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Abstract 
Recent years have seen a growing interest in 

autonomic computing, an approach to providing 
systems with self managing properties [1]. Autonomic 
computing aims to address the increasing complexity 
of the administration of large systems. The 
contribution of this paper is to provide a generic tool 
to ease the development of autonomic managers. Using 
this tool, an administrator provides a set of alternative 
architectures and specifies conditions that are used by 
autonomic managers to update architectures at 
runtime. Software changes are computed as 
architectural differences in terms of component model 
artifacts (components, attributes, bindings, etc.). These 
differences are then used to migrate into the next 
architecture by reconfiguring only the required part of 
the running system. 
 
1. Introduction 

Our computing environments are increasingly 
sophisticated: they involve numerous, complex 
software systems that cooperate in potentially 
distributed environments. These systems are developed 
with heterogeneous programming models and typically 
expose proprietary configuration facilities. As a result, 
the administration of these systems (installation, 
configuration, tuning, repair…) is becoming 
increasingly costly in terms of human, hardware, and 
software resources. A promising approach to reducing 
the costs of administration is to build autonomic 
systems. Autonomic systems are able to “reason” about 
their own properties and to control their own behavior 
at run time. For this purpose, they embed autonomic 
managers which implement control loops that regulate 
the managed system. The managed system can be a 
single hardware or software element, or it may be a 
complex system, such as a cluster of machines, or a 
distributed middleware infrastructure. The autonomic 
manager interacts with the managed system through 
two types of elements: sensors to watch the state of the 
system, and actuators to reconfigure it.  Importantly, 
the autonomic manager also embeds knowledge of the 

system, which is used as a basis for various 
management functions. 

In the architecture-based management approach [2], 
the knowledge of the system is a formal or semi-formal 
description of the organization of the managed system. 
This description is typically based on components and 
bindings. The environment of the applications (e.g., 
hardware resources, system services) may be described 
in the same way. When an event occurs in the managed 
system and triggers an autonomic response, the 
manager first analyses the event, choose a 
reconfiguration plan to fix the problem and then 
executes the plan using the system's actuators to 
change the managed system accordingly. The 
manager’s job can be partially seen as a function that 
updates the architecture of the system from a given 
running configuration to a target configuration. In 
other words, the system is dynamically updated from a 
component structure to another. The contribution of 
this paper is to provide a generic tool to ease the 
development of autonomic managers. Using this tool, 
an administrator provides a set of alternative 
architectures and specifies conditions that are used by 
autonomic managers to update the architecture at 
runtime. Software changes are computed as 
architectural differences by an architecture diff 
algorithm in terms of component model artifacts 
(components, attributes, bindings...). These differences 
are then used by a change manager to reconfigure only 
the required part of the running system to update into 
the target architecture. As a first step, this work focuses 
on distributed applications running on a local area 
network  (e.g., a cluster) and under the control of a 
single autonomic manager.  

This paper is organized as follows. Section 2 
describes our main requirements, and Section 3 
discusses related work. Section 4 then presents our 
design principles, and Section 5 provides an overview 
of our architecture. Sections 6, 7 and 8 give more 
details about the used component model, the diff 
algorithm and change management. Finally, Section 9 
describes a use case, and Section 10 concludes the 
paper. 



 
2. Requirements 
Our approach is driven by the following requirements: 
 
• Architecture-based management: the 

architecture-based approach requires (i) providing 
meta-data that describe all the alternative 
architectures of the system, and (ii) providing fine-
grained operations to monitor and to reconfigure 
the architecture at runtime. 
 

• Architecture comparison: our autonomic 
manager requires a comparison algorithm, able to 
automatically compute the differences between the 
current runtime architecture of a system and a 
target architecture. From these differences, the 
manager should produce a reconfiguration script to 
dynamically update the current architecture into 
the target one. 

 
• Consistent change management: we require a 

change manager, able to interpret the 
reconfiguration script generated by the 
architecture comparison. Importantly, this 
manager needs to ensure the system's consistency 
during reconfiguration. 

