
ENABLING SELF-MANAGEMENT OF
COMPONENT BASED DISTRIBUTED
APPLICATIONS ∗

Ahmad Al-Shishtawy,1 Joel Höglund,2 Konstantin Popov,2

Nikos Parlavantzas,3 Vladimir Vlassov,1 and Per Brand2

1Royal Institute of Technology (KTH), Stockholm, Sweden
{ahmadas,vladv}@kth.se

2Swedish Institute of Computer Science (SICS), Stockholm, Sweden
{kost,joel,perbrand}@sics.se

3INRIA, Grenoble, France
nikolaos.parlavantzas@inria.fr

Abstract Deploying and managing distributed applications in dynamic Grid environments
requires a high degree of autonomous management. Programming autonomous
management in turn requires programming environment support and higher level
abstractions to become feasible. We present a framework for programming self-
managing component-based distributed applications. The framework enables
the separation of application’s functional and non-functional (self-*) parts. The
framework extends the Fractal component model by the component group ab-
straction and one-to-any and one-to-all bindings between components and groups.
The framework supports a network-transparent view of system architecture sim-
plifying designing application self-* code. The framework provides a concise
and expressive API for self-* code. The implementation of the framework relies
on scalability and robustness of the Niche structured p2p overlay network. We
have also developed a distributed file storage service to illustrate and evaluate
our framework.

Keywords: self-management, autonomic computing, component-based applications, P2P,
Grid

∗This research is supported by the FP6 Project Grid4All funded by the European Commission (Contract
IST-2006-034567) and by the FP6 Network of Excellence CoreGRID funded by the European Commission
(Contract IST-2002-004265).

2

1. Introduction
Deployment and run-time management of applications constitute a large

part of software’s total cost of ownership. These costs increase dramatically
for distributed applications that are deployed in dynamic environments such as
unreliable networks aggregating heterogeneous, poorly managed resources.

The autonomic computing initiative [11] advocates self-configuring, self-
healing, self-optimizing and self-protecting (self-* thereafter) systems as a way
to reduce the management costs of such applications. Architecture-based self-*
management [10] of component-based applications [5] have been shown useful
for self-repair of applications running on clusters [3].

We present a design of a component management platform supporting self-*
applications for community-based Grids, and illustrate it with an application.
Community-based Grids are envisioned to fill the gap between high-quality Grid
environments deployed for large-scale scientific and business applications, and
existing peer-to-peer systems which are limited to a single application. Our
application, a storage service, is intentionally simple from the functional point
of view, but it can self-heal, self-configure and self-optimize itself.

Our framework separates application functional and self-* code. We provide
a programming model and a matching API for developing application-specific
self-* behaviours. The self-* code is organized as a network of management el-
ements (MEs) interacting through events. The self-* code senses changes in the
environment by means of events generated by the management platform or by
application specific sensors. The MEs can actuate changes in the architecture –
add, remove and reconfigure components and bindings between them. Appli-
cations using our framework rely on external resource management providing
discovery and allocation services.

Our framework supports an extension of the Fractal component model [5].
We introduce the concept of component groups and bindings to groups. This
results in “one-to-all” and “one-to-any” communication patterns, which support
scalable, fault-tolerant and self-healing applications [4]. For functional code, a
group of components acts as a single entity. Group membership management
is provided by the self-* code and is transparent to the functional code. With a
one-to-any binding, a component can communicate with a component randomly
chosen at run-time from a certain group. With a one-to-all binding, it will
communicate with all elements of the group. In either case, the content of the
group can change dynamically (e.g. because of churn) affecting neither the
source component nor other elements of the destination’s group.

The management platform is self-organizing and self-healing upon churn. It
is implemented on the Niche overlay network [4] providing for reliable com-
munication and lookup, and for sensing behaviours provided to self-* code.

Enabling self-management 3

Figure 1. Application Architecture. Figure 2. Ids and Handlers.

