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Abstract—We consider a potential gray hole attack against
SCADA substation to control center communications using
DNP3. We propose a support vector machine-based traffic
analysis algorithm that relies on message direction and timing
information only, and we use trace-based simulations to show
that even if SCADA traffic is sent through an encrypted tunnel,
as often done in practice, the gray hole attack can be effectively
performed based on the timing and direction of three consecutive
messages. Our results show that the attacker does not need
accurate system information to be successful, and could affect
monitoring accuracy by up to 20%. We discuss possible mitiga-
tion schemes at different layers of the communication protocol
stack, and show that a minor modification of message timing
could help mitigate the attack.

I. INTRODUCTION

Electric power systems have to be continuously monitored

and controlled via Supervisory Control and Data Acquisition

(SCADA) systems in order to be kept in a secure operating

state. Meters at remote substations measure power flows and

voltages, and the measurements are communicated to one or

more SCADA control centers over a communication infras-

tructure using some SCADA communication protocol, such

as Distributed Network Protocol 3 (DNP3) [1]. The dynamic

visibility provided by SCADA systems has long been impor-

tant in transmission systems and is becoming more important

in power distribution systems, because the proliferation of

intermittent distributed generation sources (e.g., solar) results

in faster changes in power flows, which in turn requires that

protection devices and integrated voltage and VAR control

(iVVC) be adjusted in real time.

Motivated by the reliance of power systems on monitoring,

estimation and control, a large body of recent work considered

the impact of data integrity attacks on power system state

estimation, from single systems [2], [3], [4], [5], [6], [7]

to interconnected systems [8]. These works assume that the

attacker is able to manipulate measurement data in lack of

proper authentication.

Authentication is often indeed not possible in legacy re-

mote terminal units (RTUs), and therefore in most SCADA

systems the measured data are sent through an encrypted and

authenticated tunnel between a substation gateway and the

control center. Tunneling protects integrity and may provide

confidentiality against an attacker that has access to one or

more communication links or routers, and should be used to

conform with NERC CIP. Since encryption hides the message

contents from an attacker along the tunnel, one would expect

that it would also make it impossible for an attacker to

identify and to drop mission critical measurement and/or

control messages without dropping all messages in a tunnel,

and thus remain undetected or difficult to be detected.

In this paper we show through the example of DNP3, one of

the two standardized SCADA substation to control center com-

munication protocols, that targeted gray hole attacks may be

feasible despite sending messages through an encrypted tunnel.

We propose a support vector machine based traffic analysis

attack that can distinguish between reports sent spontaneously

by an RTU to the control center and messages sent by the

RTU in response to messages by the control center. The attack

is computationally simple, and is based on the inter-arrival

times and directions of consecutive encrypted messages. We

use measurement data sets from medium voltage substations to

evaluate the effectiveness of the attack and its sensitivity, and

to quantify the impact that the attack may have on monitoring

accuracy. We finally discuss mitigation schemes to alleviate the

attack. Our results give evidence to that the strict timing rules

used in SCADA communication protocols facilitate traffic

analysis attacks and appropriate countermeasures should be

applied.

The rest of the paper is organized as follows. In Section II

we review related work, and in Section III we give an overview

of DNP3. We describe the system and the attack model in

Section IV, followed by the attack in Section V. We evaluate

the attack and propose a mitigation scheme in Section VI.

Section VII concludes the paper.

II. RELATED WORK

The vulnerability of SCADA systems to cyber attacks has

received significant attention recently. In [9], the authors dis-

cuss challenges and difficulties of achieving all-encompassing

component-level cyber security in power systems due to its

cost and potential performance implications. False data injec-

tion attacks against common control system communication

protocols were considered in [10], [11]; the authors proposed

intrusion detection systems to detect the attacks based on

neural networks [10] and based on the concepts of critical



state analysis and state proximity [11]. Certain false data

injection attacks can bypass the bad data detection algorithm

used in SCADA state estimators [2], and can thus be used

to deceive the system operators regarding the actual state

of the system [2], [5], [3], [4], [6], [7]. Mechanism were

proposed to protect against these attacks by securing a subset

of measurements [5], [3], [4], and by securing a part of

the SCADA infrastructure [5], [6], [7]. In [8], the authors

showed that false data injection attacks against distributed state

estimation in an interconnected power system can disable state

estimation in the entire interconnected system, and proposed

a detection and a mitigation scheme against such attacks. Our

work differs from these recent works as we consider an attack

that is limited to dropping messages, and we investigate the

effectiveness of such an attack.

