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Security of Fully Distributed Power System State
Estimation: Detection and Mitigation of Data

Integrity Attacks
Ognjen Vuković and György Dán

Abstract—State estimation plays an essential role in the mon-
itoring and supervision of power systems. In today’s power
systems state estimation is typically done in a centralized or
in a hierarchical way, but as power systems will be increas-
ingly interconnected in the future smart grid, distributed state
estimation will become an important alternative to centralized
and hierarchical solutions. As the future smart grid may rely
on distributed state estimation, it is essential to understand the
potential vulnerabilities that distributed state estimation may
have. In this paper, we show that an attacker that compromises
the communication infrastructure of a single control center in an
interconnected power system can successfully perform a denial of
service attack against state-of-the-art distributed state estimation,
and consequently it can blind the system operators of every
region. As a solution to mitigate such a denial of service attack,
we propose a fully distributed algorithm for attack detection.
Furthermore, we propose a fully distributed algorithm that
identifies the most likely attack location based on the individual
regions’ beliefs about the attack location, isolates the identified
region, and then reruns the distributed state estimation. We
validate the proposed algorithms on the IEEE 118 bus benchmark
power system.

Index Terms—Distributed Power System State Estimation,
Security, Data Integrity Attacks, False Data Injection, Detection,
Mitigation.

I. INTRODUCTION

Power system state estimation (SE) is an essential function-
ality of modern Energy Managements Systems (EMS), which
allows the power system operators to get an accurate estimate
of the system’s state despite noisy or faulty measurement data
collected by the Supervisory Control and Data Acquisition
(SCADA) system at substations [1], [2]. The output of the SE,
the estimated state and the resulting power flows, is the basis
for various important EMS applications, such as contingency
analysis used to assess how an outage would affect system
stability, and optimal power flow used to compute the optimal
generation profile based on some predefined criteria. Hence,
an accurate state estimate is crucial both for system safety and
for operating efficiency.

The importance of SE has made its security a major concern,
and therefore the vulnerability of standalone SEs to so called
stealth attacks has been widely studied [3], [4], [5], [6], [7],
[8], [9], [10]. Stealth attacks are false data injection attacks
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against the measurement data collected by the SCADA system
that successfully bypass the model-based bad data detection
(BDD) used in the SE [3]. To secure standalone SE, a variety
of mitigation schemes were proposed recently against stealth
attacks [3], [5], [6], [7], [8].

Power systems are increasingly interconnected and the trend
of interconnection is expected to continue in the future smart
grid. Interconnected power systems are managed by indepen-
dent operators; each operator uses SE to estimate the state
of the region of the interconnected system that it controls.
Examples of interconnected power systems are the Western
Interconnect (WECC) in the U.S., and the ENTSO-E in
Europe. The safety of an interconnected power system depends
on the safety of its constituent regions, as demonstrated by
recent cascading failures (e.g., the U.S. North-East blackout
in 2003). It is therefore very important that the operators
exchange accurate information about their most recent system
state in a timely manner. However, the information exchange
is very limited in practice due to the sensitivity of the data, and
it typically includes only the data needed for a consistent and
correct estimate of power flows on the lines connecting two
regions. While today the SE in interconnected power systems
is mostly done hierarchically, there is an increasing interest
for fully distributed SE (DSE) for future smart grids [11],
[12], [13], [14], [15], as it eliminates the need for a central
authority. DSE is effectively an extension of the basic SE [1],
[2], and it can obtain a consistent state estimate for the entire
interconnected power system.

Despite its importance, the security of DSE has not received
significant attention. In an interconnected power system every
region could in principle use an appropriate mitigation scheme
to secure its own local SE. Nevertheless, in the case of DSE
in an interconnected system, the security of one’s local SE
may depend on the security of other SEs, and the security
of the DSE as a whole may also depend on the security
of the data exchange between the regions [16]. In order to
design secure and resilient DSEs for future smart grids, it
is thus important to understand the potential vulnerabilities
of DSE, i.e., whether or not a compromised control center
or compromised data exchange between SEs could affect the
DSE. If DSE is vulnerable to attacks, it is important to develop
mitigation schemes for the vulnerabilities.

In this work we consider false data injection attacks on
fully distributed SE. We consider an attacker that compromises
a single control center so that it can manipulate the data
exchanged between the control center and its neighbors. We



consider one of the most recent DSE algorithms [15] and
show that an attacker can effectively disable the DSE by ma-
nipulating the data exchanged by the attacked control center.
We propose an algorithm to detect the attack by identifying
discrepancies in the temporal evolution of the exchanged
data between regions. Furthermore, we propose a distributed
algorithm to mitigate the attack. The algorithm identifies the
region with the compromised control center by consolidating
the beliefs of the individual regions about the origin of the
attack, isolates the identified region, and then restarts the DSE.

