
Improving Performance in a Combined
Router/Server

Voravit Tanyingyong, Markus Hidell, Peter Sjödin
School of Information and Communication Technology

KTH Royal Institute of Technology
Kista, Sweden

Email: {voravit, mahidell, psj}@kth.se

Abstract—A modern PC-based router can provide as competi-
tive service as a specialized hardware router while offering more
flexibility and possibility to extend beyond routing. We focus on a
use case in which the PC-based router also functions as a server.
In this paper, we propose a multi-core based architecture for
a combined router/server that efficiently provides simultaneous
packet forwarding and server processing. We improve the overall
performance by creating a fast path for packet forwarding
through caching flow entries in on-board classification hardware
on the NIC. We propose a generic design based on multi-
core processors and multi-queue network interface cards. We
describe a prototype implementation and present an experimental
evaluation of this design. We also devise a strategy for how
to efficiently map packet forwarding and application processing
tasks onto the multi-core architecture.

I. INTRODUCTION

Advancements in PC technology enables a modern PC-
based router to emerge as a cheap and competitive alternative
to a specialized hardware router [1], [2], [3]. Recent research
[4], [5], [6] has shown that today’s PC-based routers are
capable of forwarding several million packets per second,
corresponding to up to 10 gigabit/s wire-speed performance,
thanks to several improvements in PC architectures:

• Multiple general-purpose multi-core processors tremen-
dously increase computational power.

• Multi-queue network interface cards (NICs) enable par-
allel processing with a smaller number of cache-misses
through CPU affinity mapping of each queue to a CPU
core.

• Dedicated memory node for each physical processor
allows CPUs to have direct access to memory.

• High-speed interconnection through PCIe offers better
system throughput and I/O bandwidth.

PC-based routers offer several advantages over commercial
routers. They are normally built using commodity hardware,
which is generally cheap and commonly available compared
to specialized hardware. Moreover, the forwarding engines of
PC-based routers are usually implemented in software on a
generic platform making them programmable. These attributes
offer more flexibility and foster new forwarding services.
For example, researchers can develop and introduce new
functionalities using open APIs and standard programming
languages, something which is not possible in commercial
routers with proprietary interfaces and closed software.

With the generic-purpose nature of a PC-based architecture,
it can be extended to offer services beyond solely routing. In
this context, we focus on a scenario in which a PC-based router
also functions as an application server. One example where
such devices are useful is in data centers using e.g. BCube [7],
DCell [8] and FiConn [9] interconnection structures. In such
scenarios, each server acts as an end host as well as a
relay host for other servers. Another example is community-
level gateways in residential networks in which a PC-based
router can be responsible for packet forwarding as well as for
providing local services such as community web portal, mail,
media streaming, and directory services.

In this paper, we propose a suitable architecture for a
combined router/server that integrates two main functional
tasks–packet forwarding and server processing–into a single
system. We introduce a simple way to efficiently combine
the packet forwarding task and the server processing task as
well as to provide the required resources for each task. We
utilize parallelism of the multi-core architecture to boost the
performance. Moreover, we improve the overall performance
by offloading the CPU through a hardware classifier feature
on the NIC.

The idea for this work comes as a spin-off from our previous
work [10] that aims at improving lookup performance of PC-
based OpenFlow [11] using NIC hardware classification to
offload the CPU from the lookup processing task. The rest
of this paper is organized as follows; Section II describes the
architecture for multipurpose PC-based router and motivation
behind it. Section III gives an overview of the implementation
of our prototype. Section IV covers experiments and evalu-
ations. Finally, we conclude our work and identify potential
future work in Section V.

II. ARCHITECTURAL DESIGN

To cope with the increasing demand for services of the
future Internet, the underlying architecture of a PC-based
router should be flexible without sacrificing performance. We
believe that the architecture we proposed in our previous works
[10], [12] is an important step in this direction. We intend to
extend it further to provide a basis for a multipurpose PC-
based router, which we call a combined router/server. We
adhere to the idea of keeping our design open and accessible

by using open source software and standard PC hardware
components.