 
3. Related work 

Much work has focused on the problem of detecting 
changes between documents, both flat and structured 
documents. In the context of flat documents, the GNU 
diff tool supports comparing plain files and reporting 
their difference; the tool is notably used by CVS [13]. 
Based on the Longest Common Subsequence 
algorithm, the diff tool is inadequate to compare 
structured data as it does not understand hierarchical 
structure information. In the context of structured 
documents, document comparison often relies on tree 
distance algorithms. A good example is Valiente's 
algorithm [12], based on bottom up mapping of the 
rooted trees given by the largest common forest 
between them. Many solutions have been provided for 
XML [4, 10, 11, 14]. Diffx [14] uses tree fragment 
mapping: it iteratively identifies the largest matching 
tree fragments between the tree representations of the 
two versions of the document. Diffx handles 
differences in both the structure and the content of the 
two trees. Xdiff [11] is another solution which uses a 
complete top-down mapping mechanism relying on the 
node signature when matching the nodes. This 
signature represents the path from the root to the given 
node. Xdiff is more suited when the structure of the 
document remains unmodified.  

The comparison problem has also been addressed in 
the area of object-oriented design. Specifically, in the 
context of UML, UMLDiff [15] compares the logical 
view of object-oriented software systems, which 
concerns classes, the information they may own, the 
services they can deliver, and the associations and 
relative organization among them. UMLDiff is a 
domain-specific structural-differencing algorithm, 
aware of the UML semantics.   

Unlike all this work, we focus on computing 
differences between running component structures. 
Moreover, we support dynamic system reconfiguration 
based on these differences, expressed as sets of 
reconfiguration operations. Our comparison of 
component structures is based on a tree comparison 
algorithm, extended with component model semantics. 
 
4. Design Principles 

The requirements described in Section 2 are 
addressed using the following design principles. 
 
4.1. Architecture-based management 

Our first design principle is to use a component-
based structure: the managed system is built or, at 
least, wrapped as a set of components. Components 
provide control interfaces that are entry points for 
sensors and actuators, which, together with analyzers 
and planners, make up the control loop. The 
component-based structure potentially allows fine-
grained dynamic reconfiguration, a prerequisite for 
autonomic behavior. Our second principle is to 
enhance the component-based architecture with meta-
data. The autonomic manager maintains a meta model 
of the system’s distributed architecture. This meta 
model is isomorphic to the runtime structure of the 
system, but adds some meta data concerning the 
infrastructure as a whole. Specifically, the model 
contains (i) the application’s distributed architecture in 
terms of component and binding, (ii) system node-
specific information, and (iii) the relations between 
nodes and components (i.e., which components are 
running on which node). Architectures are described 
using an architecture description language (ADL). 
Initially all the ADL files are interpreted to generate 
the model that represents all the alternative 
architectures. The model of the system is maintained 
by the autonomic manager when (i) the application's 
architecture evolves1 and (ii) when a new node is 
inserted or removed in the system. We suppose that all 
reconfiguration operations related to components go 
through the autonomic manager. Nodes are equipped 

                                                             
1 e.g. When the system is initially deployed, when components are 
added or removed and when a component's configuration change. 



with a discovery module that enables the autonomic 
manager to detect nodes insertion or removal.  

 
4.2. Architecture comparison 

With component-oriented technology that supports 
composition, a software system is structured as a 
hierarchy of interconnected components. As we discuss 
later, a component structure can be seen as a tree of 
components. Our third principle is to exploit the 
similarity between comparing component structures 
and trees. In particular, we choose to update an existing 
tree comparison algorithm into a component structure 
comparison algorithm, taking into account component 
semantics and identifying the changes we can do using 
dynamic reconfiguration operations. 

 
4.3. Consistent change management 
Change management aims at interpreting 
reconfiguration scripts while maintaining the system in 
a consistent state. As we see later, change management 
considers structural changes that can be applied on the 
distributed component structure. It can take the form of 
adding/removing components (via component 
factories) or modifying component attributes and 
bindings (via control interfaces seen in Section 6). Our 
fourth principle is that the autonomic manager must 
govern the lifecycle of the system's components for 
consistency reasons. This implies that components 
must provide reconfiguration-aware lifecycle 
operations. 

