈ Q. If (s,r) ∈ Q, then the

attacker identifies (s,r) as the sender-receiver pair given its

occurrence on the path and (s,r)∈Q with probability 1/||Q||.
Note that if (s,r) /∈ Q, the attacker assigns probability 0 to

the event that (s,r) is the sender-receiver pair. Using this

notation we can express the relationship anonymity under the

MP method as

PrelM(s,r) =
P((s,r) ∈ Q|H1+,S(s),R(r))

||Q|| ·P(H1+|S(s),R(r)).
(2)

III. ANONYMITY SYSTEM DESCRIPTIONS

In the following we describe the considered anonymity

networks: MCrowds and Minstrels.

A. MCrowds system description

MCrowds is an anonymity network inspired by Crowds [6],

which was proven to provide optimal sender anonymity [7].

In MCrowds the sender specifies a set M of nodes as receiver

for a message. The number M = ||M || of receiver nodes is

a system parameter. Nodes specified in the set M are not

used for relaying. For a message to reach its intended receiver

r it must be that r ∈ M ; the other M − 1 nodes are chosen

uniformly at random. The sender then relays the message to

one of the N \M nodes (including itself) selected uniformly

at random. A relay node relays the message with probability

p f to one of the N \M nodes chosen uniformly at random.

Note that a node can relay the message to itself, in which case

the message does not leave the node. Otherwise, the message

is sent as a multicast message to all receiver nodes specified

in M (i.e., with probability 1− p f ). Upon multicasting, the

receiver set is removed from the message. Node r recognizes

that it is the receiver while the other M \ {r} nodes discard

the message. For M = 1 MCrowds is equivalent to Crowds,

except that the receiver node is part of the anonymity network,

r ∈ N . In principle the nodes could use different values of

M and p f , but to ease the analysis we consider that all nodes

use the same parameter values.

B. Minstrels system description

Minstrels uses nodes as message relays in the same way as

Crowds with the difference that the number of nodes visited

by a message is bounded.

When a node s wants to send a message to a node r it

picks a node uniformly at random among the other N − 1

Fig. 1. A simple example of Minstrels with five nodes.

nodes (excluding s) and forwards the message. The next

node forwards the message to one of the other N − 2 nodes

(excluding itself and the sender node s) chosen uniformly at

random. Every subsequent forwarder picks one of the non-

visited nodes to forward the message. When node r receives

the message, it will send the message further in order to

improve the receiver anonymity. The path ends when all N
nodes have been visited.

The message, or part of it, is encrypted with the receiver’s

public key. When a node receives the message, it checks

whether it is the receiver by trying to decrypt the encrypted

part of the message. If the decrypted part of the message

represents valid data, the node is the receiver. Note that a node

does not know who the receiver is, but it can check whether

it is the receiver itself.

To bound the path length, every message records the set V
of the visited nodes in its header. The set can be implemented,

for example, using a Bloom filter, to keep its size small. When

a relaying node receives a message, it adds itself to the set V
and relays the message to one of the remaining non-visited

nodes. To control the maximum path length (i.e., delay) the

sender can initialize the set V of visited nodes with a number

f ∈ {0, ...,N−1} of the nodes in the system. These initialized

nodes are considered as visited so that the message can not be

relayed to them. A message traverses all nodes except for the

initialized nodes in the set V and hence the sender must not

include the receiver in the set V . The sender picks the number

of initialized nodes at random: it initializes the set with f
nodes with probability P(F = f ), where ∑N−1

f=0 P(F = f ) = 1.

For f = 0 the set is empty, for f = 1 the set is initialized only

with the sender and for f > 1 the set is initialized with the

sender and f −1 other nodes. Note that for f > 0, the sender

always includes itself in the set. The distribution of F is a

system parameter, and we use it to explore the anonymity-

overhead trade-off. In principle the nodes could use different

distributions for F , but again, to ease the analysis we consider

that all nodes use the same distribution.

Fig. 1 shows two simple examples with five nodes, node

A as sender and node D as receiver. Fig. 1 (left) shows a

case when the set V is initialized with the sender node A

and the message is forwarded to node C. Node C checks if

it is the receiver, puts itself in the set and chooses the next

hop uniformly at random among nodes (B,D,E). The next hop,

node D, follows the same procedure with only two forwarding

options (B,E). Fig. 1 (right) shows another case when the set

V is initialized with the sender and node C, and the message

3



is forwarded to node B. Node B adds itself to the set and

decides to which of the remaining nodes (D,E) to forward the

message. Node C is considered as already visited.

IV. OVERHEAD AND ANONYMITY

In the following we derive expressions for the communica-

tion overhead and the relationship anonymity provided against

inside attackers for MCrowds and for Minstrels.

A. Communication Overhead

We start with calculating the communication overhead of

MCrowds and Minstrels. For MCrowds, the mean number

of nodes visited by a message is the expected value of a

geometric distribution with success probability 1− p f plus the

multicast messages, i.e.,

E[K] =
p f

1− p f
+1+M. (3)

For Minstrels and for a given number f of initialized nodes in

the set V , the number of nodes visited by a message is equal

to K = N − f . The mean number of visited nodes depends on

the distribution of F and it can be expressed as

E[K] =
N−1

∑
f=0

P(F = f ) · (N − f ). (4)

B. Relationship Anonymity Against Inside Attackers

In the following we derive the relationship anonymity

expressions for MCrowds and Minstrels.

1) MCrowds: We start the calculation of the relationship

anonymity with expressing the probability of having an at-

tacker node on the path. This probability depends on the

number of receiver nodes M, and on the number of attacker

nodes in the set M of receiver nodes. We denote by cM
the number of attacker nodes in the receiver set. cM is a

realization of the random variable CM ∈ {max(0,M−(N−C−
1)), ...,min(M − 1,C)}. For M = 1 there cannot be attacker

nodes in the receiver set, only the receiver r, and therefore

P(CM = 0) = 1. For M > 1, the sender selects the other

M−1 nodes uniformly at random from N−2 nodes (excluding

the sender and the receiver). Thus, once k trusted and j
attacker nodes have been selected, the next selected node is

a trusted node with probability N−C−2−k
N−2−k− j , and is an attacker

node with probability C− j
N−2−k− j . Observe that it does not matter

in what order the cM attacker nodes were selected, and thus

the probability that there are cM attacker nodes in the set of

receiver nodes is

P(CM = cM) =

(
M−1

cM

)
∏M−cM

k=2 (N −C− k)∏cM−1
k=0 (C− k)

∏M
k=2(N − k)

.