The structure of the paper is as follows. In Section II
we discuss related work. In Section III we outline the DSE
algorithm used for our study. In Section IV we describe the
attack model and show that the false data injection attacks can
disable the DSE. In Section V we propose an algorithm for
attack detection, and in Section VI we propose the algorithm
for mitigation. Section VII concludes the paper.

II. RELATED WORK

The vulnerability of standalone SE to false data injection
attacks was first studied in [3]. There it was shown that the
measurement data collected by SCADA can be corrupted so
that they do not trigger the BDD system. Such attacks are
often called stealth attacks. The observation was made using
a linearized model of the SE, but it was shown later on a
SCADA/EMS testbed that stealth attacks are also possible
under a non-linear model [4]. Since then the security of
standalone SE has received much attention [3], [4], [5], [6],
[7], [8], [9], [10]. Various schemes were proposed to mitigate
stealth attacks, through individual data protection [5], through
changes to the BDD algorithm [6], and through the protection
of the SCADA infrastructure [7], [8].

The vulnerability of hierarchical multi-area state estimation
has been studied in [17], where the authors extended the
false data injection attack presented in [3] to the case of a
bi-level hierarchical state estimator, and gave some results
on how the attack could impede network observability. The
security of DSE against false data injection attacks on the
exchanged data between neighboring operators was studied
in [16] for a simple DSE [11]. It was shown that an attack
can disable the DSE, i.e., can prevent it from finding a correct
estimate. Furthermore, a detection scheme was proposed to
detect an attack along with a simple mitigation scheme. The
mitigation scheme suggested that upon detecting an attack,
the regions ignore all exchanged data and perform a local
SE. However, by using such a mitigation scheme, the power
flows on transmission lines connecting any two regions cannot
be correctly estimated. Compared to [16], in this paper
we consider a state-of-the-art DSE [15], and we propose a
mitigation scheme that makes it possible for the DSE to be
performed between non attacked regions. Consequently, the
power flows on the lines connecting the non attacked regions
can be correctly estimated.

Distributed state estimation can be considered a form of
consensus. A widely studied model of consensus under attack
is the byzantine consensus problem [18], [19], [20], in which
a number of processors have to agree on a value even if some

processors may report a false value to influence the consensus.
In our work the processors are the regions, but the attack is
fundamentally different; its goal is to impede the convergence
of the distributed state estimation, and the mitigation scheme
we propose not only provides convergence but it also allows
to localize the attack.

III. SYSTEM MODEL AND STATE ESTIMATION

We consider an inter-connected power system that consists
of several control areas, which we call regions. We denote
the set of regions by R, and use |R| = R. A region r ∈ R
includes a subset of all buses, and a subset of the transmission
lines. Regions have no common buses, but there are shared
transmission lines, which connect two regions. We refer to
the shared transmission lines as tie lines, and to the buses
connected by these lines as border buses.

We consider models of the active power injections at every
bus, and active power flows on transmission lines [1], [2].
The active power injection and flow measurements taken in
region r are denoted by the vector zr ∈ RMr , where Mr is the
number of measurements in region r. The measurements equal
to the actual power injections/flows plus independent random
measurement noise, zr = fr(xr) + e, where xr is the vector
of phase angles used to compute the power flows in region r.
The noise e is usually assumed to have a Gaussian distribution
of zero mean. We denote by Wr the diagonal measurement
covariance matrix.

We refer to the vector of phase angles xr as the state vector
in region r, and we refer to a component of the vector xr as a
state variable. The state variables of the vector xr correspond
to the phase angles on buses that belong to region r, and to the
phase angles on border buses in other regions that are needed
to describe the measurements on the tie lines and to describe
power injection measurements at border buses in region r.
Consequently, the state variables included in vectors xr, ∀r ∈
R are overlapping. We denote by xr,r′ the vector of state
variables of region r that correspond to state variables shared
between regions r and r′. Observe that all components in the
vector xr,r′ are also contained in the vector xr. We say that
region r and region r′ are neighbors if the vector xr,r′ has at
least one component, and we denote the set of all neighbors
of region r by N (r) (|N (r)| = N(r)). For convenience, we
introduce the vector xr,b for all state variables that region r
shares with its neighboring regions N (r), i.e., the components
in the vectors xr,r′ ,∀r′ ∈ N (r) form the vector xr,b. The
vectors xr′,r and xb,r can be defined in a similar way.