Related to ours are works that aim to identify application

layer protocols sent through a tunnel using pattern recognition

methods [12]. A support vector machine was used in [13] to

identify protocols other than HTTP and SSH tunneled over

HTTP or SSH by looking at the message size, the block

cipher size (involved in the message encryption), and the

MTU size. Application-layer protocols sent through an en-

crypted tunnel that carries traffic from many TCP connections

simultaneously were classified in [14], [15] using a k-Nearest-

Neighbor classifier based on Hidden Markov Models with the

message size, the message direction, and message inter-arrival

times as features. In [16], the authors compared Bayesian

Networks, Decision Trees and Multilayer Perceptrons for the

flow-based classification of six different types of Internet

traffic, including peer-to-peer and content delivery traffic, and

showed the importance of correctly classifying training in-

stances. In [17], the authors proposed an unsupervised machine

learning method for network traffic classification based on

information entropy techniques. Furthermore, they combined

the unsupervised method with a supervised learning method

and showed that the combination can improve classification.

Unlike these works that aim to identify different protocols in

a tunnel, the attack we consider aims at classifying messages

that belong to the same application layer protocol, DNP3, and

we investigate the ability of such an attack to interfere with

SCADA monitoring. To the best of our knowledge ours is

the first work to consider a targeted gray hole attack against

tunneled DNP3 traffic.

III. DNP3 BACKGROUND

DNP3 is one of the two standardized communication pro-

tocols for SCADA substation to control center communica-

tion [1]. Its design follows the master/slave communication

model; the master is the SCADA master station at the control

center and the slaves, called outstations, are Remote Termi-

nal Units (RTUs), Intelligent Electronic Devices (IEDs) and

Programmable Logic Controllers (PLCs) at the substations.

A. Polling vs. Report by exception

DNP3 allows two types of data acquisition, polling and

report-by-exception. In the case of polling, the master solicits

data from an outstation and the outstation replies immediately

with all data. In the case of report-by-exception, the outstation

reports only the values that have changed since the last report

by more than a predefined threshold, instead of reporting all

data. The advantage of this choice is significant saving in

bandwidth.
These two types of data acquisition can be combined,

and result in four modes of operation for DNP3: (i) polled

static, (ii) polled report-by-exception, (iii) quiescent, and (iv)

unsolicited report-by-exception. In the case of (i) the master

polls and the outstation reports all data. In case of (ii) the

master polls but the outstation only reports changed values. In

case of (iii) the master does not poll, an unsolicited response

is generated by the outstation whenever a value changes

by a predefined threshold. In case of (iv) the master polls

periodically (typically at a low frequency) and an unsolicited

response is generated by the outstation whenever a value

changes by a predefined threshold. This last mode is the most

commonly used in practice, as it allows for the detection of

communication failures and keeps the bandwidth usage low.

B. DNP3 over IP
DNP3 includes a link layer specification (addressing, fram-

ing, etc), but it can also operate on top of a transport layer

protocol, such as TCP and UDP, when used in IP networks [1].

In practice DNP3 is often used over UDP, because using UDP

keeps the outstation implementation simple, using UDP does

not require many connections to be kept alive in the master

station, and if the operator has to pay for the amount of

SCADA traffic then using UDP would also be less costly.

Furthermore, DNP3 itself implements reliable transmission,

hence reliability at the transport layer is not needed.

C. Sequence numbers and the Vulnerability
In order to achieve reliable transmission, every message is

identified with a sequence number, and message reception is

acknowledged so that lost messages can be retransmitted, if

needed. For unsolicited responses DNP3 allows two retrans-

mission strategies. One strategy allows the outstation to send a

new unsolicited response without receiving the acknowledge-

ment for the previous one, while the other strategy requires the

outstation to wait for the acknowledgement before sending a

new unsolicited response. An important feature of DNP3 is

that the sequence numbers sent by an outstation in unsolicited

responses are independent from the sequence numbers used in

solicited responses (i.e., in response to polls).
This design choice makes a gray hole attack possible: in

lack of signaling from the outstation to the master, as long as

solicited responses are delivered, the master station can not

tell if an attacker drops all unsolicited responses. This is the

attack we consider, and we investigate whether the attack can

be performed even if the DNP3 messages are sent through an

encrypted tunnel, as is usually done in SCADA systems.