(5)

Let us denote by Hi the event that the position of the first

attacker node is i. The event Hi happens if the message is

first relayed i−1 times through trusted nodes, i.e., not through

attacker nodes in the set N \M , but the ith relay is an attacker

node. A trusted node at position i−1 relays the message to one

of the C−cM attacker nodes with probability C−cM
N−M . Therefore,

conditioned on CM = cM we have

P(Hi|cM,S(a),R(b)) =
C− cM

N −M
p(i−1)

f

(
1− C− cM

N −M

)(i−1)

,

(6)

for a∈N \(C ∪M ) and b∈M \C . Note that for brevity we

use cM to denote the condition CM = cM in (6) and henceforth.

If the message is again relayed over an attacker node on

any position after i, the attacker does not gain any additional

information about the sender-receiver pair (s,r) of the message:

any node from the set N \M is equally likely to be used as

relay, and the receiver is still one of the nodes in M . Hence,

the probability assigned to the sender-receiver pair does not

change. Thus, it is enough to focus on the position of the

first attacker node on the path. Let us now denote by H1+ the

event that there is an attacker on the path as a relay. This event

happens if the event Hi happens for any i > 0, and the Hi are

mutually exclusive. Therefore, conditioned on CM = cM , the

event H1+ happens with probability

P(H1+|cM,S(a),R(b)) =
∞

∑
i=1

P(Hi|cM,S(a),R(b))

=
C− cM

N −M− p f (N −C−M+ cM)
.

(7)

When the first attacker node on the path gets the message,

the attacker knows the nodes in the set M , the number of

attacker nodes cM in the set, and the node that the message

is received from, i.e., the predecessor p. Let us denote by

Ia the event that the predecessor is node a (p = a). If the

attacker node is on position i = 1, then the sender of the

message is the predecessor, i.e., the event Ia happens if

a is the sender.. Otherwise, for i > 1 and S(a) we have

P(Ia|H2+,cM,S(a),R(b)) = 1
N−C−M+cM

for any b ∈ N \ C
and b �= a, because any trusted node from the set N \M
is equally likely to be the predecessor. Observe that Ia can

only happen if a �∈ M . The event a /∈ M happens with the

probability P(a /∈ M |cM,S(s),R(b)) = N−C−M−cM−1
N−C−2 , for any

b ∈ N \C and b /∈ {s,a}. Thus, P(Ia|H2+,cM,S(s),R(b)) =
P(a/∈M |cM ,S(s),R(b))

N−C−M+cM
. Finally, the event Ia conditioned on H1+,

and S(a) or S(s) such that s �= a happens with probability

P(Ia|H1+,cM,S(a),R(b)) = P(H1|cM,S(a),R(b))+

P(Ia|H2+,cM,S(a),R(b)) ·P(H2+|cM,S(a),R(b)),
(8)

P(Ia|H1+,cM,S(s),R(b)) =

P(Ia|H2+,cM,S(s),R(b)) ·P(H2+|cM,S(s),R(b)),
(9)

where P(H2+|cM,S(a),R(b)) = ∑∞
i=2 P(Hi|cM,S(a),R(b)).

Similarly, we denote by Īa the event that the predecessor is

not node a, i.e., p �= a.

Let us now consider the case when node s sends a message

and the attacker appears as a relay, i.e., the events S(s) and

H1+ happen. Then, if node s is the predecessor (Is), the

attacker identifies node s being the sender of the message with
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probability

P(Ŝ(s)|Is,H1+,cM,S(s),R(b)) =
∑
b

P(Is,H1+,cM|S(s),R(b)) ·P(S(s),R(b))
∑

(a,b)
P(Is,H1+,cM|S(a),R(b)) ·P(S(a),R(b)) ,

(10)

where a ∈ N \ (M ∪C ) and b ∈ M \C . P(S(a),R(b)) is

the a-priori probability that node a sends a message to node

b, i.e., the attacker’s a-priori belief of the traffic matrix.

The probability P(Ŝ(s)|Īs,H1+,cM,S(s),R(b)) that the attacker

assigns to node s when it is not the predecessor (Īs) can be

expressed in a similar way.

Then, for the BI method the probability that a relaying
attacker assigns to the actual sender of the message, given

H1+ and CM = cM , is

P(Ŝ(s)|H1+,cM,S(s),R(b)) =

P(Ŝ(s)|Is,H1+,cM,S(s),R(b)) ·P(Is|H1+,cM,S(s),R(b))+

P(Ŝ(s)|Īs,H1+,cM,S(s),R(b)) ·P(Īs|H1+,cM,S(s),R(b)),
(11)

The probability assigned to the receiver is

P(R̂(r)|H1+,cM,S(s),R(r)) = 1
M−cM

. Note that the events are

conditionally independent since the receiver is one of the

trusted nodes in M , and the sender is one of the trusted

nodes in N \ M . Hence, the probability assigned to the

sender-receiver pair (s,r) is the product of the two.

What remains is to calculate the probability for a non-

relaying attacker. Let us denote by H1+ the event that a

message does not visit any attacker node as a relay, the

complement event of H1+. If H1+ and CM = 0 happens

then the attacker does not observe the message. Otherwise,

if H1+ happens but CM > 0 then the attacker nodes in the

receiver set M get the multicast message from the last

relay node (the one that decides to send the message to

the receivers, with probability 1 − p f ). Observe that any

trusted node from the set N \ M is equally likely to

be the last relay (the predecessor), and therefore it holds

that P(Ia|H1+,cM,S(a),R(b)) = P(Ia|H2+,cM,S(a),R(b)),
for every CM > 0. Correspondingly, it also holds that

P(Ia|H1+,cM,S(s),R(b)) = P(Ia|H2+,cM,S(s),R(b)) for s �= a
and CM > 0. Consequently, given H1+, CM > 0, and Is or

Īs, the probability that the attacker assigns to node s being

the sender can be expressed following the same reasoning as

in (10). Finally, the probability P(Ŝ(s)|H1+,cM,S(s),R(b))
that the attacker assigns to the actual sender, given H1+ and

CM > 0, can be expressed using the law of total probability

conditioned on Is and Īs, similar to (11).