A. Distributed State Estimation (DSE)

The state-estimation problem consists of estimating the
voltage phase angles x at all buses given the power flow
and injection measurement vector [2]. In the case of DSE
each control center needs to estimate those phase angles that
are related to its measurements, but it has to cooperate with
neighboring control centers, typically by exchanging the state
variables of the border buses, to ensure that the power flows on
the tie lines are correctly estimated. In most of the recently
proposed DSE algorithms, e.g., [11], [12], [13], [15], state
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variables are exchanged at the beginning or at the end of every
iteration, and are used as an input when calculating the next
state vector update. For the purpose of our study, we consider
a state-of-the-art algorithm proposed in [15], which is highly
robust and obtains accurate estimates of the power flows on
the tie lines. The algorithm works as follows.

The goal of the DSE is to estimate xr in every region under
the condition that the estimates of shared state variables match
between neighboring regions. One (arbitrary) phase angle in
the entire interconnected system is selected as the reference
angle, and its value is fixed to zero. Each region estimates
xr by minimizing the squares of the weighted deviations of
the estimated active power flows and injections (which are
functions of xr) from the measured values (comprehended in
zr). Therefore, the distributed state estimation problem can be
formulated as

min
xr, r∈R

∑
r∈R

[zr − fr(xr)]T [W−1r ][zr − fr(xr)]

s.t. xr,r′ = xr′,r ∀r ∈ R and ∀r′ ∈ N (r),

(1)

where fr(x) is the vector of non-linear functions describing
the active power flows and power injections in region r as a
function of the state vector xr.

The constraints in (1) couple the estimation across re-
gions. In order to have a fully distributed algorithm, auxiliary
variables can be introduced so that the problem can be
solved using the alternating direction method of multipliers
(ADMM) [15]. The resulting iterative solution scheme is

x(k+1)
r = (H(k)T

r W−1H(k)
r + cDr)

−1(H(k)T
r zr + cDrp

(k)
r )

s(k+1)
r = Uxr

·
∑

∀r′∈N (r)

Yr,r′ · x(k+1)
r′,r

p(k+1)
r = p(k)r + s(k+1)

r − 1

2
(Yr,b · Y Tr,b · x(k)r − s(k)r ),

where c > 0 is a predefined constant, the matrix H(k)
r is the

Jacobian of vector fr(x(k)), and matrices Dr, Uxr
, Yr,r′ are

defined as follows. Dr is a diagonal matrix whose element
di,i equals the number of regions sharing the ith component
(state variable) of the vector xr. Uxr is a diagonal matrix
whose elements are defined as: ui,i equals to the inverse of the
number of regions (if greater than 0) sharing the ith component
(state variable) of the vector xr, and zero otherwise. Finally,
Yr,r′ is a matrix that determines the connection between vector
xr and vector xr,r′ , and its elements are: yi,j = 1 if the ith
element (state variable) in xr corresponds to the jth element
(state variable) in xr,r′ , and yi,j = 0 otherwise. Consequently,
we have

xr,r′ = Y Tr,r′ · xr . (2)

Similar to (2), we introduce the matrix Yr,b, which has a
similar structure as Yr,r′ so that we have

xr,b = Y Tr,b · xr (3)

The matrix Yb,r can be defined in a similar way.
The DSE is said to converge when for some k∗ the

maximum change of the state variables in every region is
smaller than the convergence threshold ε > 0, i.e., ∀r ∈
R, ||x(k

∗+1)
r − xk

∗

r ||∞ < ε, where || · ||∞ denotes the

REGION 1

SE

X1,2
(k)

X2,1
(k)

X3,2
(k) X2,3

(k)

Control center of region 2

REGION 2

REGION 3

~

X1,3
(k)~

SEX1
(k)

X3,1
(k)

a3,1
(k)

X3,1
(k)

~
X1,3

(k)

a1,3
(k)

X1,3
(k)~

X2,1
(k)

a2,1
(k)

X2,1
(k)

~
X1,2

(k)

a1,2
(k)

X1,2
(k)~

Control center of region 1

X2
(k)

SE

X1,3
(k) X3,1

(k)
X2,3

(k)
X3,2

(k)

Control center of region 3

~
X3

(k)

..
. ..

.

..
.

..
.

...

...

...

...

...

X2,1
(k)

X3,2
(k) X2,3

(k)

X3,1
(k)

X1,2
(k)~

Fig. 1. Interconnected power system with three regions. The attacker corrupts
the control center of Region 1, and tampers with the state variables x(k)1,2 and

x
(k)
1,3 sent from Region 1, and the state variables x(k)2,1 and x(k)3,1 received by

Region 1. The symbol (+) indicates that the components of the attack vector
are added to the corresponding components (phase angles) of the vector of
exchanged state variables. The attacker cannot tamper with the state variables
exchanged between Regions 2 and 3.

maximum norm of a vector. We refer to the number of
iterations k∗ required for convergence as the convergence
time.