Our first contribution is a simple yet expressive self-* management frame-
work. The framework supports a network-transparent view of system architec-
ture, which simplifies reasoning about and designing application self-* code.
In particular, it facilitates migration of components and management elements
caused by resource churn. Our second contribution is the implementation model
for our churn-tolerant management platform that leverages the self-* properties
of a structured overlay network.

We do not aim at a general model for ensuring coherency and convergence
of distributed self-* management. We believe, however, that our framework
is general enough for arbitrary self-management control loops. Our example
application demonstrates also that these properties are attainable in practice.

2. The Management Framework
An application in the framework consists of a component-based implemen-

tation of the application’s functional specification (the lower part of Fig. 1),
and an implementation of the application’s self-* behaviors (the upper part).
The management platform provides for component deployment and communi-
cation, and supports sensing of component status.

Self-* code in our management framework consists of management elements
(MEs), which we subdivide into watchers (W1, W2 .. on Fig. 1), aggregators
(Aggr1) and managers (Mgr1), depending on their roles in the self-* code.
MEs are stateful entities that subscribe to and receive events from sensors and
other MEs. Sensors are either component-specific and developed by the pro-
grammer, or provided by the management framework itself such as component
failure sensors. MEs can manipulate the architecture using the management ac-
tuation API [3] implemented by the framework. The API provides in particular
functions to deploy and interconnect components.

4

Figure 3. Structure of MEs. Figure 4. Composition of MEs.

Elements of the architecture – components, bindings, MEs, subscriptions,
etc. – are identified by unique identifiers (IDs). Information about an architec-
ture element is kept in a handle that is unique for the given ID, see Fig. 2. The
actuation API is defined in terms of IDs. IDs are introduced by DCMS API calls
that deploy components, construct bindings between components and subscrip-
tions between MEs. IDs are specified when operations are to be performed on
architecture elements, like deallocating a component. Handles are destroyed
(become invalid) as a side effect of destruction operation of their architecture
elements. Handles to architecture elements are implemented by sets of network
references described below. Within a ME, handles are represented by an object
that can cache information from the handle. On Fig. 2, handle object for id:3
used by the deploy actuation API call caches the location of id:3.

An ME consists of an application-specific component and an instance of the
generic proxy component, see Fig. 3. ME proxies provide for communication
between MEs, see Fig. 4, and enable the programmer to control the management
architecture transparently to individual MEs. Sensors have a similar two-part
structure.

The management framework enables the developer of self-* code to control
location of MEs. For every management element the developer can specify a
container where that element should reside. A container is a first-class entity
which sole purpose is to ensure that entities in the container reside on the same
physical node. This eliminates network communication latencies between co-
located MEs. The container’s location can be explicitly defined by a location
of a resource that is used to host elements of the architecture, thus eliminating
the communication latency and overhead between architecture elements and
managers handling them.

A Set of Network References, SNR [4], is a primitive data abstraction that is
used to associate a name with a set of references. SNRs are stored under their
names on the structured overlay network. SNR references are used to access
elements in the system and can be either direct or indirect. Direct references
contain the location of an entity, and indirect references refer to other SNRs

Enabling self-management 5

by names and need to be resolved before use. SNRs can be cached by clients
improving access time. The framework recognizes out-of-date references and
refreshes cache contents when needed.

Groups are implemented using SNRs containing multiple references. A
“one-to-any” or “one-to-all” binding to a group means that when a message is
sent through the binding, the group name is resolved to its SNR, and one or
more of the group references are used to send the message depending on the
type of the binding. SNRs also enable mobility of elements pointed to by the
references. MEs can move components between resources, and by updating
their references other elements can still find the components by name. A group
can grow or shrink transparently from group user point of view. Finally SNRs
are used to support sensing through associating watchers with SNRs. Adding
a watcher to an SNR will result in sensors being deployed for each element
associated with the SNR. Changing the references of an SNR will transparently
deploy/undeploy sensors for the corresponding elements.