Since the last relay node removes the receiver set M
from the message, the receiver is hidden among N −C − 1

trusted nodes (it cannot be the last relay). However, the

probability assigned to the receiver depends on whom the

attacker guesses to be the sender. If the attacker believes that

the predecessor is the sender, each of the other N −C − 1

trusted nodes is equally likely to be the receiver. If the attacker

believes that the predecessor is not the sender then each of

the N −C − 2 trusted nodes apart from the predecessor and

the sender is equally likely to be the receiver. Therefore, if Is

happens and the attacker identifies the sender with probability

P(Ŝ(s)|Is,H1+,cM,S(s),R(b)), then the probability assigned to

the receiver equals to P(R̂(r)|Ŝ(s), Is,H1+,cM,S(s),R(r)) =
1

N−C−1 . Otherwise, if Īs happens and the attacker identifies

the sender with probability P(Ŝ(s)|Īs,H1+,cM,S(s),R(b)), then

P(R̂(r)|Ŝ(s), Īs,H1+,cM,S(s),R(r))= 1
N−C−2 . Thus, given H1+

and CM = cM > 0, the probability assigned to the sender-

receiver pair (s,r) can be expressed as

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r)) =

P(Ŝ(s)|Is,H1+,cM,S(s),R(r))
N −C−1

·P(Is|H1+,cM,S(s),R(r))+

P(Ŝ(s)|Īs,H1+,cM,S(s),R(r))
N −C−2

·P(Īs|H1+,cM,S(s),R(r)).
(12)

It can happen that there is an attacker node on the path as

a relay (H1+) and there is at least one attacker node specified

in the receiver set (CM > 0). In this case it is clear that the

attacker assigns higher probability to the actual sender-receiver

pair (s,r) when the message is observed by the relaying

attacker node than when it is observed by the attacker node

in the receiver set. Since the attacker can recognize if the

same message visits several compromised nodes, the attacker

does not recalculate the assigned probability when it gets

the multicast message. Therefore, we do not provide separate

expressions for this case.

Finally, we express PrelB(s,r) using the law of total prob-

ability, accounting for all possible values of CM , and for all

cases when the attacker receives the message, i.e., either H1+

or H1+ and CM = cM > 0,

PrelB(s,r) = ∑
cM

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r))

·P(H1+|cM,S(s),R(r)) ·P(CM = cM)

+ ∑
cM �=0

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r))

·P(H1+|cM,S(s),R(r)) ·P(CM = cM).

(13)

In order to calculate the relationship anonymity PrelM(s,r)
under the MP method, we need to determine the probability

that the sender-receiver pair (s,r) is one of the most likely

sender-receiver pairs, i.e., (s,r) ∈ Q. Given particular events,

e.g., Is and H1+, the sender-receiver pair (s,r) is in the set Q
if the probability P(Ŝ(s), R̂(r)|Is,H1+,cM,S(a),R(b)) for every

trusted sender-receiver pair ∀(a,b), s.t. a �= b, is less than or

equal to P(Ŝ(s), R̂(r)|Is,H1+,cM,S(s),R(r)). In the special case

when the attacker’s a-priori belief is that the traffic matrix

is homogeneous, all pairs (a,b),a �= b of trusted nodes are

equally likely to be the sender-receiver pair. Hence, if either

H1+ or H1+ and CM = cM > 0 happens, then the predecessor is

the most likely sender. Therefore, the sender-receiver pair (s,r)

is in Q only if Is happens. If this happens, then the cardinality

of the set Q is equal to M− cM , the number of trusted nodes

in the receiver set M .

2) Minstrels: When the first attacker node on the path gets

the message, the attacker knows the number cF of attacker

nodes that the set of visited nodes was initialized with by the

sender. cF is a realization of the random variable CF , whose

5



distribution depends on the number f of initialized nodes in

the set of visited nodes, V .

In Minstrels the probability that the attacker assigns to a

sender-receiver pair does not only depend on the node that

the message is received from, i.e., the predecessor p, but also

on the contents of the set V of visited nodes that the message

carries. Consequently, the attacker distinguishes between three

disjoint sets of nodes: the predecessor node ({p}), nodes in

the set of visited nodes except the predecessor (V \{p}), and

nodes not in the set of visited nodes (V ∪{p}). These sets

form a partition of the set of all nodes in the system, and

trusted nodes belonging to the same set are equally likely to be

the sender (and the receiver). As a shorthand for the universe

of distinguishable events we use the notation Ωs = {s = p,s ∈
V \{p},s ∈ V ∪{p}}, where, for example, s = p is the event

that the predecessor is the sender. Similarly, we define Ωr =
{r = p,r ∈V \{p},r ∈V ∪{p}} for the distinguishable events

regarding the receiver.

If the message visits multiple attacker nodes on its path then

the attacker can identify the nodes that were visited between

the different attacker nodes. However, since any node that

has not been visited yet is equally likely to be visited by

the message, the attacker does not gain more information that

could increase the probability assigned to the sender-receiver

pair (s,r). Hence, it is enough to consider the first attacker

node on the path that gets the message. Given the information

on V , cF , and p available to the attacker, we can use the law

of total probability to expand (1) and (2) conditional on the

size ||V || = v of the set of visited nodes, ωs ∈ Ωs, ωr ∈ Ωr,

and CF = cF ,

PrelB(s,r) = ∑
cF

∑
v

∑
ωs

∑
ωr

P(Ŝ(s), R̂(r)|ωr,ωs,cF ,H1+,v,S(s),R(r)) (14)

·P(ωr,ωs,cF ,H1+,v|S(s),R(r)), (15)

PrelM(s,r) = ∑
cF

∑
v

∑
ωs

∑
ωr

P((s,r)∈Q|ωr ,ωs,cF ,H1+,v,S(s),R(r))
||Q|| (16)

·P(ωr,ωs,cF ,H1+,v|S(s),R(r)). (17)

Note that (15) and (17) are the probability that a message with

(s,r) as sender-receiver pair is received by an attacker node

and carries particular information. The numerator in eq. (16)

is the probability that the sender-receiver pair (s,r) is in the

set Q.