IV. A DOS ATTACK ON DSE

We consider an attacker whose goal is to perform a Denial-
of-Service (DoS) attack against the DSE, i.e., to disable
the DSE by preventing it from converging. The attacker
compromises the communication infrastructure of a region
ra ∈ R used for data exchange between ra and its neighbors
N (ra), so it can manipulate the exchanged data used as an
input to the DSE. The exchanged data are the state variables
defined by the vectors x(k)r,ra , ∀r ∈ N (ra), and the vectors
x
(k)
ra,r, ∀r ∈ N (ra). We describe the attack against the state

variables sent from regions r ∈ N (ra) to region ra (from ra

to r) at the end of iteration k by the attack vector a(k)r,ra (a(k)ra,r).
We define the attack vector a(k)r,ra as the vector of phase angles
whose elements correspond to the value that the attacker adds
to that phase angle, that is,

x̃
(k)
r,ra = x

(k)
r,ra + a

(k)
r,ra , (4)

where x̃(k)r,ra is the resulting corrupted vector of state variables.
The vector x̃(k)r,ra is used as input to the next iteration of DSE
in region ra, instead of the originally exchanged vector x(k)r,ra .
The attack vector a(k)ra,r can be defined in a similar way.

In the rest of this Section, we describe the attack against the
state variables sent to region ra from its neighbors r ∈ N (ra).
The attack against the state variables sent from region ra to
its neighbors can be described in a similar way, but we omit
it for brevity. For convenience, we introduce the attack vector
a
(k)
b,ra for the state variables that region ra receives from all its

neighboring regions

a
(k)
b,ra = [a

(k)T
ri1 ,r

a a
(k)T
ri2 ,r

a ... ]T ∀rij ∈ N (ra), (5)
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and the corresponding corrupted vector of state variables

x̃
(k)
b,ra = x

(k)
b,ra + a

(k)
b,ra , (6)

Fig. 1 illustrates an attack on a power system with three
regions. Observe that x̃(k)b,ra is the input to iteration k + 1

of DSE, and thus, the attack a
(k)
b,ra leads to a corrupted state

vector x̃(k+1)
ra .

We define the size of the attack as the Euclidean norm of
the attack vector, i.e., ||a(k)b,ra ||2. Intuitively, a smaller attack
size implies smaller corruption added to the exchanged values,
which could make the detection and the localization of the
attack harder; as our results will show later, this is indeed the
case. Thus, it would be natural for the attacker to look for the
smallest attack vector that prevents the DSE from converging
(k∗ =∞), or formally

min
a
(k)
b,ra

,k=1,...

β s.t. k∗ =∞ and β = ||a(k)b,ra ||2;∀k.

(7)
Since the distributed state estimation problem is non-linear,
solving (7) is non-trivial. In the following we propose an
approximation of the above objective.

A. First Singular Vector Attack (FSV)

The First Singular Vector (FSV) attack is an approximation
of (7) done by maximizing the introduced disturbances for a
given attack size. Note that the attack vector a(k)b,ra results in
corrupted vectors

s̃
(k+1)
ra = s

(k+1)
ra + Uxr

· Yb,ra · a(k)b,ra

p̃
(k+1)
ra = p

(k+1)
ra + Uxr

· Yb,ra · a(k)b,ra ,
(8)

which yield a corrupted state vector

x̃
(k+1)
ra = x

(k+1)
ra +K · a(k)b,ra , (9)

where K = (H
(k)T
r W−1H

(k)
r + cDr)

−1 · cDrUxrYb,ra . Note
that the addend in (9) is a vector with the same number
of elements as the vector x(k+1)

ra , and we refer to it as the
addend vector. The Euclidean norm of the addend vector
is maximized if the attack vector a(k)b,ra is aligned with the
first right singular vector of the matrix K, that is, with the
singular vector with highest singular value. The complexity of
singular vector decomposition is O(mn2) [21], low enough
for the computation to be done on-line. Nevertheless, the
computation of the Jacobian H(k)

r requires knowledge of the
current system state x

(k)
ra for the attacked region ra. Since

the entire current system state is not exchanged between the
regions, and consequently the attacker does not have access to
all entries in x

(k)
ra , we approximate H

(k)
r with the Jacobian

calculated at the initial state H
(0)
r . Such an approximation

can be easily used by a sophisticated attacker that knows the
system model, which is also sufficient to obtain the matrices
Uxr

and Yb,ra .
Observe that in (9) the size of the corrupted vector x̃(k+1)

ra

depends on the direction of the addend vector, and conse-
quently, on the direction of the first singular vector. Since the
attacker does not know the state vector x(k)ra , finding the correct
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19 buses: 49-67
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Fig. 2. IEEE 118 bus system divided into six regions. Neighboring regions are
connected by a line and the number next to the line represents the number of
shared state variables. Note that the reference bus (69) is not a state variable.

direction is not trivial. In order to estimate the direction, the
attacker can assume that the estimates of the power flows
on a tie line are closer to their actual values when using
the most recent exchanged state variables. Then, the attacker
applies the attack so that the introduced estimation errors take
the estimates in the direction towards the previous iteration
estimates.