 
4.4. Analysis and decision 
The analysis and decision aspects of the control loop 
are not the main focus of this paper. They are realized 
using a rules engine based on a classical first-order 
predicate logic to perform inference. The inference 
rules are specified by means of a description language. 
We choose a rule system in order to support easily 
changing the management logic, and to avoid coupling 
this logic with low-level management code.  

 
5. Architecture Overview 
Our autonomic manager is designed for reusability.  
Administrators describe all the alternative architectures 
using an ADL (architecture description language) and 
add associated rules that will trigger specific 
architectures. These rules contain conditions that match 
against an event working set, which is dynamically 
updated by monitoring the system. Since many 
conditions can be true at a time, administrators 

typically have to specify priorities between 
architectures. The core of the autonomic manager 
(depicted in figure 1) is then composed of: 

• The meta-data of the current architecture 
• All the meta-data corresponding to the alternative 

architectures 
• The event working set filled in real time by 

monitoring the runtime system. 
• A rules engine that trigger architecture swaps 

according to the events that occur in of the system 
and the conditions associated with the 
architectures. Our system is based on the Java 
Rules Engine API described by the JSR-94 
standard. Specifically, our prototype uses the 
Drools rules engine, which conforms to  JSR-94 
and provides a declarative language for defining 
rules.  

• The architecture comparison tool used to compute 
the reconfiguration script in order to swap between 
the current running architecture and the target 
architecture requested by the rules engine. 

The Changes Manager is used to interpret the 
reconfiguration script. This tool uses the Nodes 
Manager to allocate new, available nodes if necessary. 
It then contacts the Software Resource Repository to 
retrieve the necessary software resources and deploy 
them on the new nodes. In the following sections, we 
describe the component model we use, and then focus 
on architecture comparison and change management. 

Figure 1. Overall architecture 
6. The Fractal component model 
The Fractal component model [8] is a general 
component model, which is intended to support 
implementing, deploying, and dynamically 
configuring, complex software systems, including in 
particular operating systems and middleware. This 



motivates the three main features of the model: (i) 
support for composite components to provide a 
uniform view of applications at various levels of 
abstraction, (ii) introspection capabilities to discover 
the structure of a running system, and (iii) 
reconfiguration capabilities to deploy, and dynamically 
configure a system.  

In more detail, a Fractal component is a run-time 
entity that is encapsulated and has one or more 
interfaces. An interface is an access point to a 
component supporting a finite set of methods. 
Interfaces can be of two kinds: server interfaces, which 
accept method calls, and client interfaces, which emit 
method calls. The signatures of both kinds of interface 
can be described by a standard Java interface 
declaration, with an additional role indication (server 
or client). A Fractal component can be composite, i.e., 
defined as an assembly of several sub-components, or 
primitive, i.e., encapsulating an executable program. 
Communication between Fractal components is only 
possible if their interfaces are bound. The Fractal 
model thus provides two mechanisms to define the 
architecture of an application: bindings between 
component interfaces, and encapsulation of 
components in a composite component.  

The above features (hierarchical components, 
explicit bindings between components, separation 
between component interfaces and component 
implementation) are relatively classical. The originality 
of the Fractal model lies in its open reflective features. 
Indeed, Fractal components can be endowed with 
controllers, which provide access to a component 
internals and allowing component introspection and 
well-scoped dynamic reconfiguration. A controller 
provides a control interface and implements a control 
behavior for the component, such as controlling the 
activities in the components (suspend, resume). The 
Fractal model allows for arbitrary (including user 
defined) classes of controller. It specifies, however, 
several useful forms of controllers, which can be 
combined and extended to yield components with 
different control features. These controllers include the 
following: 
 
• Attribute controller: supports an interface with 

getter and setter methods for attributes, that is, 
configurable component properties. 

• Binding controller: supports binding and 
unbinding the client interfaces of the component to 
server interfaces. 

• Content controller: supports listing, adding and 
removing the subcomponents of a composite 
component. 

• Life-cycle controller: supports controlling the 
component execution (starting/stopping 
components). When a component is stopped, its 
state can be saved or restored. 