Before we turn to the calculation of the probabil-

ity P(ωr,ωs,v,cF ,H1+|S(s),R(r)) we introduce the notation

H(v,cF |F = f ) for the joint event ||V ||= v, H1+, and CF = cF
for a given number of initialized nodes f . Clearly, v ≥ f . The

probability of this event can be expressed as

P(H(v,cF |F = f )) =
C

N−1 v = 0, f = 0

P(CF = 0|F = f )N−C−1
N−1

C
N−v ∏v−1

z=1
N−C−z

N−z v ≥ 1, f = 0

P(CF = cF |F = f )C−cF
N−v ∏v−1

z= f
N−C+cF−z

N−z v ≥ 1, f > 0,
(18)

where P(CF |F = f ) is the probability that the set of visited

nodes is initialized with cF attacker nodes, given that it is

TABLE I
P(Ωr,Ωs, ||V || ∈ {0,1},CF = 0,H1+|S(s),R(r))

Ωs,Ωr ||V ||
s = p, r ∈ V ∪{p} 0 P(F = 0)P(H(0,0|F = 0))

s = p, r ∈ V ∪{p} 1 P(F = 1)P(H(1,0|F = 1))

s ∈ V ∪{p}, r = p 1 P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r ∈ V ∪{p} 1 P(F = 0)P(H(1,0|F = 0)) N−C−2
N−C−1

initialized with f nodes by the sender. Due to the rules of ini-

tialization, cF ∈ {max(0, f −1− (N −2−C)),min( f −1,C)}.

For F = 0 and F = 1 there cannot be any initialized attackers,

hence P(CF = 0|F ∈ {0,1}) = 1 and P(CF > 0|F ∈ {0,1}) = 0.

For f > 1 we have

P(CF |F = f ) =(
f −1

cF

)
∏ f−cF

k=2 (N −C− k)∏cF−1
k=0 (C− k)

∏ f
k=2(N − k)

. (19)

We now turn to the calculation of the probability

P(ωr,ωs,v,cF ,H1+|S(s),R(r)), i.e., the probability that the

attacker would receive a particular message sent by s to r. If

the sender is the predecessor (s= p) the receiver cannot be the

predecessor, hence P(r = p,s = p,v,cF ,H1+|S(s),R(r)) = 0.

For the rest of the cases we show the probabilities in a tabular

form to improve readability.

For ||V || = 0 and ||V || = 1 there can be no attackers in

the set of visited nodes (when received by the first attacker),

because if the sender initializes the set of visited nodes with

f > 0 nodes, it has to include itself in the set. Hence, for

||V || = 0 and ||V || = 1 we have CF > 0 with probability 0.

Furthermore, for ||V ||= 0 the sender must be the predecessor

(s = p) and the receiver cannot be in the set of visited nodes

(r ∈ V ∪{p}). Every other tuple in {(ωs,ωr) : ωs ∈ Ωs,ωr ∈
Ωr} has probability 0. The first row of Table I shows the

corresponding probability, i.e., the probability that the sender

initializes the message with an empty set, and chooses the

attacker as next hop. For ||V ||= 1 the sender and the receiver

cannot both be in the set of visited nodes. Furthermore, if the

sender or the receiver is in the set of visited nodes, it must

be the predecessor, hence s ∈ V \ {p} and r ∈ V \ {p} have

probability 0. The probabilities for the remaining cases for

||V ||= 1 are shown in Table I. As an example, the third row

in the table is the probability that the sender initializes the

set empty, forwards the message to the receiver, which then

forwards the message to the attacker.

For ||V ||> 1 there may or may not be attackers in the set

of initialized nodes. When there are attackers in the set of

initialized nodes (CF > 0), the sender has to be in the set of

visited nodes. Furthermore, if the sender is the predecessor

(s = p) then the receiver cannot be in the set of visited nodes

(r ∈ V \ {p}), because this could only happen if the sender

had initialized the set of visited nodes with the receiver,

but then the receiver would never receive the message. The

corresponding probabilities for ||V ||> 1 are shown in Table II

and Table III in the Appendix.

Let us now turn to the calculation of the probabilities that

the attacker correctly identifies the sender-receiver pair (s,r)

used in the Bayesian inference method (14). Given a message
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Fig. 3. Relationship anonymity vs. overhead for Minstrels, N = 10, C = 1

received by an attacker node that contains information (||V ||=
v, ωs ∈ Ωs, ωr ∈ Ωr, and CF = cF ) the attacker would identify

(s,r) as the sender-receiver pair with probability

P(Ŝ(s), R̂(r)|ωr,ωs,cF ,H1+,v) =
P(ωr,ωs,v,cF ,H1+|S(s),R(r)) ·P(S(s),R(r))

∑(a,b) P(ωr,ωs,v,cF ,H1+|S(a),R(b)) ·P(S(a),R(b))
(20)

where the summation in the denominator is over all possible

non-attacker sender-receiver pairs (a,b), such that a �= b.

P(S(a),R(b)) is the a-priori probability that node a sends

a message to node b, i.e., the attacker’s a-priori belief of

the traffic matrix. In the special case when the attacker’s

a-priori belief is that the traffic matrix is homogeneous,

P(S(a),R(b)) = 1
(N−C)(N−C−1) for all (a,b) such that a �= b,

and these probabilities cancel out each other in (20).

We already calculated the numerator of (20), so in or-

der to finish our calculations we only have to express

P(ωr,ωs,v,cF ,H1+|S(a),R(b)) and only for the cases when

the numerator of (20) is non-zero, and when a �= s or b �= r.

The attacker can receive a message with an empty set of

visited nodes (||V ||= 0,CF = 0) only if the sender is the prede-

cessor, hence, P(ωr,ωs, ||V ||= 0,CF = 0,H1+|S(a),R(b))> 0

only for a = s. Nevertheless, the receiver of the message can

be any trusted node b �= s (we use ∀b as a shorthand nota-

tion). The corresponding probability P(Ωr,Ωs, ||V ||= 0,CF =
0,H1+|S(a),R(b)) is given in Table IV in the Appendix.

The attacker can receive a message with only one node in

the set of visited nodes (||V ||= 1), in which case the node in

the set is the predecessor. The set could have been sent by the

predecessor (a = p) or by a node not in the set (a ∈ V ∪{p}),

but in either case there cannot be any attacker node initialized

in the set (CF = 0). The receiver could be any other node (∀b).

The probability of receiving such a message P(Ωr,Ωs, ||V ||=
1,CF = 0,H1+|S(a),R(b)) is given in Table V in the Appendix.