SNRs can be replicated providing for reliable storage of application architec-
ture. The SRN replication provides eventual consistency of SNR replicas, but
transient inconsistencies are allowed. Similarly to handling of SNR caching,
the framework recognizes out-of-date SNR references and repeats SNR access
whenever necessary.

3. Implementation and evaluation
We have designed and developed YASS – “yet another storage service” – as a

way to refine the requirements of the management framework, to evaluate it and
to illustrate its functionality. Our application stores, reads and deletes files on a
set of distributed resources. The service replicates files for the sake of robustness
and scalability. We target the service for dynamic Grid environments, where
resources can join, gracefully leave or fail at any time. YASS automatically
maintains the file replication factor upon resource churn, and scales itself based
on the load on the service.

3.1 Application functional design
A YASS instance consists out of front-end components which are deployed

on user machines and storage components Fig. 5. Storage components are
composed of file components representing files. The ovals in Fig. 5 represent
resources contributed to a Virtual Organization (VO). Some of the resources
are used to deploy storage components, shown as rectangles.

A user store request is sent to an arbitrary storage component (one-to-any
binding) that will find some r different storage components, where r is the file’s
replication degree, with enough free space to store a file replica. These replicas
together will form a file group containing the r dynamically created new file

6

VO

W
rit

e R
eq

uest

one-t
o-an

y binding

to th
e s

torag
e g

roup

Read Requestone-to-any bindingto a file group

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Front-end

Component

Ax,Bx,Cx = file groups, x is

replica number in the group.

Ovals = resources.

Rectangles = Components.

Dashed line = YASS storage

components group.

Figure 5. YASS Functional Part

Component

Load Change

Watcher

Storage

Aggregator

Configuration

Manager
File

Replica

Aggregator

File

Replica

Manager

Actuation APIL L L L F FF F F C CC C C

Application wide MEs.

One of each per YASS instance

File related MEs.

One of each per file group

LActuation API
Leave Sensors Failure Sensors Load Change Sensors

M
an

ag
em

en
t

E
le

m
en

ts
S

en
si

n
g
 a

n
d

A
ct

u
at

io
n

Create

Group

Manager

G G G GG

Group Sensors

Figure 6. YASS Non-Functional Part

components. The user will then use a one-to-all binding to send the file in
parallel to the r replicas in the file group. Read requests can be sent to any of
the r file components in the group using the one-to-any binding between the
front-end and the file group.

3.2 Application non-functional design

Configuration of application self-management. The Fig. 6 shows the archi-
tecture of the watchers, aggregators and managers used by the application.

Associated with the group of storage components is a system-wide Storage-
aggregator created at service deployment time, which is subscribed to leave-
and failure-events which involve any of the storage components. It is also

Enabling self-management 7

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

SComp1

SComp2

SComp3

SComp4

SComp5

L C

L C

L C

L C

L C

F

F

F

F

F

A3

A1 A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Configuration

Manager

Storage

Aggregator

Component

Load Change

Watcher

SComp1
SComp2
SComp3
SComp4
SComp5

Component

Load Change

Watcher

YASS SNR

Figure 7. Parts of the YASS application deployed on the management infrastructure.

subscribed to a Load-watcher which triggers events in case of high system
load. The Storage-aggregator can trigger StorageAvailabilityChange-events,
which the Configuration-manager is subscribed to.

When new file-groups are formed by the functional part of the application,
the management infrastructure propagates group-creation events to the Create-
Group-manager which initiates a FileReplica-aggregator and a FileReplica-
manager for the new group. The new FileReplica-aggregator is subscribed to
resource leave- and resource fail-events of the resources associated with the
new file group.