The main challenge with a combined router/server, which
integrates packet forwarding and server processing, is how to
efficiently combine these two tasks. In this context, we classify
the incoming packets into two types: pass-through packets to
be forwarded and local-delivery packets to be delivered to
applications running on the combined router/server. Our goal
is to exploit the multi-core architecture to provide a suitable
amount of CPU resources for the packet forwarding task under
various conditions.

In Linux, packet forwarding, which is performed in the
kernel space, has a higher priority than application-level pro-
cessing. When the system is under high load and is busy doing
intensive packet forwarding, the applications might not get
enough computational capacity to perform their task correctly.
To address this issue, it has been suggested that some CPU
cores should be reserved for application-level processing [4].
This is done by assigning NIC interrupts to a subset of the
CPU cores. The kernel scheduler will automatically execute
the applications on the remaining CPU cores when the system
is under traffic load. We take a different approach to address
the problem. We bind all CPU cores to NIC interrupts but
we selectively assign a set of the CPU cores to perform
packet forwarding. We do this by using on-board hardware
classification to direct packets to CPU cores used for packet
forwarding. This method allows us to increase the number of
the CPU cores used for packet forwarding if there is a need for
more forwarding capacity. Not only can we exploit the multi-
core architecture to distribute the packet forwarding among
the CPU cores for increasing performance, but we can also
use it to ensure that there are available resources for server
processing.

Apart from efficiently managing CPU resources, we would
like to improve the overall throughput of a combined
router/server. One way to do this is by offloading packet
forwarding to a hardware component. We use commodity
hardware to assist the CPUs in processing the pass-through
packets.

Modern commodity hardware components are very capa-
ble yet relatively cheap making them attractive choices for
our purpose. For instance, PacketShader [13] uses Graphics
Processing Unit (GPU) acceleration to offload computation
and memory-intensive workload. ServerSwitch [14] uses a
commodity switching chip to build a customized NIC that
can perform various customized packet forwarding in recent
proposed data center network (DCN) designs, and leverages
the server CPU for control and data plane packet processing.
RouteBricks [15] builds a scalable software router using clus-
ters of general-purpose PC hardware that parallelizes router
functionality across multiple servers and across multiple cores
within a single server. FIBIUM [16], RouteFlow [17], and
Flowstream [18] leverage packet forwarding to the switch-
ing hardware by consolidating commodity PC hardware and
programmable commodity switching hardware. We choose
the commodity NIC with hardware classification to assist

Fig. 1. Generic Architectural Design

the CPUs in processing the pass-through packets. We aim
at using unaltered commodity NICs and only make changes
in software. This method is easy to adopt and requires no
change in the existing infrastructure. With reduced workload,
the CPUs will be able to do more packet forwarding and/or
server processing.

We propose an architecture as depicted in Fig. 1, where
we reserve a set of CPU cores for each functional task. Note
that the number of CPU cores reserved as shown in Fig. 1
is just an example, the actual number of reserved CPU cores
should be based on the number of available CPU cores and
the desired balance between packet forwarding and server
processing. The applications in user space are server processes
as well as routing protocol processes running on the combined
router/server. The forwarding engine is a kernel space net-
working subsystem that makes forwarding decisions for pass-
through packets. To offload the CPU from packet processing,
we introduce a fast path in the lookup process to bypass the
software based forwarding. This is done by caching active
flow table entries in the on-board NIC classification hardware,
which functions as a lookup accelerator [10]. In general,
commodity NICs have no capability to forward the packet
completely by themselves. Thus, the Quickpath Selector is
introduced in the kernel as a decision point to determine which
path a received packet should take. A pass-through packet
belonging to a cached flow in the lookup accelerator will find
a match in the Quickpath Selector and gets forwarded without
further software processing. A packet that does not belong to
a cached flow will be forwarded along the standard software
path. A packet destined for a server process on the system will
be identified in the forwarding engine and will be passed on
to the corresponding process in the user space. The design in
Fig. 1 is intended to be generic to allow flexibility and should
support any types of hardware classification NICs as well as
any types of lookup process in the forwarding engine.