The probabilities for ||V ||> 1 can be obtained following a

similar reasoning. In order to maintain the readability of the

paper we describe the probabilities in the Appendix.

We now turn to the calculation of the probability (16)

that the sender-receiver pair (s,r) is one of the most likely

sender-receiver pairs, i.e. (s,r) ∈ Q, used in the Maximum

posteriori method. The sender-receiver pair (s,r) is in the

set Q if the probability P(ωr,ωs,v,cF ,H1+|S(a),R(b)) for

every sender-receiver pair ∀(a,b) is less than or equal to

P(ωr,ωs,v,cF ,H1+|S(s),R(r)).

C. Bounds For Relationship Anonymity

In order to have a better understanding of the relationship

anonymity provided by the described anonymity networks, we

define upper and lower bounds for the relationship anonymity.

To obtain the upper bound, we consider that whenever the

attacker intercepts a message, it knows the sender-receiver pair

with probability P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) = 1. Hence, the

bound is equivalent to the probability of having an attacker

node on the path P(H1+|S(s),R(r)). To obtain the lower

bound, we consider that whenever the attacker intercepts

a message, it assumes that any trusted pair of nodes is

equally likely to be the sender-receiver pair with probability

P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) = 1
(N−C)(N−C−1) .

V. NUMERICAL RESULTS

In the following we use the expressions described above

for the BI method (denoted by BIM in the figures) and for the

MP method (denoted by MPM in the figures) to get insight

into the relationship anonymity-overhead trade-off provided

by MCrowds and by Minstrels. To explore the trade-off, for

MCrowds we use the relaying probability p f ∈ (0,1) and

M ∈ {1, . . . ,N−2}, and for Minstrels we use various uniform,

binomial, and triangular distributions to choose the number F
of initialized nodes. The attacker’s a-priory belief is that the

traffic matrix is homogeneous.

Fig. 2 and Fig. 3 show the relationship anonymity under the

BI method (PrelB(s,r)) and the relationship anonymity under

the MP method (PrelM(s,r)) as a function of the expected

overhead for C = 1 attacker node in a system of N = 10

nodes. An expected overhead of E[K] = 2 corresponds to one

relay on average, while E[K] = N is the maximum expected

overhead for Minstrels. Fig. 2 shows results for MCrowds,

and Fig. 3 shows results for Minstrels. Higher values of

the assigned probabilities PrelB(s,r) and PrelM(s,r) mean that

the sender-receiver pair is more exposed, i.e., has worse

relationship anonymity. The upper bound and the lower bound

are obtained by finding the distribution of F for Minstrels, and

the receiver set size M for MCrowds, that results in the lowest

P(H1+|S(s),R(r)) for a given overhead.

One would expect that higher overhead always provides

better relationship anonymity (i.e., low assigned probability),
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but surprisingly this is not the case. Above a certain level of

overhead a further increase of the overhead (more relaying) has

a negative effect on the relationship anonymity under the con-

sidered traffic analysis methods for both anonymity networks.

The reason is that as the expected number of relays increases,

the probability P(H1+|S(s),R(r)) of having an attacker node

on the path increases faster than the certainty of the at-

tacker about the identity of the sender-receiver pair decreases.

Interestingly, for MCrowds and the MP method increased

overhead always results in worse relationship anonymity. We

also observe that both Minstrels and MCrowds provide worse

relationship anonymity under the MP method than under the

BI method.

For high overhead, the anonymity provided by both

anonymity networks approaches its lower bound. Despite

the fact that for Minstrels the probability P(H1+|S(s),R(r))
of having an attacker node on the path is higher than for

MCrowds, Minstrels provides better relationship anonymity.

The reason is that Minstrels hides the sender and the receiver

among a bigger subset of nodes.

Fig. 2 suggests that MCrowds performs better for larger

values of the receiver set size M. This is not true in general. For

a larger M the receiver is better hidden but, at the same time,

the sender is more exposed because there are fewer potential

relays. Hence there should be an optimal receiver set size M.

Fig. 4 shows the optimal value of M as a function of the

number N of nodes in the system. The optimal receiver set

size M increases both with the number of nodes in the system

(almost linearly) and with the ratio C
N of attacker nodes. The

value of M used in Fig. 2 (M = 4 for both the BI method and

the MP method) is in fact optimal for N = 10 and C = 1.

Fig. 5 shows the optimal receiver set size M as a function of

the ratio C
N of attacker nodes in the system. We can see that the

optimal value of M is a non-decreasing function of the ratio of

attacker nodes. For a given ratio of attacker nodes the optimal

receiver set size M for the MP method is always greater or

equal than the optimal M for BI method. The optimal M for

the MP method and the optimal M for the BI method have the

same maximum value. As the system gets larger, the highest

optimal value of M for the MP method and for the BI method

is reached at higher values of the ratio of attacker nodes.

Hence, with more attacker nodes in the system it is better to

increase the receiver set size M if it is lower than the highest

optimal value.

Fig. 6 and Fig. 7 show the optimal overhead (where the

probabilities PrelB(s,r) or PrelM(s,r) are the lowest) as a

function of the ratio of attacker nodes (C
N ) for MCrowds

and for Minstrels, respectively. For MCrowds, the optimal

overhead for both the BI method and the MP method increases

with the system size N. For a given ratio of attacker nodes
C
N the optimal overhead for the BI method is greater than

or equal to the optimal overhead for the MP method. It is

interesting to note that for the considered system sizes N the

optimal overhead is in the interval {2..N}. For Minstrels, the

optimal overhead for the BI method increases with the system

size N and it is lower than the optimal overhead for the MP

method. The optimal overhead for MP method is equal to

the maximum overhead for Minstrels (E[K] = N) except for

N = 10 and C
N = 0.1.

Fig. 8 shows the probabilities PrelB(s,r) and PrelM(s,r) at the
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optimal overhead as a function of the ratio of attacker nodes

(C
N ). As the ratio of attacker nodes increases, the probabilities

PrelB(s,r) and PrelM(s,r) increase almost linearly. However, for

larger systems the probabilities are lower for the same ratio of

attacker nodes. Consequently, with an increase in the system

size the attacker needs to corrupt more than proportional

number of nodes in order to achieve the same values of

PrelB(s,r) and PrelM(s,r). Hence, both for Minstrels and for

MCrowds, it is always beneficial to have more nodes in the

network for the same ratio of attacker nodes C
N .