B. Impact of FSV Attack on DSE

We show the impact of the FSV attack on the IEEE 118 bus
power system, divided into six regions as shown in Fig. 2. We
consider that the attacker corrupts the control center of one of
the regions, and performs the attacks against the state variables
sent from and to that region. Bus 69, located in region r6,
is used as the reference bus, as specified in the IEEE 118
bus power system. Measurements are taken at every power
injection and power flow, and the convergence threshold is
ε = 10−3. The phase angles, thereby the state variables and
the attack vector, are in radians.

As a baseline for comparison we use a simple attack, the
Uniform Rotation (UR) attack, which adds a constant φ to
every compromised state variable. The attack vector of the
UR attack is thus a(k)b,ra = φ · 1, where 1 is the column vector
of all ones with the same dimension as the vector a(k)b,ra . The

size of the attack is ||a(k)b,ra ||2 = φ ·
√
|a(k)b,ra |, where |a(k)b,ra |

denotes the number of elements in the vector a(k)b,ra .
Fig. 3 shows the convergence time k∗ (when the DSE

converges) as a function of the attack size for the FSV attack
and for the UR attack considering regions r3, r5, and r6
individually as the attacked region. For all considered cases,
both the FSV attack and the UR attack can prevent the DSE
from converging, i.e., lead to denial of service. The FSV attack
is more powerful than the UR attack: FSV requires a much
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power flows and injections vs. convergence time.

smaller attack size for a successful denial of service attack than
UR. One might expect that the DSE is more sensitive when the
region containing the reference bus is attacked, since it may be
harder for other regions to synchronize with the reference bus.
However, the results show that this is not the case: there is no
significant difference when the region containing the reference
bus is attacked (region r6), and when some other region is
attacked using either the FSV attack or the UR attack.

Observe that in Fig. 3 it does not take a big FSV attack
to prevent the DSE from converging. For example, the FSV
attack with size ||a(k)b,ra ||2 = 0.07 prevents the DSE from
converging regardless of which region is attacked. This size
corresponds to an average value of the attack vector elements
of 0.0265 radians (1.51 degrees) if region r1 is attacked, or
0.019 (1.07 degrees) if region r6 is attacked.

Although for small attacks the DSE converges, the estimated
state and thus the estimated power flows could be erroneous.
Fig. 4 shows the maximum of the relative estimation error for
the highest 10% of the power flows and injections as a function
of convergence time (and thus the attack size). The relative
estimation error increases monotonically with the convergence
time, and thereby the attack size, and can exceed 15% for some
power flows.

Given the potential of the FSV attack and the UR attack
to prevent the DSE from converging, a natural question is
whether the attacks can be detected and mitigated. In the
following, we show that this is possible.

V. DETECTION OF ATTACKS

Let us start by elaborating on the convergence of the DSE.
Recall that in order to solve (1) in a fully distributed fashion,
the right-hand side of the condition xr,r′ = xr′,r is replaced
with an auxiliary variable for each r ∈ R and ∀r′ ∈ N (r).
In iteration k and for regions r and r′, the auxiliary variable
equals to the average of the shared state variables between
the regions, i.e., (x

(k)
r,r′ + x

(k)
r′,r)/2 [15]. Consequently, the

condition in (1) can be expressed as x(k)r,r′ = (x
(k)
r,r′ +x

(k)
r′,r)/2,

or (x
(k)
r,r′ − x

(k)
r′,r)/2 = 0. The resulting decomposed problem

is solved with the ADMM, which guarantees convergence if
the following criteria are satisfied (based on [22]).

Proposition 1. If for ∀r ∈ R the function Jr(xr) =
[zr − fr(xr)]

T [W−1r ][zr − fr(xr)] that region r minimizes
(the summand in (1)), is closed, proper, and convex, and the
augmented Lagrangian

L =
∑
∀r∈R

Jr(xr)+yT
x
(k)
r,r′ − x

(k)
r′,r

2
+c||

x
(k)
r,r′ − x

(k)
r′,r

2
||22 (10)

(y is Lagrange multiplier) has a saddle point, then the ADMM
converges and ||(x(k)r,r′ − x

(k)
r′,r)/2||22 → 0 as k → ∞ [22,

Appendix A,p. 106–110].