IV. SYSTEM AND ATTACK MODEL

We consider a master and an outstation that use DNP3

for communication over a wide area network; the outstation
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Fig. 1. Considered system: Master and outstation communicate using DNP3
through an IPSec tunnel over a WAN.

reports measurement data, such as power flow and volt-

age measurements. DNP3 is used in unsolicited report-by-

exception mode, as commonly done in real systems: the out-

station reports measurement data by replying to poll messages

sent by the master or by sending an unsolicited response

when the relative change of a measured value exceeds a

configured reporting threshold Δ. We consider a modern WAN

deployment, based on the TCP/IP protocol stack, and consider

that UDP is used at the transport layer. For reliable delivery

the master is configured to send a confirmation message for

each unsolicited response it receives. If the outstation does not

receive a confirmation for an unsolicited response, the outsta-

tion retries sending until the confirmation is received or until

the number of retries exceeds a predefined threshold. Since

the communication infrastructure is typically not trusted, end-

to-end data integrity and confidentiality are achieved through

establishing an IPSec tunnel for the DNP3 traffic between the

substation gateway and the master station, in ESP mode [18].

In order to avoid non-mission critical data (such as video,

voice or engineering data traffic) to interfere with DNP3, the

tunnel typically carries DNP3 traffic only. There is thus one

IPSec tunnel per DNP3 connection, as shown in Fig 1.

A. System Model

We denote the set of polling messages sent by the master by

Mp = {mp
1,m

p
2, ...}, the set of solicited responses sent by the

outstation by Ms = {ms
1,m

s
2, ...}, and the set of unsolicited

responses (including retranmissions) sent by the outstation by

Mu = {mu
1 ,m

u
2 , ...}. We denote the set of all DNP3 messages

sent by the outstation to the master by Mo =Ms ∪Mu and

the set of messages exchanged by the master and the outstation

by M =Mp ∪Mo.

We denote by tpn the time instant when the master sends

polling message mp
n ∈Mp (n ∈ N), and by tsn > tpn the time

when the outstation replies with solicited response ms
n ∈Mp.

The time tsn− tpn is determined by the one-way delay and the

message processing time at the outstation, and is typically

rather small compared to the polling period. Similarly, we

denote by tuk the time when the outstation sends unsolicited

response mu
k ∈Mu (k ∈ N). If the response is not confirmed,

the outstation sends a retransmission mu
k+1 ∈ Mu at time

tuk+1. Note that the index of a message in a set is determined

by the time the message is sent, e.g., tpn−1 < tpn < tpn+1.

B. Attack Model

The goal of the attacker is to perform a gray hole attack

on the data reported by the outstation to the master, while

remaining undetected. The attacker has access to a component

of the communication network between the substation and the

control center, such as a switch, a router or a communication

link. The attacker can observe the IPSec tunnels traversing

the network component and can identify an IPSec tunnel that

carries DNP3 traffic; it can observe the encapsulated DNP3

messages and it can drop individual messages. The attacker

cannot observe the payload of the messages due to the use

of IPsec in ESP mode, but for each message it intercepts it

can observe the size of the message’s payload, which it can

use to differentiate between DNP3 messages and IPsec session

management messages, similarly to [13], [14], [19].

Depending on the physical layer technology, the network

topology and the routing, the messages sent by the master to

the outstation (Mp) and the messages sent by the outstation

to the master (Mo) may travel over separate physical links

and paths. We therefore consider two models for the attack,

the Unidirectional Access (UA) attack and the Bidirectional

Access (BA) attack, shown in Fig 1. In the case of the UA
attack, the attacker can only observe the messages sent from

the outstation to the master, i.e., the messages in Mo. In the

case of the BA attack the attacker can observe the messages

sent in both directions, i.e., the messages in M.

Upon intercepting a message the attacker can record the

actual time. We denote by tan the time instant when the attacker

observes message mn; in case of the BA attack mn ∈ M,

while in case of the UA attack mn ∈Mo.