3.3 Test-cases and initial evaluation
The infrastructure has been initially tested by deploying a YASS instance on

a set of nodes. Using one front-end a number of files are stored and replicated.
Thereafter a node is stopped, generating one fail-event which is propagated to
the Storage-aggregator and to the FileReplica-aggregators of all files present on
the stopped node. Below is explained in detail how the self-management acts
on these events to restore desired system state.

Fig. 7 shows the management elements associated with the group of storage
components. The black circles represent physical nodes in the P2P overlay
Id space. Architectural entities (e.g. SNR and MEs) are mapped to ids. Each
physical node is responsible for Ids between its predecessor and itself including
itself. As there is always a physical node responsible for an id, each entity will
be mapped to one of the nodes in the system. For instance the Configuration
Manager is mapped to id 13, which is the responsibility of the node with id 14
which means it will be executed there.

8

Application Self-healing. Self-healing is concerned with maintaining the de-
sired replica degree for each stored item. This is achieved as follows for resource
leaves and failures:

Resource leave. An infrastructure sensor signals that a resource is about to
leave. For each file stored at the leaving resource, the associated FileReplica-
aggregator is notified and issues a replicaChange-event which is forwarded to
the FileReplica-manager. The FileReplica-manager uses the one-to-any binding
of the file-group to issue a FindNewReplica-event to any of the components in
the group.

Resource failure. On a resource failure, the FileGroup-aggregator will check
if the failed resource previously signaled a ResourceLeave (but did not wait long
enough to let the restore replica operation finish). In that case the aggregator
will do nothing, since it has already issued a replicaChange event. Otherwise a
failure is handled the same way as a leave.

Application Self-configuration. With self-configuration we mean the ability to
adapt the system in the face of dynamism, thereby maintaining its capability to
meet functional requirements. This is achieved by monitoring the total amount
of allocated storage. The Storage-aggregator is initialized with the amount of
available resources at deployment time and updates the state in case of resource
leaves or failures. If the total amount of allocated resources drops below given
requirements, the Storage-aggregator issues a storageAvailabilityChange-event
which is processed by the Configuration-manager. The Configuration-manager
will try to find an unused resource (via the external resource management ser-
vice) to deploy a new storage component, which is added to the group of compo-
nents. Parts of the Storage-aggregator and Configuration-manager pseudocode
is shown in Listing 1.1, demonstrating how the stateful information is kept by the
aggregator and updated through sensing events, while the actuation commands
are initiated by the manager.

Application Self-optimization. In addition to the two above described test-
cases we have also designed but not fully tested application self-optimization.
With self-optimization we mean the ability to adapt the system so that it, be-
sides meeting functional requirements, also meets additional non-functional
requirements such as efficiency. This is achieved by using the ComponentLoad-
watcher to gather information on the total system load, in terms of used stor-
age. The storage components report their load changes, using application spe-
cific load sensors. These load-change events are delivered to the Storage-
aggregator. The aggregator will be able to determine when the total utilization
is critically high, in which case a StorageAvailabilityChange-event is gener-
ated and processed by the Configuration-manager in the same way as described
in the self-configuration section. If utilization drops below a given thresh-
old, and the amount of allocated resources is above initial requirements, a

Enabling self-management 9

Listing 1.1. Pseudocode for parts of the Storage-aggregator

upon event ResourceFailure(resource id) do
amount to subtract = allocated resources (resource id)
total storage = total amount − amount to subtract
current load = update(current load , total storage)
i f total amount < initial requirement or current load > high limit then

trigger (availabilityChangeEvent(total storage , current load))
end

Listing 1.2. Pseudocode for parts of the Configuration-manager

upon event availabilityChangeEvent(total storage , new load) do
i f total storage < initial requirement or new load > high limit then

new resource = resource discover (component requirements , compare criteria)
new resource = allocate (new resource , preferences)
new component = deploy(storage component description , new resource)
add to group(new component, component group)

elseif total storage > initial requirement and new load < low limit then
least loaded component = component load watcher . get least loaded ()
least loaded resource = least loaded component . get resource ()
trigger (resourceLeaveEvent(least loaded resource))

end

storageAvailabilityChange-event is generated. In this case the event indicates
that the availability is higher than needed, which will cause the Configuration-
manager to query the ComponentLoad-watcher for the least loaded storage com-
ponent, and instruct it to deallocate itself, thereby freeing the resource. Parts of
the Configuration-manager pseudocode is shown in Listing 1.2, demonstrating
how the number of storage components can be adjusted upon need.