Observe that if the conditions in Proposition 1 are satis-
fied, and therefore the DSE converges without an attack, the
disagreement ||(x(k)r,r′−x

(k)
r′,r)/2||22 may not decrease monoton-

ically. However, for large k and when the DSE approaches a
solution, one may expect that

||(x(k+1)
r,r′ − x

(k+1)
r′,r )/2||22 < ||(x

(k)
r,r′ − x

(k)
r′,r)/2||

2
2 (11)

holds for all state variables exchanged between regions. In
what follows we investigate if a normalized version of (11)
can be used to detect convergence problems due to an attack.

Definition. The mean squared disagreement (MSD) between
regions r and r′ at iteration k is

d
(k)
r,r′ =

||(x(k)r,r′ − x
(k)
r′,r)/2||22

|x(k)r,r′ |
, (12)

where |x(k)r,r′ | denotes the number of elements in vector x(k)r,r′ .
Observe that by definition d(k)r,r′ = d

(k)
r′,r.

Fig. 5 shows the evolution of the MSD d
(k)
r6,r′

between region
r6 and its neighbors r′ ∈ N (r6) without an attack: it decreases
for all r′ ∈ N (r6). Fig. 6 and Fig. 7 show the evolution of
the MSDs of regions r6 and r5, which are neighbors of the
attacked regions ra = r2 ∈ N (r6) and ra = r6 ∈ N (r5), for
the FSV attack and for the UR attack, respectively. Observe
that not all MSDs decrease with the iterations, which is in
contrast to Proposition 1. This is the phenomenon we use to
detect convergence problems as described in the following.

Proposition 2. Let sup{·} be the supremum of a set. If the
conditions in Proposition 1 are satisfied, but for large k there
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Fig. 8. Markov chain based on BALs used for the attack localization.

are some r and r′ ∈ N (r) such that sup{d(k
′)

r,r′ : k′ > k} > 0,
||x(k+1)

r − x(k)r ||∞ > ε, and 6 ∃t ∈ N so that

sup{d(k
′)

r,r′ : k′ > k} > sup{d(k
′)

r,r′ : k′ > k + t} (13)

then there is a convergence problem (an attack).

Proof. The proof follows from Proposition 1. If the conditions
of Proposition 1 hold, then ||(x(k)r,r′ − x

(k)
r′,r)/2||22 → 0 and

d
(k)
r,r′ → 0 as k → ∞. Consequently, sup{d(k

′)
r,r′ : k′ > k} →

0.

The regions can thus use Proposition 2 to detect an attack.

VI. MITIGATION OF ATTACKS

Given that we can detect an ongoing attack, the next
important question is whether it is possible to mitigate the
attack. In the following we propose a mitigation algorithm
that first aims at localizing the region where a detected attack
originates from, and then isolates the region so that the DSE
can converge.

A. Distributed localization and mitigation algorithm

We start with the definition of the beliefs of the individual
regions, which is the basis for the localization algorithm.

Definition. Let d̃
(k)
r,r′ = α(k)d

(k)
r,r′ + (1 − α(k))d̃

(k−1)
r,r′ be

the weighted moving average (WMA) of the MSD d
(k)
r,r′ . The

smoothing factor α(k) ∈ (0, 1) and satisfies
∑∞
k=0 α

(k) =∞.
The belief of attack direction of region r that its neighbor
r′ ∈ N (r) is the attacked region at iteration k is defined as

B
(k)
r,r′ =

d̃
(k)
r,r′∑

∀r′∈N (r)

d̃
(k)
r,r′

. (14)

Observe that regions have beliefs only about their neighbors.
i.e., B(k)

r,r′ = 0, ∀r′ /∈ N (r). Furthermore, the beliefs are not
necessarily symmetric, i.e., B(k)

r,r′ 6= B
(k)
r′,r is possible.

Given the beliefs B(k)
r,r′ of the regions, our goal is to find the

region that is most likely to be compromised consistent with
all beliefs. Before we introduce the distributed localization
algorithm we describe a hypothetical localization scheme
based on a global observer, which motivates the proposed
algorithm.

Motivation: Assume there exists a token that the regions
use to express their beliefs about the attack location: when
region r receives the token, it will pass the token to region
r′ with probability Br,r′ . Moreover, assume that there exists
a global observer that observes every passing of the token
and that keeps count of how many times the token visits each
region. The observer uses the counts to calculate for every
region the empirical frequency of token visits: the number of
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token visits to the region divided by the number of token visits
to all regions. It then identifies the region r̂a with the highest
empirical frequency as the most likely compromised region.