To perform the attack, the attacker should discard the unso-

licited response messages; as long as no unsolicited responses

are delivered to the master, the master cannot detect missing

sequence numbers, since in DNP3 the sequence numbers are

not related in the two directions. To remain undetected, the

attacker should discard very few solicited responses as the

master can notice the loss of solicited responses (in response

to polls). Thus, in order to succeed the attacker has to

identify whether an intercepted message is a DNP3 unsolicited

response or a DNP3 solicited response. For a sequence of

messages, we denote by Mau the set of messages the attacker

classifies as unsolicited response.

V. PEEKABOO: BINARY CLASSIFIER ATTACKS

Clearly, there is a trade-off between correctly classifying

the two kinds of messages. We formulate the goal of the

attacker as maximizing the probability of correctly classifying

an unsolicited response, while keeping the probability of

incorrectly classifying a solicited response under a certain

threshold c, or formally

max P (m ∈Mau|m ∈Mu),

s.t. P (m ∈Mau|m ∈Ms) < c.
(1)

We describe two classes of attack algorithms to solve the

problem based on past message inter-arrival times, and if

available, based on past message directions.

The considered attacks identify the unsolicited responses by

using a support vector machine (SVM) with an appropriately

chosen feature space X ⊆ R
p [20]. Given l training feature

vectors xn ∈ X , n = 1, . . . , l and for each vector the
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corresponding class yn ∈ {−1, 1}, an SVM is a supervised

learning model that finds a hyperplane w that solves

min
w,ξn,b

(
1

2
|w|2 + C

l∑
n=1

ξn

)
(2)

subject to

yn(w ∗ xn − b) ≥ 1− ξn, n = 1, . . . , l, (3)

where ξn ≥ 0 are slack variables, C > 0 is a constant that

allows to trade-off between false negatives and false positives,

∗ is an operator that defines the type of the classifier, and b is a

scalar. If the operator ∗ is the scalar product, then the classifier

is linear and w defines a hyperplane in the feature space. If the

operator ∗ is a non-linear kernel function, then the classifier

is non-linear, and w defines a hyperplane in the transformed

feature space. A widely used non-linear kernel function is

the Gaussian radial basis function, for which the transformed

feature space is a Hilbert space of infinite dimensions.

Given the trained SVM, i.e., w and b computed, the attacker

constructs feature vector xn for message mn it intercepts, and

decides whether to drop the message based on the sign of

w ∗ xn − b. The UA and the BA attack models differ in the

feature space, and are both parameterized by an integer k > 0.

UA(k) attack: Under the UA(k) attack, the attacker uses

the k inter-arrival times between the last k + 1 messages

it observes. The feature vector that corresponds to message

mn ∈ Mo is xn = (tan − tan−1, . . . , t
a
n−k+1 − tan−k)

T . The

feature space of the SVM for the UA(k) attack is R
k.

BA(k) attack: Under the BA(k) attack, the attacker uses

the k inter-arrival times between the last k + 1 messages

together with the direction of the messages. The feature

vector that corresponds to message mn ∈ M is xn =
(tan − tan−1, . . . , t

a
n−k+1 − tan−k, dn, . . . , dn−k)

T , where dn ∈
{−d, d} for some constant d > 0, depending on whether

the message is sent by the outstation or by the master,

respectively. Since the feature vector includes information

about the message direction, the feature space for the BA(k)

attack is R
2k+1.

VI. ATTACK IMPACT AND MITIGATION

In the following we evaluate the efficiency of the attacks,

we illustrate their potential impact and we consider potential

mitigation schemes using traced-based simulations.

A. Measured traces

Our evaluation is based on three measurement data sets

collected at medium voltage substations of a European power

distribution system operator. The measurements were taken ev-

ery 3 seconds over 7 consecutive days, and include the voltage

and current phasors for the three phases. As RTUs typically

report RMS voltage magnitude and active and reactive power

flows, we computed these quantities from the traces.