In practice the ratio of the attacker nodes is not known

by the system designer, hence the anonymity network must

be inevitably optimized for an unknown parameter. In Fig. 9

we investigate the sensitivity of the relationship anonymity to

misestimating the ratio of attacker nodes. Fig. 9 shows the

probability PrelM(s,r) (MP method) as a function of the actual

ratio C
N of attacker nodes for MCrowds and N = 10 nodes.

The expected overhead is selected to be optimal for various

ratios of attacker nodes, from C
N = 0.1 to C

N = 0.7. Interestingly,

PrelM(s,r) is less sensitive to the actual ratio of attacker nodes

when the anonymity network is optimized for a higher ratio of

attacker nodes. The anonymity network optimized for a lower

ratio of attacker nodes performs worse for higher C
N ratios than

the anonymity network optimized for a higher ratio of attacker

nodes for lower C
N ratios. Therefore, it is better to optimize

the anonymity network for a higher ratio of attacker nodes

than the actual ratio. We observed similar behavior for bigger

system sizes N and the BI method.

The presented results lead us to the following interest-

ing conclusions. First, best relationship anonymity might not

be achieved at the highest possible overhead. The optimal

overhead depends on the anonymity network, traffic analysis

method, system size, and the number of attacker nodes.

Second, for an attacker it is always better to use the Maximum

posteriori method than the Bayesian inference method for

traffic analysis in case of the MCrowds and the Minstrels

anonymity networks. Third, MCrowds and Minstrels can

achieve better relationship anonymity in bigger systems, but

at the price of higher overhead. Fourth, when the number of

attacker nodes is unknown MCrowds and Minstrels are less

sensitive if they are optimized for a high ratio of attacker

nodes. Fifth, for MCrowds it always beneficial to have more

than one node specified as the receiver of the message (M > 1).

Finally, for the considered system sizes N and ratios of attacker

nodes (C
N ), Minstrels achieves better relationship anonymity

than MCrowds.

VI. CONCLUSIONS

In this paper we considered the problem of providing rela-

tionship anonymity for communication among a fixed set of

nodes. We described two anonymity networks, MCrowds and

Minstrels. MCrowds is an extension of Crowds, and provides

unbounded path length, while Minstrels provides bounded

path length. We considered two traffic analysis methods,

the Bayesian inference method and the Maximum posteriori

method. We found that MCrowds provides better relationship

anonymity than Crowds, but in order to provide anonymity

to the receiver the sender is more exposed than in Crowds.

Moreover, we found that Minstrels provides better relationship

anonymity than MCrowds. We used the two anonymity sys-

tems to study the trade-off between relationship anonymity and

communication overhead, and found that increased overhead

does not always lead to improved relationship anonymity.

When comparing the two traffic analysis methods, we found

that the Maximum posteriori method performs always better.

We studied the way relationship anonymity scales with the

number of nodes, and observed that relationship anonymity

improves with the number of nodes but at the price of higher

overhead. Our results also show that in practice anonymity

systems should be optimized for a higher number of attackers

than expected.
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APPENDIX

In the following we show calculation of the prob-

abilities introduced in Section IV-B2 in Table II, III,

IV, and V. Moreover, we describe the probabilities

P(Ωs,Ωr, ||V ||,CF ,H1+|S(a),R(b)) for ||V ||> 1.

TABLE II
P(Ωr,Ωs, ||V ||> 1,CF = 0,H1+|S(s),R(r))

Ωs,Ωr

s = p, r ∈ V \{p} P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

s = p, P(F = 0)P(H(v,0|F = 0)) (N−C−v)
(N−C−1)2

r ∈ V ∪{p} +P(F = v)P(H(v,0|F = v))

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

r = p + ∑v−1
k=1 P(F = k)P(H(v,0|F = k)) 1

N−C−k

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

r ∈ V \{p} +∑v−2
k=1 P(F = k)P(H(v,0|F = k)) v−k−1

N−C−k

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) (N−C−v)(v−2)

(N−C−1)2

r ∈ V ∪{p} +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

N−C−k

s ∈ V ∪{p}, r = p P(F = 0)P(H(v,0|F = 0)) (N−C−v)
(N−C−1)2

s ∈ V ∪{p}, r ∈ V \{p} P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

s ∈ V ∪{p}, r ∈ V ∪{p} P(F = 0)P(H(v,0|F = 0)) (N−C−v)(N−C−v−1)

(N−C−1)2

TABLE III
P(Ωr,Ωs, ||V ||> 1,CF > 0,H1+|S(s),R(r))

Ωs,Ωr

s = p, r ∈ V ∪{p} P(F = v)P(H(v,cF |F = v))

s ∈ V \{p}, r = p ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) 1

N−C+cF−k

s ∈ V \{p}, ∑v−2
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C+cF−k

r ∈ V \{p}
s ∈ V \{p}, ∑v−1

k=cF+1 P(F = k)P(H(v,cF |F = k)) N−C+cF−v
N−C+cF−k

r ∈ V ∪{p}

When there are no initialized attackers (CF = 0) the set

could have been initialized with F ∈ [0..||V ||] nodes. Let us

first consider the case when node s is the predecessor (s = p)

and node r is in the set (r ∈ V \{p}). For any sender-receiver

pair (a,b), the prerequisite for this to happen is that node s has

to be visited just before the attacker, while node r has to be

either initialized or be visited. The corresponding probabilities

P(s= p,r ∈V \{p}, ||V ||= v> 1,CF = 0,H1+|S(a),R(b)) are

given in Table VI.

The case when node s is the predecessor (s = p) but node r
is not in the set (r ∈ V ∪{p}) is similar to the previous case.

The only difference is that node r has to be neither initialized

nor be visited. The probabilities P(s = p,r ∈ V ∪{p}, ||V ||=
v > 1,CF = 0,H1+|S(a),R(b)) are given in Table VII.

When we have s ∈ V \ {p} and r = p, node s has to be

either initialized or be visited, while node r has to be visited

just before the attacker. The probabilities P(s ∈ V \ {p},r =
p, ||V || = v > 1,CF = 0,H1+|S(a),R(b)) are given in Table

VIII.