This hypothetical token passing scheme defines a random
walk on a graph: the vertices are the regions and there is an
edge between vertices r and r′ if Br,r′ > 0. The random walk
can then be modeled by a Markov chain. Figure 8 shows the
Markov chain for the interconnected system in Figure 2. The
state transition matrix B(k) of the Markov chain is the right
stochastic R×R matrix in which every row and every column
corresponds to a region, and the entries of the matrix are the
beliefs of attack direction B(k)

r,r′ ∀r′ ∈ R. Thus, row r contains
the beliefs of region r. Under appropriate conditions, which
we will discuss later, the empirical frequency computed by the
global observer converges to the stationary distribution π(k)

of the Markov chain, which satisfies π(k)B(k) = π(k) [23].
Consequently, r̂a(k) = argmaxrπ

(k). The Belief Consensus

Localization (BCL) Algorithm:
The BCL algorithm with convergence threshold εL consists

of five steps executed by the regional control centers.

1) Flood the MSDs d(k)r,r′ so that every region obtains all
MSDs in the system. A flooding protocol, such as the
one used in OSPF [24] can be used for this purpose.

2) Every region verifies that d(k)r,r′ = d
(k)
r′,r ∀r ∈ R, r′ ∈

N (r).
3) Compute the beliefs B(k)

r,r′ , ∀r ∈ R, r′ ∈ N (r) accord-
ing to (14). Construct the state transition matrix B(k).

4) Compute the stationary distribution π(k), the solution to
π(k)B(k) = π(k).

5) If ||π(k) − π(k−1)||∞ < εL then kL = k. BCL reached
convergence, r̂a(k

L) = argmaxrπ
(kL).

Fig. 9. Pseudo-code of the BCL Algorithm

Observe that due to Step 2 the attacker cannot tamper with
the MSDs sent from region ra without being noticed, and as a
consequence all regions obtain the same matrix B(k) in Step
3. In what follows we show that the proposed BCL algorithm
is correct, i.e., all regions identify the same region r̂a(k

L) and
the algorithm leads to a solution.

Proposition 3. Consider a system with R > 2 regions. If
(i) there exists a 3-clique in the graph G = (R, E) where
E = {er,r′ |r ∈ R, r′ ∈ N (r)}, and (ii) for finite k the DSE
does not converge, then the stationary distribution π(k) exists,
it is unique and it can be computed.

Proof. For sufficiently small k the disagreements between
neighboring regions d

(k)
r,r′ > 0, because of the initial dis-

agreements on the shared state variables and because of the
lack of synchronization to the reference bus. Consequently,
the moving average d̃

(k)
r,r′ > 0 since α(k) > 0, and so are

the beliefs B(k)
r,r′ > 0, ∀r, r′ s.t. r ∈ N (r′). This implies that

the state transition diagram of the Markov chain described by

B(k) is a symmetric directed graph, and thus all states of the
Markov chain lie in a single communicating class, i.e., the
chain is irreducible. Since the Markov chain is irreducible,
it has a stationary distribution [23, Proposition 1.14] and
this distribution is unique [23, Corollary 1.17]. Although
B

(k)
r,r = 0 ∀r ∈ R, for R > 2 condition (i) ensures that the

Markov chain is aperiodic. Aperiodicity in turn is a sufficient
condition for the (irreducible) Markov chain to converge to
its stationary distribution [23, Theorem 4.9], i.e., the chain is
ergodic. Since all regions obtain the same matrix B(k), and
the stationary distribution π(k) is unique, all regions obtain the
same distribution π(k).

The above proposition shows that after a particular iteration
k the BCL algorithm is correct. Nonetheless, the stationary
distribution π(k) is a function of the matrix B(k), which
can change at every iteration k. The following proposition
establishes the convergence of π(k), which implies that the
BCL algorithm eventually terminates.

Proposition 4. If α(k) → 0 as k →∞, then π(k)−π(k−1) →
01×R. Furthermore, if the attacked system state follows an
asymptotically periodic orbit then the stationary distributions
π(k) converge in k to a stationary distribution vector π∗, and
r̂a(k) → r̂a∗.

Proof. We start the proof of Proposition 4 by formulating the
following lemma based on results in [25], which will allow
us to prove the first part of the proposition (π(k) − π(k−1) →
01×R).

Lemma 5. Let C be a right stochastic matrix that describes an
irreducible Markov chain with stationary distribution vector
πC = πCC, and let ΠC be the matrix with the same size
as C and all columns equal πC . Let us denote by Z =
[I − C + ΠC ]−1 the fundamental matrix of C. Furthermore,
let D be another right stochastic matrix that describes an
irreducible Markov chain, and is sufficiently close to C so
that all eigenvalues of the differential matrix U = [D − C]Z
are strictly less than unity in magnitude. Then

πD = πC +

∞∑
n=1

πCU
n, (15)

and consequently πD−πC → 01×|πC| as D−C → 0|πC|×|πC|,
where |πC | denotes the number of elements in the vector πC .