Fig. 2 shows the complementary cumulative distribution

function (CCDF) of unsolicited report inter-arrival times, i.e.,

the CCDF of tuk+1 − tuk (k ∈ {1, 2, ...}), assuming three

different reporting threshold values Δ ∈ {1%, 5%, 10%}

100 101 102 103 104

10−4

10−3

10−2

10−1

100

Interarrival Time (tu
n
− tu

n−1
)

C
C
D
F Trace, Δ = 1%

EXP(0.07683)

Trace, Δ = 5%

DPD(1.913,0.372,262.78)

Trace, Δ = 10%

DPD(1.475,0.708,570.15)

Fig. 2. CCDF of unsolicited response inter-arrival times with best fit Double
Pareto distributions, DPD(α,β,ω), and Exponential distribution, Exp(λ).

based on one of the traces. We observe that the CCDF decays

slower for higher values of Δ as unsolicited reports are sent

less often due to the higher relative change required to trigger

an unsolicited report. It is important to note that the range

of inter-arrival times is very wide, between 2 and 4 orders

of magnitude and correspondingly the standard deviations are

high, 11.2s, 234s, and 932s for Δ = 1%, Δ = 5% and

Δ = 10%, respectively.

The figure shows for each empirical CCDF the CCDF of

the best fit double Pareto distribution [21] and the best fit

exponential distribution, together with the parameters α, β,

and ω, and λ, respectively. The figure shows that for higher

threshold values Δ, the double Pareto distribution is a rather

good fit and captures large part of the tail. The two regions

with different power-law exponents are due to the different

power demand dynamics during daytime (fast changing) and

nightime (slow changing). For Δ = 1% large inter-arrival

times are rare because even small power flow and voltage fluc-

tuations trigger unsolicited responses, and thus the exponential

distribution seems to provide a very good fit.

B. Attack Success Rate

We evaluate the efficiency of the attacks for the scenario

shown in Fig. 1, i.e., DNP3 traffic exchanged over UDP/IP

between an outstation and a master station transmitted through

an IPSec tunnel. The unsolicited reports are generated by the

outstation based on the measurement data sets in response to

voltage magnitude, and active and reactive power flow changes

with a threshold of Δ = 1%. The master is configured to

send polling messages every Tp seconds and the outstation

sends a solicited report with the most recently measured values

immediately after receiving a polling message. The round-trip

time (RTT) between the master and the outstation, including

the delay due to encryption, authentication and processing at

the outstation, equals 1s in the baseline scenario.

Fig. 3 and Fig. 4 show the false negative and false positive

rates P (m �∈ Mau|m ∈ Mu) and P (m ∈ Mau|m �∈ Mu),
as a function of the polling period Tp and various k values

for the UA attack and for the BA attack, respectively. The

kernel function used is the Gaussian radial basis function. The

false negative rates and the false positive rates of the UA(k)
attacks are rather high, which would make the UA(k) attacks

easy to detect. Interestingly, relying on more messages makes
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Fig. 3. False negative and positive rate vs. polling period for UA attack.
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Fig. 4. False negative and positive rate vs. polling period for BA attack.
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Fig. 5. False negative and positive rate vs. actual RTT. SVM is trained for
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the attack even weaker. The BA(k) attacks are, however, very

effective. First, the false negative rate of the BA(k) attacks is

zero (hence it is not shown). Second, the false positive rate

is consistently lower for low k. The strongest attack is BA(2),
and hence we use it in the sequel. The BA attack’s efficiency

is due to the ability of the attacker to observe the messages

in both directions; intuitively any report coming from the

outstation shortly after a polling message is classified as a

solicited request, and all others as unsolicited requests. Thus,

for an attack to be successful, the attacker needs to be able to

observe messages sent in both directions.

The results in Fig. 3 and Fig. 4 were obtained assuming

that the attacker knows the (RTT) between the master and the

outstation. Figure 5 shows the sensitivity of the false negative

and of the false positive rate for the BA(2) attack using an SVM

that was trained with RTT=1s as a function of the actual RTT.

The figure shows that the BA(2) attack is effective as long

as the actual RTT is below 4s, i.e., as long as the attacker’s

estimate of the RTT is within a factor of four, which is a rather

wide margin of error. Above a factor of four the false negative

and the false positive rates start to increase and the attack could

be detected. The stepwise increase in the misclassification rates

at RTT 4s and 6s is due to that measurements in the data sets

were taken every 3s.

C. Attack Impact

The results so far show that the BA attack could effectively

be used for selectively dropping unsolicited reports and this

way blind an operator. We quantify the potential effect of the

attack on the situational awareness of an operator through

the error that the attacker would introduce in the power

flow measurements available to an operator under the attack.