III. PROTOTYPE IMPLEMENTATION

We have created a prototype of the combined router/server,
where each component in our architecture is implemented as
follows:

1) Multi-core system + Multi-queue NIC: Research stud-
ies [4], [15] show that the coupling between hardware and
software has large impact on the performance of a multi-core
PC-based router. Although the packet forwarding task can be
distributed among the CPU cores to provide parallelization,
this may not always lead to improved performance. For
instance, when one receive queue is made available to multiple
CPU cores, each core must lock the receive queue before
accessing it. This is an expensive operation since the CPU
cores have to contend for locking the queue. Furthermore, the
study in [4] also shows that an application may suffer from
performance problems when executed on a CPU core that is
also doing packet forwarding.

In order to efficiently exploit parallelism, multi-queue NICs
can be used to reduce locking. [15] suggests two rules: 1) each
queue should be accessed by a single CPU core 2) each packet
should be handled by a single CPU core. For our prototype, we
bind one receive queue and one transmit queue to each CPU
core that can be involved in packet forwarding. This is done
by mapping receive queue 1 and transmit queue 1 to CPU
1, receive queue 2 and transmit queue 2 to CPU 2, and so
on. Doing so would ensure that there is no contention among
CPU cores across receive queues and transmit queues and that
both rules are enforced. To ensure that applications running on
the combined router/server will not suffer when the system is
under high packet processing, we limit the packet processing
to a specific set of CPU cores.

2) Hardware Classification: We use a NIC with the Intel
82599 10 Gigabit Ethernet (GbE) controller [19] as our lookup
accelerator. This Intel chipset offers a hardware classification
support called Flow Director filter, which can direct received
packets, according to their flows, to queues for classification
purposes. We describe the operation of the Flow Director filter
in more detail in [10]. We use the Flow Director filter to
classify received packets into two types; matched flows and
unmatched flows. Matched flows will be forwarded via the
fast path while unmatched flows will be either forwarded
via the slow path (pass-through packets) or passed on to
the applications running on the combined router/server (local-
delivery packets).

3) Quickpath Selector: We create a kernel module that
implements the Quickpath Selector. We modify the Linux
kernel to add a hook to our Quickpath kernel module so that
the received packet will be matched against the Quickpath
Selector before the general protocol handler. The Quickpath
kernel module contains a simple index lookup table with
receive interface and receive queue as the lookup key to
identify the outgoing interface and outgoing queue.

4) Forwarding Engine: To provide flexible forwarding, we
use an OpenFlow implementation as our forwarding engine.
Open vSwitch [20], which is a multilayer software switch
that supports many features including OpenFlow, matches well

with our purpose. We use the Open vSwitch kernel module,
which offers high-performance forwarding, for our forwarding
engine prototype.

IV. EXPERIMENTAL EVALUATION

To evaluate our architecture, we use our experimental
prototype as described in section III. We adopt a standard
experiment setup in conformance with the RFC 2544 [21]
using three PCs to evaluate the performance characteristics
of our architecture; PC1 is a traffic generator (source), PC2
is a device under test (DUT), and PC3 is a traffic receiver
(sink). Pktgen [22] is used as a packet generator on the source,
and a patch for receiver side traffic analysis [23] is used for
receiving traffic on the sink. The DUT is configured as a
combined router/server with Open vSwitch kernel module. All
three PCs have identical hardware; TYAN S7002 Motherboard
with Intel Xeon Quad Core 5520, 2.26 GHz, 3GB RAM, one
10 GbE dual-port NIC with Intel 82599 10 GbE controller.
The operating system we use is Bifrost/Linux [24] version 7.0
with the Linux net-next 3.0.0 kernel.

To investigate the performance characteristics of our archi-
tecture, we carry out various experiments as follows.

A. Baseline performance

This is a test to find the baseline forwarding performance
of the Open vSwitch running on our hardware and to inves-
tigate how much performance increase we can achieve with
Quickpath forwarding in our prototype. We are interested in
the maximum throughput as well as the effect from the number
of entries in the lookup table.