For s∈V \{p} and r ∈V \{p}, both nodes (s, r) have to be

either initialized or be visited before the message reaches the

attacker. The probabilities P(s ∈ V \{p},r ∈ V \{p}, ||V ||=
v > 1,CF = 0,H1+|S(a),R(b)) are given in Table IX.

For the case when we have s ∈ V \ {p} and r ∈ V ∪{p},

the only difference from the case above is that node r must

TABLE IV
P(Ωr,Ωs, ||V ||= 0,CF = 0,H1+|S(a),R(b))

Ωs,Ωr,a,b

s = p, r ∈ V ∪{p}, a = s, ∀b P(F = 0)P(H(0,0|F = 0))

TABLE V
P(Ωr,Ωs, ||V ||= 1,CF = 0,H1+|S(a),R(b))

Ωs,Ωr,a,b

s = p, r ∈ V ∪{p}, a = s, ∀b P(F = 1)P(H(1,0|F = 1))

s = p, r ∈ V ∪{p}, a �= s, ∀b P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r = p, a = r, ∀b P(F = 1)P(H(1,0|F = 1))

s ∈ V ∪{p}, r = p, a �= r, ∀b P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r ∈ V ∪{p}, P(F = 0)P(H(1,0|F = 0)) N−C−2
N−C−1

a ∈ {s,r}, ∀b

s ∈ V ∪{p}, r ∈ V ∪{p}, P(F = 0)P(H(1,0|F = 0)) N−C−3
N−C−1

a /∈ {s,r}, ∀b +P(F = 1)P(H(1,0|F = 1))

TABLE VI
P(s = p,r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

b �= r +P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a = r, P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

∀b +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) 1

N−C−1

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b = s +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) v−2

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b = r +P(F = 1)P(H(v,0|F = 1)) v−2
(N−C−1)(N−C−2)

+∑v−1
k=2 P(F = k)P(H(v,0|F = k)) v−k−1

(N−C−2)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b /∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k))·(

(k−1)(N−C−k−1)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

)

TABLE VII
P(s = p,r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b �= r +P(F = v)P(H(v,0|F = v))N−C−v−1
N−C−2

a = r,∀b P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b ∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b /∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−2)(N−C−v)

(N−C−2)(N−C−3)(N−C−k)

not have been initialized or visited. The probabilities P(s ∈
V \ {p},r ∈ V ∪{p}, ||V || = v > 1,CF = 0,H1+|S(a),R(b))
are given in Table X.

When we have the opposite case of the above, s ∈ V ∪{p}
and r ∈ V \ {p}, the same reasoning applies but in this case

node s must not have been initialized or visited, and node r has

to be either initialized or visited before the message reaches the

attacker. The probabilities P(s ∈ V ∪{p},r ∈ V \{p}, ||V ||=
v > 1,CF = 0,H1+|S(a),R(b) are given in Table XI.

For s ∈ V ∪{p} and r = p, node s must not have been ini-



TABLE VIII
P(s ∈ V \{p},r = p, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s,∀b P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

+∑v−1
k=1 P(F = k)P(H(v,0|F = k))N−C−k−1

N−C−2
1

N−C−k

a = r,b = s P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

b �= s +P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b = r +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) v−2

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b = s +P(F = 1)P(H(v,0|F = 1)) v−2
(N−C−1)(N−C−2)

+∑v−1
k=2 P(F = k)P(H(v,0|F = k)) v−k−1

(N−C−2)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))

(
1

(N−C−1)2 +
(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

b /∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k))·(

(k−1)(N−C−k−1)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

)

TABLE IX
P(s ∈ V \{p},r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, b = r P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

a = r, b = s +∑v−2
k=1 P(F = k)P(H(v,0|F = k)) v−k−1

N−C−k

a = s, b �= r P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

a = r, b �= s +∑v−1
k=1 P(F = k)P(H(v,0|F = k))·(

k−1
N−C−2 +

(v−k−1)(N−C−k−1)
(N−C−2)(N−C−k)

)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b ∈ {s,r}

(
2(v−2)

(N−C−1)2 +
(v−2)(v−3)(N−C−3)

(N−C−1)2(N−C−2)

)

v > 2 +P(F = 1)P(H(v,0|F = 1)) (v−2)(v−3)
(N−C−1)(N−C−2)

+∑v−3
k=2 P(F = k)P(H(v,0|F = k)) (v−k−1)2

(N−C−2)(N−C−k)

+P(F = v−2)P(H(v,0|F = v−2)) v−3
(N−C−2)(N−C−v+2)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b /∈ {s,r}

(
2(v−2)

(N−C−1)2 +
(v−2)(v−3)(N−C−3)

(N−C−1)2(N−C−2)

)

v > 2 ∑v−1
k=1 P(F = k)P(H(v,0|F = k))

(
(k−1)(k−2)

(N−C−2)(N−C−3)

(v−k−1)(v−k−2)(N−C−k−2)
(N−C−k)(N−C−k−1)(N−C−3) +

2(N−C−k−1)(k−1)(v−k−1)
(N−C−2)(N−C−3)(N−C−k)

)

+P(F = v)P(H(v,0|F = v)) (v−1)(v−2)
(N−C−2)(N−C−3)

tialized or visited, while node r has to be visited just before the

attacker. The corresponding probabilities P(s ∈ V ∪{p},r =
p, ||V || = v > 1,CF = 0,H1+|S(a),R(b)) are given in Table

XII.

Finally, for the case when neither s nor r are in the set (s ∈
V ∪{p}, r ∈ V ∪{p}), they must not have been initialized or

visited. The probabilities P(s ∈ V ∪{p},r ∈ V ∪{p}, ||V ||=
v > 1,CF = 0,H1+|S(a),R(b)) are given in Table XIII.

Until now we considered the cases when there are no

initialized attackers in the set of visited nodes (CF = 0).