 
Based on this component model, the meta-data 
associated with each component and maintained by our 
autonomic manager contain: 
 
• The set of subcomponents that belong to the 

component (in the case of composite components) 
• The set of client and server interfaces of the 

component 
• The implementation of the functional interfaces of 

the component (in the case of primitive 
components) 

• The set of attributes maintained by the component  
• The set of binding involving component interfaces 
• The machine where the component is running 
 
7. Using a tree comparison algorithm 
A software system built using a component technology 
such as Fractal is structured as a hierarchy of 
interconnected components4. Such component 
hierarchies represent the trees we want to compare. 
Finding the difference between two component 
systems is then analogous to the tree-to-tree 
comparison algorithms that have been used for finding 
differences between structured data such as LATEX 
files or XML [3][4]. These algorithms try to find a 
sequence of elementary operations which transform 
one tree into the other. Such sequences are called edit 
scripts and can be seen as reconfiguration scripts that 
update a tree into another. Selkow's algorithm [5] is a 
particular solution used when trees are of depth two. 
The algorithms developed by Tai [6] and Zhang[7] 
solve the generalization of the problem to trees of any 
depth. The difference is that tree transversal is 
performed in post-order with Zhang instead of pre-
order. These algorithms compute the minimum set of 
operations (called the minimum distance) to update the 
first tree into the second one.  
Our approach to comparing component trees relies on 
and extend Zhang's algorithm. Specifically, Zhang’s 
algorithm works on simple labeled trees and assumes 
three kind of reconfiguration operations on a tree: 
adding/removing an element and modifying the label 
of an element. We update this algorithm to become 
aware of the component meta-model and of the 
available reconfiguration operations. Furthermore, 
Zhang’s algorithm assumes that all reconfiguration 
operations can be applied on a tree without constraints, 
which is not true in our case. Our comparison 
                                                             
4 We forbid component sharing 



algorithm takes care of two specific problems: (i) the 
component identity and (ii) the difference between the 
expected and the possible kind of reconfiguration 
operations. We explain these problems in the 
following. 
 
7.1. Identity 
Comparing running component structures requires a 
method for recognizing components that are the ‘same’ 
in the two structures. For example, the tool must be 
able to differentiate between the migration of a 
component and the removal and the addition of 
different instances of the same component type. These 
choices are not equivalent. In the first case, the state of 
the instance must be preserved. In the second case, the 
new component is starting up and comes with a new 
state. As a result, we need a strong notion of 
component identity in the meta model. The identity 
function will be used by the algorithm to know if a 
component in the first tree T1 is present in the second 
tree T2. This mean that the two components are the 
same if they have the same identifier even though their 
configuration may differ. It also means that there is at 
least a sequence of operations that reconfigure the 
component instance in T1  into the component instance 
in T2. Our solution is to add a persistent component 
reference as meta-data in the component model. 
Components belonging to a given architecture are then 
referenced through a persistent id in the meta model, 
which is mapped to the current component's reference. 

7.2. Expected and possible kind of changes 
The kinds of changes we can expect derive from 
component semantics and cover the following: 
 

• Modifying the structure of a component 
(adding/removing subcomponents, and 
modifying the interconnection pattern) 

• Modifying the placement of components 
• Modifying components’ implementation (for 

primitive component) 
• Modifying components’ interfaces 
• Modifying the set of attributes held by a 

component 
 
The kinds of changes supported by our component 
model are the following: 
 

• Adding/Removing components 
• Adding/Removing bindings 
• Getting/setting attributes  

 
Thus, our model does not directly support changes 
related to interfaces, implementations and component 
placement; these changes require the use of compound 

reconfiguration operations that include deleting a 
component and re-creating it. The comparison 
algorithm must be able to detect these kinds of changes 
and the related compound reconfiguration operations. 
The algorithm computes what components have been 
deleted, what components have been added, what 
components have been reconfigured and what 
components have not been modified. It then generates 
the reconfiguration script to update the system. The 
reconfiguration script must ensure the consistency of 
the system. Each kind of reconfiguration operation has 
some constraints to maintain consistency. We will 
detail these issues in the next section and we present 
the compound operations and their associated 
constraints. 
 