To keep the test simple, we set up the DUT to use only
one CPU core and two receive queues. Both receive queues
are mapped to the CPU core. One queue is used for matched
flows and the other queue is used for unmatched flows. We
carry out a test for a setup with unmodified Open vSwitch and
a setup with our architecture. The forwarding rule is simply to
forward packets that match entries in the lookup table in each
architecture. For a setup with Open vSwitch, we run one round
of test to warm the cache so that all possible packet flows
generated by our traffic generator exists in the lookup table.
All incoming packets will be put in the queue for unmatched
flows. This is to make sure that only one queue is used in
both setup to provide fair comparison. For our architecture, we
preconfigure all possible packet flows generated by the source
as 5-tuple (source/destination IP addresses, port numbers, and
IP protocol) flow entries in the Flow Director filter, which
subsequently redirects them to the queue for matched flows.

We vary the number of the lookup entries between 100 and
5000 entries and measure the performance. The performance
metric we focus on is the throughput in terms of packet per
second (pps). In each test, the source sends 64-byte packets
uniformly distributed from 100 different UDP flows. The DUT
receives all traffic on one port and forwards them onto another
port to the sink. All generated flows from the source will match
entries in the lookup tables in both setups. We vary the load
from 1 Kpps up to 1.5 Mpps.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

T
h
ro

u
g
h
p
u
t
in

 K
p
p
s

Traffic Load in Kpps

Open vSwitch 100 entries
Open vSwitch 1000 entries

Quickpath 100 entries
Quickpath 1000 entries

Fig. 2. Baseline Performance Test

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

M
a
x
im

u
m

 T
h
ro

u
g
h
p
u
t
in

 M
p
p
s

Total Number of CPU cores used

Open vSwitch 100 entries
Open vSwitch 1000 entries

Quickpath 100 entries
Quickpath 1000 entries

Fig. 3. Performance Scalability in relation to the number of CPU cores

The results show that for both setups the throughput is
independent of the number of entries in the lookup table. For
clarity, we plot only the result of when the lookup table has
100 and 1000 entries as shown in Fig. 2. This is because the
lookup tables in both setups are based on a hash table. Our
architecture increases the forwarding throughput on average
by 29% compared to the unmodified Open vSwitch.

For both setups, the overall performance will increase as
the number of CPU cores used for forwarding pass-through
packets increases as shown in Fig. 3. The performance per
CPU core degrades when Hyper-Threading is used (i.e. when
using 5-8 CPU cores) due to the contention among logical
processors. We have observed the same behavior in previous
experiments [10]. For the performance of 1-4 CPU cores, our
architecture maintains the average throughput improvement of
roughly 32% compared to unmodified Open vSwitch.

B. CPU load and the effect of NAPI

In this experiment, we investigate the CPU load as a
function of the traffic served by the CPU. We compare the
CPU load of the unmodified Open vSwitch with our Quickpath
forwarding. In addition, we examine the effect of the new API
(NAPI) [25] in packet forwarding.

We use the same setup with one CPU core as in the baseline
performance test, but this time we focus on measuring the CPU

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
P

U
 L

o
a
d
 i
n
 p

e
rc

e
n
ta

g
e

Traffic Load in Kpps

Open vSwitch 100 entries
Open vSwitch 1000 entries

Quickpath 100 entries
Quickpath 1000 entries

Fig. 4. CPU load

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400

N
u
m

b
e
r

o
f
In

te
rr

u
p

ts
 (

in
 M

ill
io

n
)

Traffic Load in Kpps

Open vSwitch 100 entries
Open vSwitch 1000 entries

Quickpath 100 entries
Quickpath 1000 entries

Fig. 5. Number of Interrupts

load instead of the forwarding throughput. We vary the load
from 1 Kpps to 1.5 Mpps. In each test round, we send traffic
for 60 seconds. During each round, we take 30 samples of the
CPU load, one sample every second, and calculate the average
value as the CPU load for each incoming traffic load.