Observe that by definition (14)

B
(k)
r,r′ −B

(k−1)
r,r′ =

α(k)

d
(k)
r,r′

∑
r′′∈N (r)

d̃
(k−1)
r,r′′ − d̃

(k−1)
r,r′

∑
r′∈N (r)

d
(k)
r,r′′( ∑

r′′∈N (r)

d̃
(k)
r,r′′

)( ∑
r′′∈N (r)

d̃
(k−1)
r,r′′

) .

Consequently B(k) − B(k−1) → 0|π(k)|x|π(k)| as α(k) → 0.
Let C = B(k−1) and D = B(k). Since the Markov chains
described by B(k) and B(k−1) are irreducible (c.f. Proposition
3), the conditions of Lemma 5 are satisfied for k big enough,
and thus π(k)− π(k−1) → 0|π|. Consider now the orbit of the
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system state for large k. If the attacked system state follows
an asymptotically periodic orbit then the disagreements follow
an asymptotically periodic orbit too. The smoothing factor by
definition satisfies

∑∞
k=0 α

(k) =∞, and thus if it also satisfies
α(k) → 0 then the smoothed disagreements d̃(k)r,r′ converge to
the mean disagreement of the limiting periodic orbit, and so
do the beliefs B(k)

r,r′ → B∗r,r′ . Consequently π(k) → π∗ and
r̂a(k) → r̂a∗.

Observe that the proposition does not hold for constant α(k),
but it does hold, for example, if α(k) = 1/k.

The mitigation algorithm uses BCL to identify the region
r̂a∗ that is most likely to be attacked, isolates the region,
and reruns the DSE for the remaining regions until the DSE
eventually converges.

B. Numerical results

Fig. 10 shows the evolution of the largest element of the
stationary probability vector π(k) for different values of the
smoothing factor α(k) (1/k2, 1/k, 0.2), each considered in a
separate scenario. We considered two attacked regions, ra =
r3 and ra = r6; the attack size is 0.05 for which the DSE does
not converge. In the case of α(k) = 1/k2, the largest element
of π(k) converges relatively quickly. The fast convergence of
π(k) compared to α(k) = 1/k and α(k) = 0.2 does, however,
come at a price: the identified region r̂a(k) = argmaxrπ

(k) is
not the attacked region, for both ra = r3 and ra = r6 region
r̂a(k) = r1 is erroneously identified as attacked. Observe that
α(k) = 1/k2 does not satisfy the condition

∑∞
k=0 α

(k) = ∞
required in the definition of d̃(k)r,r′ in Section VI-A, and shows
the importance of the condition. For α(k) = 1/k and α(k) =
0.2, which do satisfy the condition, the largest element of π(k)

converges slower, but the attacked region is correctly identified
(r̂a(k) = ra) eventually.

Although convergence cannot be guaranteed for a constant
smoothing factor α(k), because the condition α(k) 6→ 0 in
Proposition 4 is not satisfied, a constant weighting factor is
nevertheless useful for exploring the impact of smoothing
on the localization time. Since in this case the stationary
distribution vector π(k) may not converge, there may not exist
a kL for which ||π(kL) − π(kL−1)||∞ < εL. Still, after some
number of iterations kF the algorithm can correctly identify

r̂a(k
F ) as the attacked region, that is, r̂a(k

F−1) 6= ra, but
r̂a(k

F ) = ra ∀k ≥ kF . We refer to kF as the first identification
time.

Fig. 11 shows the first identification time kF as a function of
α(k) considering an attack in various regions r ∈ R for attack
size 0.1 (left) and 0.5 (right). The first identification time
depends on the region that is attacked as well as on the attack
size: for larger attack size the localization is significantly
faster (localization time is lower). For most of the regions,
the optimal α(k) is in the range (0.2, 0.3) and a very high
α(k) > 0.7 may even make localization fail for the smaller
considered attack size (0.1). This observation supports that a
small smoothing factor is in general preferable, even if it may
lead to a larger localization time.

VII. CONCLUSION

We addressed the vulnerability of fully distributed state
estimation to data integrity attacks. We considered an at-
tacker that compromises the communication infrastructure of
a single control center and can manipulate the state variables
exchanged between the control center and its neighbors. We
showed that a denial of service attack can be launched against
a state of the art state estimator this way. We proposed an
attack detection algorithm based on the convergence properties
of the distributed state estimation algorithm and based on the
evolution of the exchanged state variables. Furthermore, we
proposed an attack mitigation algorithm based on the consen-
sus of the beliefs of the individual regions about the attack
location, formulated as the stationary distribution of a random
walk on a graph. We established existence, uniqueness, and
convergence of the stationary distribution. We showed the
efficiency of the attack detection and mitigation algorithms via
simulations on an IEEE benchmark power system, and we used
the simulations to illustrate the trade-off between localization
speed and localization accuracy. Our numerical results also
show that strong attacks can often be localized and mitigated
faster than weak attacks.
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