4. Related Work
Our work builds on the technical work on the Jade component-management

system [3]. Jade utilizes the Java RMI, and is limited to cluster environments
as it relies on small and bounded communication latencies between nodes.

As the work here suggests a particular implementation model for distributed
component based programming, relevant related work can be found in research
dealing specifically with autonomic computing in general and in research about
component and programming models for distributed systems.

Autonomic Management. The vision of autonomic management as presented
in [11] has given rise to a number of proposed solutions to aspects of the
problem. Many solutions adds self-management support through the actions
of a centralized self-manager. One suggested system which tries to add some
support for the self-management of the management system itself is Unity [6].
Following the model proposed by Unity, self-healing and self-configuration are

10

enabled by building applications where each system component is a autonomic
element, responsible for its own self-management. Unity assumes cluster-like
environments where the application nodes might fail, but the project only partly
addresses the issue of self-management of the management infrastructure itself.

Relevant complementary work include work on checkpointing in distributed
environments. Here recent work on Cliques [8]can be mentioned, where worker
nodes help store checkpoints in a distributed fashion to reduce load on man-
agers which then only deal with group management. Such methods could be
introduced in our framework to support stateful applications.

Component Models. Among the proposed component models which target
building distributed systems, the traditional ones, such as the Corba Component
Model or the standard Enterprise JavaBeans were designed for client-server re-
lationships assuming highly available resources. They provide very limited
support for dynamic reconfiguration. Other component models, such as Open-
COM [7], allow dynamic flexibility, but their associated infrastructure lacks
support for operation in dynamic environments.

The Grid Component Model, GCM [9], is a recent component model that
specifically targets grid programming. GCM is defined as an extension of
Fractal and its features include many-to-many communications with various
semantics and autonomic components.

GCM defines simple "autonomic managers" that embody autonomic be-
haviours and expose generic operations to execute autonomic operations, ac-
cept QoS contracts, and to signal QoS violations. However, GCM does not
prescribe a particular implementation model and mechanisms to ensure the ef-
ficient operation of self-* code in large-scale environments. Thus, GCM can be
seen as largely complementary to our work and thanks to the common ancestor,
we believe that our results can be exploited within a future GCM implementa-
tion. Behavioural skeletons [1] aim to model recurring patterns of component
assemblies equipped with correct and effective self-management schemes. Be-
havioural skeletons are being implemented using GCM, but the concept of
reusable, domain-specific, self-management structures can be equally applied
using our component framework.

GCM also defines collective communications by introducing new kinds of
cardinalities for component interfaces: multicast, and gathercast [2]. This
enables one-to-n and n-to-one communication. However GCM does not define
groups as a first class entities, but only implicitly through bindings, so groups
can not be shared and reused. GCM also does not mention how to handle failures
and dynamism (churn) and who is responsible to maintain the group. Our one-
to-all binding can utilise the multicast service, provided by the underlying P2P
overlay, to provide more scalable and efficient implementation in case of large
groups. Also our model supports mobility so members of the group can change
their location without affecting the group.

Enabling self-management 11

A component model designed specifically for structured overlay networks
and wide scale deployment is p2pCM [13], which extends the DERMI [12]
object middleware platform. The model provides replication of component in-
stances, component lifecycle management and group communication, including
anycall functionality to communicate with the closest instance of a component.
The model does not offer higher level abstractions such as watchers and event
handlers, and the support for self-healing and issues of consistency are only
partially addressed.