We use cyclesoak1 to measure the CPU load of the system
in this experiment. Cyclesoak is an application to measure
system resource utilization through a subtractive method,
which measures how much system capacity is available rather
than how much is consumed. This gives a more accurate
measurement of the kernel subsystems than the conventional
process accounting.

We plot the average CPU load versus traffic load as shown
in Fig. 4. Each curve has two parts - at low traffic load, the
CPU load increases quickly with the traffic load, and at higher
load, CPU loads increases only a little with increasing traffic
load. Despite the fact that we achieve a significant throughput
improvement as shown in the baseline performance test, the
CPU load at low traffic load is only reduced by less than 13%.
Moreover, the CPU load at higher load is merely a marginal
difference. It is clear that we do not reduce the CPU load at
the same level as the gain in the throughput. This is expected

1source from http://www.tux.org/pub/sites/www.zip.com.au/%257Eakpm/linux/#zc
- accessed February 2012

since the lookup itself is not very CPU intensive. However,
the Quickpath gives faster per-packet processing (less time
required for processing each packet) since the amount of
software processing is kept at a minimum.

At higher load, a further increase in the traffic load only
gives a small increase in the CPU load. This is due to the effect
of using NAPI in the NIC device driver. NAPI stops the NIC
from generating interrupt while it handles the incoming pack-
ets in the receive queue. With NAPI, a significant performance
increase is obtained by switching over from interrupt handling
to polling under high traffic load. Once NAPI has processed all
the packets in the poll list, it re-enables the interrupt again. As
the load increases the system will spend more time processing
packets in polling mode relieving a portion of the interrupt
handling burden from the CPU core. The CPU core can use
the spare cycles to process more packets. More explanation
about NAPI is described in [25], [26].

To verify that NAPI does reduce the number of interrupts
in our experimental prototype, we repeat the experiment and
record the total number of generated interrupts at different
traffic load. The result is shown in Fig. 5. We observe the
expected behavior of NAPI. By relieving a portion of the
interrupt handling from the CPU, it becomes more efficient
at processing the packets making it possible to forward more
packets with marginal increase in the CPU load. The interrupt
rate continues to decrease to the point when the system is
saturated. At the saturation point, the incoming packets arrive
much faster than the system can process. When the receive
queue is full, the NIC will drop incoming packets.

From the results, we can conclude that when NAPI is used
it would be better to have just one CPU to forward the packets
than to distribute the workload to more CPU cores given that
the CPU can forward without dropping any packet. To verify
this hypothesis, we carry out an experiment with two CPUs.
We investigate how the application processing performance is
affected by how the two CPUs are used for packet forwarding.

C. Application processing performance in a combined
router/server

This experiment is to verify our hypothesis that we would
get better application processing performance when having one
CPU core at high traffic load instead of several CPU cores
at lower traffic load as long as one core is enough to serve
the incoming traffic. We use a setup with two CPU cores to
carry out an experiment on two cases; one when a single CPU
core is used for forwarding all the pass-through packets and
another when both CPU cores are used for forwarding. For
the latter case, we distribute the traffic load evenly to both
CPU cores. The two cases are illustrated in Fig. 6. We run a
server process on each CPU core to simulate services offered
by the combined router/server. We vary the traffic load from
no load up to 1.5 Mpps. We observe how the traffic load
affects the application processing performance and compare
the application processing performance of the two cases.

100% 50% 50%

Fig. 6. Test Cases for Distribution of Packet Forwarding Task

We use nbench2 to simulate the server process in this
experiment. Nbench is a Linux/Unix ported version of release
2 of BYTE Magazine’s BYTEmark benchmark program. It
runs through ten different tasks, each producing a result in
terms of number of iterations per second. Nbench uses these
numbers to calculate a geometric mean to produce three overall
indices: integer index, memory index, and floating-point index.
These indices are relative scores compared to a baseline system
based on an AMD K6/233 with 32 MB RAM and 512 KB L2-
cache running Linux 2.0.32 and using GNU gcc version 2.7.2.3
and libc-5.4.38. To provide a comparable representation of
the application processing performance, we normalize each
nbench index into a ratio relative to when there is no traffic
load (and only nbench occupies the CPU cores) according to
(1). N is the normalized index, Bi is the nbench index of
each CPU core, Zi is the nbench index at no traffic load of
each CPU core, and i is the CPU core number. We use the
normalized indices as our performance metric.