However, the attacker can receive a message with ||V ||= v> 1

visited nodes and with CF = cF > 0 initialized attackers. In

this case the sender node must have initialized the set with cF
attackers. Hence F ∈ [cF +1..v]. Let us now consider different

TABLE X
P(s ∈ V \{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b �= r +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−1)(N−C−v)

(N−C−2)(N−C−k)

a = r, ∀b P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b = s

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−2
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b = r

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

+P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b /∈ {s,r}

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−1
k=1 P(F = k)P(H(v,0|F = k))·(
(k−1)(N−C−k−1)(N−C−v)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)(N−C−v)
(N−C−2)(N−C−3)(N−C−k)

)

+P(F = v)P(H(v,0|F = v)) (v−1)(N−C−v−1)
(N−C−2)(N−C−3)

TABLE XI
P(s ∈ V ∪{p},r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, ∀b P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b = s +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

N−C−k

a = r, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b �= s +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b = s

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

+P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b = r

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−2
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·
b /∈ {s,r}

(
N−C−v

(N−C−1)2 + (N−C−v)(N−C−3)(v−2)

(N−C−1)2(N−C−2)

)

+∑v−1
k=1 P(F = k)P(H(v,0|F = k))·(
(k−1)(N−C−k−1)(N−C−v)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)(N−C−v)
(N−C−2)(N−C−3)(N−C−k)

)

+P(F = v)P(H(v,0|F = v)) (v−1)(N−C−v−1)
(N−C−2)(N−C−3)

values of Ωs and Ωr. For s = p and r ∈ V ∪{p}, node s has

to be visited just before the attacker. At the same time, node

r must not have been initialized or visited. The corresponding

probabilities P(s = p,r ∈ V ∪{p}, ||V || = v > 1,CF = cF >
0,H1+|S(a),R(b)) are given in Table XIV.

A similar reasoning applies when we have s ∈ V \{p} and

r = p. Node s has to be either initialized or visited, while node

r has to appear as the predecessor. The probabilities P(s ∈
V \{p},r = p, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b)) are

given in Table XV.

When nodes s and r are both in the set (s ∈ V \ {p},r ∈
V \ {p}), the sender a must have initialized them or the

2



TABLE XII
P(s ∈ V ∪{p},r = p, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s,∀b P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b = s +P(F = v)P(H(v,0|F = v))

a = r, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b �= s +P(F = v)P(H(v,0|F = v))N−C−v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b ∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b /∈ {s,r} +∑v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−2)(N−C−v)

(N−C−2)(N−C−3)(N−C−k)

TABLE XIII
P(s ∈ V ∪{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a ∈ {s,r}, ∀b P(F = 0)P(H(v,0|F = 0)) (N−C−v)(N−C−v−1)

(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)(N−C−v−1)

(N−C−1)2(N−C−2)

b ∈ {s,r} +∑v
k=1 P(F = k)P(H(v,0|F = k)) (N−C−v)(N−C−v−1)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)(N−C−v−1)

(N−C−1)2(N−C−2)

b /∈ {s,r} +∑v
k=1 P(F = k)P(H(v,0|F = k))·

(N−C−v)(N−C−v−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

TABLE XIV
P(s = p,r ∈ V ∪{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b �= r P(F = v)P(H(v,cF |F = v))N−C−v−1+cF
N−C−2

a /∈ {s,r}, ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b ∈ {s,r} N−C−v+cF
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r} (N−C−v+cF )(N−C−k−2+cF )
(N−C−k+cF )(N−C−2)(N−C−3)

TABLE XV
P(s ∈ V \{p},r = p, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b �= r ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

N−C−k+cF−1
(N−C−k+cF )(N−C−2)

a = r, b �= s P(F = v)P(H(v,cF |F = v)) v−1−cF
N−C−2

a /∈ {s,r}, b = s ∑v−2
k=cF+1 P(F = k)P(H(v,cF |F = k))·

v−1−k
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, b = r ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

v−cF−2
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r}
(

(N−C−k+cF−1)(k−cF−1)+(N−C−k+cF−2)(v−k−1)
(N−C−k+cF )(N−C−2)(N−C−3)

)

message must have visited them. The corresponding proba-

bilities P(s ∈ V \ {p},r ∈ V \ {p}, ||V || = v > 1,CF = cF >
0,H1+|S(a),R(b)) are given in Table XVI.

For s ∈ V \ {p} and r ∈ V ∪{p}, the sender a must have

initialized node s or the message must have visited it before

the attacker received the message. At the same time, node r
must not have been initialized or visited. The corresponding

probabilities P(s ∈ V \ {p},r ∈ V ∪{p}, ||V || = v > 1,CF =
cF > 0,H1+|S(a),R(b)) are given in Table XVII.

TABLE XVI
P(s ∈ V \{p},r ∈ V \{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b �= r ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

a = r, b �= s
(

(N−C−k+cF−1)(v−k−1)
(N−C−k+cF )(N−C−2) + k−cF−1

N−C−2

)

a = r, b = s ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C−k+cF

a /∈ {s,r}, ∑v−2
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C−k+cF
·

b ∈ {s,r}
(

(N−C−k+cF−1)(v−k−2)
(N−C−k+cF−1)(N−C−2) +

k−cF−1
N−C−2

)

a /∈ {s,r}, ∑v
k=cF+1 P(F = k)P(H(v,cF |F = k))

b /∈ {s,r}
(

(k−cF−1)(k−cF−2)
(N−C−2)(N−C−3) + (N−C−k+cF−2)(v−k−1)

(N−C−k+cF )(N−C−2)(N−C−3)

+ (N−C−k+cF−1)(v−k−1)(k−cF−1)
(N−C−k+cF )(N−C−2)(N−C−3)

)

TABLE XVII
P(s ∈ V \{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))
a,b

a = s, b �= r ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

(N−C−k+cF−1)(N−C+cF−v)
(N−C−k+cF )(N−C−2)

a /∈ {s,r},b = s ∑v−2
k=cF+1 P(F = k)P(H(v,cF |F = k))

(N−C+cF−v)(v−k−1)
(N−C−k+cF )(N−C−2)

a /∈ {s,r},b = r ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) (N−C+cF−v)

(N−C−k+cF )
·(

k−cF−1
N−C−2 + (N−C−k+cF−1)(v−k−1)

(N−C−2)(N−C−k+cF )

)

+P(F = v)P(H(v,cF |F = v)) v−cF−1
N−C−2

a /∈ {s,r}, ∑v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r} (N−C+cF−v)(N−C+cF−k−1)
(N−C−2)(N−C−k+cF )

·(
k−cF−1
N−C−3 + (N−C−k+cF−2)(v−k−1)

(N−C−3)(N−C−k+cF )

)

+P(F = v)P(H(v,cF |F = v)) (N−C−v+cF−1)(v−cF−1)
(N−C−2)(N−C−3)
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