We define the error at time t as the difference between the

measured value P (tsn) received in the most recent solicited
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Fig. 6. CVRMSE(Ea
P (t)) and NRSE(Ea

P (t), t) for an active power flow
and the BA attack vs. Tp. Δ ∈ {1%, 5%, 10%}.

response and the measured value P (tuk) the operator should

have received in the most recent unsolicited response (had it

not been dropped by the attacker), i.e., for tsn < t < tsn+1

Ea
P (t) =

{
P (tuk)− P (tsn) if ∃tuk s.t. tsn < tuk ≤ t < tuk+1,

0 otherwise.
(4)

We define the mean squared error over the time interval [t1, t2]
as Ea

P (t)
2 = 1

t2−t1

∫ t2
t1

Ea
P (t)

2, and the coefficient of variation

of the root mean squared error as

CVRMSE(t1, t2) =

√√√√Ea
P (t1, t2)

2

P (t1, t2)
2 , (5)

where · stands for the mean. In practice, reacting to sudden

short changes of P (t) is important for proper operation of the

power system, we therefore also compute the normalized root

squared error for every time instant as

NRSE(t) =

√
Ea

P (t)
2

P (t))
2 . (6)

Fig. 6. shows CVRMSE and the 95th percentile of

NRSE(t) over the 7 days measurement period as a function

of the polling interval Tp for one of the active power flow

measurements for the BA attack (the attacker successfully

drops all unsolicited responses). Both the mean and the 95
percentile increase monotonically with Tp, with a decreasing

marginal gain. These results indicate that under an attack

the operator’s observation of the active power flow would be

almost 20% off in 5% of the time and it would be on average

up to 10% off. Interestingly, the results are not sensitive to the

reporting threshold Δ.

D. Attack Mitigation
Motivated by the effectiveness of the BA attack and its

potential impact, we finally discuss a number of mitigation

5



10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average introduced delay [s]

F
a
ls
e
n
e
g
a
t
iv
e
/
f
a
ls
e
p
o
s
it
iv
e
r
a
t
e

P(m ∈ Mas|m∈ Mu), Tp = 60s

P(m ∈ Mas|m∈ Mu), Tp = 600s

P(m ∈ Mau|m∈ Ms), Tp = 60s

P(m ∈ Mau|m∈ Ms), Tp = 600s

Fig. 7. False negative and positive rate vs. average introduced delay.

schemes. At the transport layer one could mitigate the attack

by using TCP, as the attack would cause head of line blocking

and would lead to a reset of the TCP connection. This miti-

gation may, however, not be feasible if the legacy equipment

does not support TCP or server resources are insufficient.

At the application layer, the DNP3 solicited response could

be extended by a field that contains the sequence number of

the most recently sent unsolicited response. As an alternative,

the outstation could introduce a random delay before sending

a solicited response (in response to a poll). The random delay

would make an attack using statistical pattern recognition more

difficult. To assess this latter mitigation scheme, Figure 7

shows the false negative rate and the false positive rate as

a function of the average delay introduced in the outstation

for the case of an exponential distribution and the BA(2)
attack. The choice of the exponential distribution is motivated

by the observation that the inter-arrival times of unsolicited

responses are well modeled by an exponential distribution for

a small reporting threshold. The false negative and the false

positive rates increase with a decreasing marginal gain with the

introduced delay, and for a relatively small average delay of a

few seconds they would be high enough for the BA(k) attack

to be detected. An interesting open question is whether such

delays would be compatible with legacy SCADA masters.

VII. CONCLUSION

We addressed the vulnerability of SCADA communication

to a gray hole attack, in which an attacker drops unsolicited

reports sent by an outstation to a SCADA master, while

letting through solicited reports in order to avoid detection.

We showed that such a gray hole attack is possible even if

messages are sent through an encrypted tunnel, because due

to the strict timing rules used in SCADA protocols traffic

analysis can effectively be used to classify protocol messages.

We proposed a support vector machine based traffic analysis

algorithm, used trace-based simulations to evaluate the attack,

and showed that an attacker would not need exact knowledge

of system parameters for a successful attack. We quantified

the impact of the attack in terms on monitoring accuracy, and

showed that the operator’s observation can be up to 10% off

on average, and up to 20% off in 5% of the time. Finally, we

discussed potential mitigation schemes, and showed that the

attack can be mitigated by introducing a random delay before

answering to poll messages.
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