N =

n∑
i=1

Bi

n∑
i=1

Zi

(1)

After normalizing the three indices, their relative ratios
turn out to be almost identical. Thus, we choose to present
only the normalized results of the integer index. The result
is shown in Fig. 7. From the experiment, all three indices
decrease as the traffic load increases for both scenarios. This is
expected since the overall application processing performance
can be expected to decrease as the CPU cores begin to spend
more and more cycles on packet processing. We observe that
the application processing performance in case 1, where a
single CPU core is used for forwarding all packets, is always
higher than in case 2, where both CPU cores share the packet
processing burden. The application processing performance
stays above 0.5 under high load in case 1 whereas it continues
decreasing in case 2. The gap in performance between the
two cases is gradually increased as the load increases. This
indicates that we can achieve better application processing
performance when we allocate a single CPU core to carry out
the packet forwarding task, which confirms our hypothesis.
Note that our system in case 1 is saturated after 1100 Kpps,
since this is the maximum forwarding performance of a single
CPU core.

2source from http://www.tux.org/%7Emayer/linux/bmark.html - accessed
February 2012

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

N
o

rm
a
liz

e
d
 I
n
d
e
x

Traffic Load in Kpps

case1 case2

Fig. 7. Application Processing Performance with 2 CPU cores

From the result, it is clear that we should assign one CPU
core to process all the incoming pass-through packets as long
as the incoming load is less than or equal to what the CPU
core can forward without dropping packets. However, it must
be possible to invoke an additional CPU core when needed in
order to keep up with the forwarding under higher traffic loads.
We wish to exploit the fact that the packet forwarding is more
efficient when NAPI goes into polling mode (as described in
the previous experiment). To do this, we suggest a strategy
to invoke an additional CPU core only after the CPU load
reaches a certain threshold.

D. Making efficient use of multiple CPU cores

In the previous experiment, we found that it is better to use
a single CPU core to forward all packets than to distribute
the packets over two CPU cores. However, when all the
packets cannot be forwarded by a single CPU core, we need to
introduce additional CPU cores to forward the packets. In this
experiment, we want to verify that our hypothesis is still valid
under multi-core conditions and if the mechanism of adding
additional CPU cores to the forwarding task would create any
undesired behavior. Thus, we carry out an experiment where
we gradually increase the traffic load from zero up to a point
where four CPU cores are saturated with packet forwarding.
We investigate how the server processing is affected during
the increasing traffic load.

We compare two different cases; case 1 in which we start
with a single CPU core doing packet forwarding and then
gradually invoke additional cores when required due to the
traffic load, and case 2 in which the traffic load is always
evenly distributed across all four CPU cores. We run nbench on
each CPU core to simulate services offered by the combined
router/server. We vary the traffic load in each round of test
from no load up to 4 Mpps and observe how the traffic
load affects the application processing performance. We also
compare the application processing performance of the two
cases.

The result is shown in Fig. 8. We observe that the appli-
cation processing performance in case 1 is always better than
the application processing performance in case 2. Thus, we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

N
o

rm
a
liz

e
d
 I
n
d
e
x

Traffic Load in Kpps

case1 case2

Fig. 8. Application Processing Performance with 4 CPU cores

confirm that our hypothesis is still valid. We can efficiently
increase the forwarding capacity by increasing the number of
CPU cores used for forwarding in the combined router/server
by adding an additional CPU core to forward the packets when
the existing CPU cores are saturated. Despite the fact that we
generate the same traffic, we observe that case 2 starts to drop
packets after 3750 Kpps whereas case 1 does not drop any
packets. The explanation for this can be found in how NAPI
polling works with multiple receive queues. Case 1 and case 2
are different in the way flows are mapped to receive queues. In
case 1, longer bursts of consecutive packets will be mapped
to the same receive queue. Therefore, there is likely to be
a larger number of packets to fetch from one receive queue
during a polling interval. As a result, a higher load can be
served without dropping packets in case 1.