5. Future Work
Currently we are working on the management element wrapper abstraction.

This abstraction adds fault-tolerance to the self-* code by enabling ME repli-
cation. The goal of the management element wrapper is to provide consistency
between the replicated ME in a transparent way and to restore the replication
degree if one of the replicas fails. Without this support from the framework,
the user can still have self-* fault-tolerance by explicitly implementing it as a
part of the application’s non-functional code. The basic idea is that the man-
agement element wrapper adds a consistency layer between the replicated ME
from one side and the sensors/actuators from the other side. This layer provides
a uniform view of the events/actions for both sides.

Currently the we use a simple architecture description language (ADL) only
covering application functional behaviours. We hope to extend this to also
cover non-functional aspects.

We are also evaluating different aspects of our framework such as the over-
head of our management framework in terms of network traffic and the time
need execute self-* code. Another important aspect is to analyse the effect of
churn on the self-* code.

Finally we would like to evaluate our framework using applications with
more complex self-* behaviours.

6. Conclusions
The proposed management framework enables development of distributed

component based applications with self-* behaviours which are independent
from application’s functional code, yet can interact with it when necessary.
The framework provides a small set of abstractions that facilitate fault-tolerant
application management. The framework leverages the self-* properties of the
structured overlay network which it is built upon. We used our component
management framework to design a self-managing application to be used in
dynamic Grid environments. Our implementation shows the feasibility of the
framework.

12

References
[1] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi,

D. Laforenza, and N. Tonellotto. Behavioural skeletons in GCM: Autonomic manage-
ment of grid components. In PDP ’08: Proceedings of the 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2008), pages 54–63. IEEE
Computer Society, 2008.

[2] Francoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel. Collective in-
terfaces for distributed components. In CCGRID ’07: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid, pages 599–610, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[3] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, J.-B. Stefani, N. de Palma,
and V. Quema. Architecture-based autonomous repair management: An application to
J2EE clusters. In SRDS ’05: Proceedings of the 24th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’05), pages 13–24, Orlando, Florida, October 2005. IEEE.

[4] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas, V. Vlassov, and
A. Al-Shishtawy. The role of overlay services in a self-managing framework for dynamic
virtual organizations. In CoreGRID Workshop, Crete, Greece, June 2007.

[5] E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal component model. Technical
report, France Telecom R&D and INRIA, February 5 2004.

[6] D. Chess, A. Segal, I. Whalley, and S. White. Unity: Experiences with a prototype auto-
nomic computing system. Proc. of Autonomic Computing, pages 140–147, May 2004.

[7] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A component model
for building systems software. In Proceedings of IASTED Software Engineering and
Applications (SEA’04), Cambridge MA, USA, November 2004.

[8] D. Kondo F. Araujo, P. Domingues and L. Moura Silva. Using cliques of nodes to store
desktop grid checkpoints. In Proceedings of CoreGRID Integration Workshop 2008, pages
15–26, 2008.

[9] Basic features of the Grid component model. CoreGRID Deliverable D.PM.04, Core-
GRID, EU NoE project FP6-004265, March 2007.

[10] J. Hanson, I. Whalley, D. Chess, and J. Kephart. An architectural approach to autonomic
computing. In ICAC ’04: Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), pages 2–9, Washington, DC, USA, 2004. IEEE Computer Society.

[11] P. Horn. Autonomic computing: IBM’s perspective on the state of information technology,
October 15 2001.

[12] C. Pairot, P. Garcı́a, and A. Gómez-Skarmeta. Dermi: A new distributed hash table-based
middleware framework. IEEE Internet Computing, 08(3):74–84, 2004.

[13] C. Pairot, P. Garcı́a, R. Mondéjar, and A. Gómez-Skarmeta. p2pCM: A structured peer-
to-peer Grid component model. In International Conference on Computational Science,
pages 246–249, 2005.