This experiment serves as an example of how good we can
achieve with our devised strategy. In reality, we would need
some dynamic way to monitor the traffic load and to determine
when to invoke an additional core. We would also need to
release a core that is no longer needed for packet forwarding,
when the traffic load decreases.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an open architecture to enable
the PC-based router to support multiple tasks beyond solely
routing and forwarding. We outline a generic and flexible
architectural design. The design provides a simple mechanism
for reserving CPU resources for different functional tasks of
a combined router/server. The overall performance is also
enhanced by offloading packet forwarding task from CPU
cores to the NIC through a solution based on caching of flows
and creating a fast path in the lookup process.

We implement a prototype of our architecture using a
regular PC with a NIC with the Intel 82599 10 Gigabit
Ethernet (GbE) controller, which provides a lookup acceler-
ation function. The classification function is done through a
feature called Flow Director filter, which can direct received
packets, according to their flows, to queues for classification
purposes. We introduce a Quickpath Selector, which uses a
simple index lookup table with the receive interface and the

receive queue as the lookup key to identify the output port. For
flexible forwarding, we use the Open vSwitch implementation
of OpenFlow switching.

We present an experimental evaluation to investigate the
improved performance of our architecture for a combined
router/server as well as to study the relative gain in term
of application processing performance we can achieve from
careful CPU allocation for packet forwarding. We use a NAPI-
enabled driver to efficiently handle high traffic loads and
exploit NAPI in our design to map packet forwarding onto
specific CPU cores. The results show that the CPU offloading
of our architecture increases the throughput by 32% on average
compared to unmodified Open vSwitch forwarding. The results
also show that for NAPI-enabled systems it is more efficient to
have a CPU core forwarding as many packets as possible rather
than to distribute packets among multiple cores. However,
more research is required to determine whether this result
would hold for a system that does not have NAPI-like interrupt
management.

Our experiments indicate that careful planning of how to
use CPU cores for packet forwarding and server processing
significantly affects the overall performance of a combined
router/server. We have presented a proof of concept and a
future challenge is to introduce a run-time monitoring and
dynamic allocation of CPU cores for packet forwarding. In
the current prototype, we focus on allocating CPU resources
for packet forwarding and assume that the remaining CPU
resources will be used for server processing. More research
on how best to allocate the available CPU resources for server
processes in a combined router/server is needed.

Combining router and server functionalities into a single
unit might lead to vulnerabilities. Further studies on isolation
and security aspects are required to ensure integrity and
accountability of the system and its services. We also plan
to investigate the aspect of power efficiency for our PC-based
system.

Moreover, in our experiments we cache each flow individu-
ally. Although this gives a fine-grained granularity, this might
not be realistic since not all flows have good locality. For
practical usage, aggregated flows can be used to improve traffic
locality. For instance, we can cache flows based on AS level or
address blocks (for example /24 subnets) instead of individual
source and destination IP addresses. More experiments are
needed in order to get insights on how to find a suitable level
of granularity.

Finally, the overall performance of the combined
router/server could be further improved through the
enhancement of the software process. For instance, in
most operating system, packets are copied when crossing
the kernel/user boundary in the operating system. This is
a slow and expensive operation since it involves additional
memory allocation/deallocation. Netmap [27] improves this
process by introducing a new structure that allows user
space applications to directly access the packet buffer.
Similarly, Click [28] improves this process through the use of
polling and a specialized memory management system that

allocates/deallocates packet buffers. Such techniques can be
used to enhance the overall performance further.

REFERENCES

[1] R. Olsson et al., “Open source routing in high-speed production use,”
in Proceedings of the 2008 Linux Kongress, October 2008.

[2] The Tolly Group, “Vyatta 1.1.2, competitive gigabit ethernet lan routing
throughput evaluation versus cisco 2821 integrated services router,” Test
Report, march 2007.

[3] G. Lawton, “Routing faces dramatic changes,” Computer, vol. 42, no. 9,
pp. 15 –17, sept. 2009.

[4] R. Bolla and R. Bruschi, “Pc-based software routers: high performance
and application service support,” in PRESTO ’08. ACM, pp. 27–32.

[5] N. Egi et al., “Towards high performance virtual routers on commodity
hardware,” in CoNEXT ’08. NY, USA: ACM, 2008, pp. 20:1–20:12.

[6] O. Hagsand, R. Olsson, and B. Gördén, “Towards 10gb/s open-source
routing,” in Proceedings of the 2008 Linux Kongress, October 2008.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” pp. 63–74, 2009.

[8] C. Guo et al., “Dcell: a scalable and fault-tolerant network structure for
data centers,” SIGCOMM CCR, vol. 38, pp. 75–86, August 2008.

[9] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu, “Scalable and
cost-effective interconnection of data-center servers using dual server
ports,” IEEE/ACM Trans. Netw., vol. 19, pp. 102–114, February 2011.

[10] V. Tanyingyong, M. Hidell, and P. Sjödin, “Using hardware classification
to improve pc-based openflow switching,” in High Performance Switch-
ing and Routing (HPSR), 2011 IEEE 12th International Conference on,
July 2011, pp. 215 –221.

[11] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[12] V. Tanyingyong, M. Hidell, and P. Sjödin, “Offloading packet process-
ing in a combined router/server,” in 7th Swedish National Computer
Networking Workshop SNCNW 2011, June 2011.

[13] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” SIGCOMM CCR, vol. 41, pp. 195–206, August 2010.

[14] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao,
and Y. Zhang, “Serverswitch: a programmable and high performance
platform for data center networks,” in NSDI’11.

[15] K. Fall et al., “Routebricks: enabling general purpose network infras-
tructure,” SIGOPS OSR, vol. 45, pp. 112–125, February 2011.

[16] N. Sarrar, A. Feldmann, S. Uhlig, R. Sherwood, and X. Huan, “Fibium:
Towards hardware accelerated software routers,” Deutsche Telekom
Laboratories, Tech. Rep., November 2010, techical Report No 9.

[17] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A.
Corrêa, S. C. de Lucena, and M. F. Magalhães, “Virtual routers as a
service: the routeflow approach leveraging software-defined networks,”
in Proceedings of the 6th International Conference on Future Internet
Technologies, ser. CFI ’11. New York, USA: ACM, 2011, pp. 34–37.

[18] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity network
hardware,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 20–26,
March 2009.

[19] Intel, “Product brief: Intel 82599 10 gigabit ethernet controller,” 2009.
[20] B. Pfaff et al., “Extending networking into the virtualization layer,” in

Proc. ACM Hotnets-VIII, New York City, NY. USA., 2009.
[21] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network

Interconnect Devices,” IETF, RFC 2544, Mar. 1999.
[22] R. Olsson, “pktgen the linux packet generator,” in Linux Symposium,

vol. 2, 2005, pp. 11–24.
[23] D. Turull, “Open source traffic analyzer,” Master’s thesis, KTH Infor-

mation and Communication Technology, 2010.
[24] “Bifrost project.” [Online]. Available: http://bifrost.slu.se/
[25] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Pro-

ceedings of the 5th annual Linux Showcase & Conference - Volume 5.
Berkeley, CA, USA: USENIX Association, 2001, pp. 18–18.

[26] K. Salah and A. Qahtan, “Implementation and experimental performance
evaluation of a hybrid interrupt-handling scheme,” Computer Commu-
nications, vol. 32, no. 1, pp. 179 – 188, 2009.

[27] L. Rizzo and M. Landi, “netmap: memory mapped access to network
devices,” in SIGCOMM ’11. NY, USA: ACM, 2011, pp. 422–423.

[28] E. Kohler et al., “The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, pp. 263–297, August 2000.