8. Change management 
Performing arbitrary dynamic changes to an 
application may introduce inconsistencies and failures. 
Change management is concerned with maintaining 
consistency while minimizing the disruption of the 
running application [9]. Consistency is generally 
maintained whenever the new application version can 
resume computation from the former application global 
state. Our approach to maintaining consistency consists 
in associating a number of constraints with the 
reconfiguration operations and ensuring that the 
component structure satisfies these constraints during 
reconfiguration. Specifically, once the reconfiguration 
sequence has been computed, we consider the 
following constraints: 
 

• Added components can be introduced in the 
system without any restrictions. All their 
attributes are new as well as their binding and 
subcomponent relationships. 

• Removed components must be deleted with 
care from the system because other 
components may still have references to them. 
We therefore impose the following constraint: 
to remove a component, all bindings which 
point to the component should first be 
removed, and the component should then be 
stopped. Stopping the component ensures that 
(i) all its activities have been suspended, (ii) 
its state is consistent and can be serialized, 
and (iii) its activities can be resumed after the 
reconfiguration. 

• Reconfigured components also require 
specific care. If these components have been 
reconfigured in terms of their attributes, 
bindings, or subcomponents, then they must 
be stopped before performing the changes.  If 
the reconfiguration involves moving a 
component or modifying its interfaces, then 



the following steps are followed: all bindings 
which point to the component should be 
removed, the component should be stopped, 
its state should be saved5, the component 
should then be deleted and recreated on the 
target machine, its state and all the bindings 
involving the component should be restored, 
and finally its computation should be 
resumed. In the case of interface 
modifications, we also verify interface 
compliance with interconnected components. 

 
9. Use Case 
Our use case illustrates self-optimization, an autonomic 
behavior that maximizes server utilization with no 
human intervention. Figure 2 depicts a classical pattern 
in standard QoS infrastructures. In this pattern, a given 
server S is replicated at deployment time, and a front-
end proxy P acts as a load balancer and distributes 
incoming requests among the replicas. 

 

Figure 2. Load balancing among replicas 
We want to provide a self-optimization manager 

which aims at autonomously increasing/decreasing the 
number of replicated servers used by the application 
when the load increases/decreases. To this purpose, the 
manager can swap between two architecture 
descriptions corresponding to two strategies: the first 
strategy is used when the load is low (i.e., under a 
specific threshold) and the second strategy is used 
when the load is high (i.e., above a threshold). The 
architecture corresponding to the first strategy is 
composed of one proxy component bound to three 
servers. The architecture corresponding to the second 
strategy is composed of one proxy component bound to 
ten servers. In this example, the server components are 
wrapped web containers6. The used sensor is a probe 
that collects CPU usage information on all the nodes 
where such a server is deployed. This probe computes 
a moving average of the collected data in order to 
remove artifacts characterizing the CPU consumption. 
To observe a general load indication of the whole 
                                                             

5 When stopped, a component is serializable. 
6 We consider that web containers do not share 

their node with each others. 

replicated server, the autonomic manager calculates the 
average CPU load across all nodes. Actuators allow 
updating the server's configuration.  

We illustrate in the following the ADL files 
corresponding to the alternative architectures and the 
conditions attached with each of the architectures. 
Figure 3 shows the ADL description for the first 
architecture, the low-load configuration, which  
contains a load balancer (PLB) bound to three web 
containers (tomcat). The autonomic manager uses this 
ADL description to initially deploy the system. The 
bundle tag specifies which software to install and the 
virtual node tag provides placement information: if two 
components have the same virtual node then they are 
placed on the same physical machine7.  
 
<component name="lowloadconfig"> 
 
<component name="plb" type="HTTPLB"> 
 <attributes> name="port" value="8081" 
</attributes> 
 <virtual-node name="node1" /> 
 <bundle> name="plb" version="plb" /> 
</component> 
 
<component name="tomcat1" type="tomcat"> 
 <attributes> 
  ... 
  <attribute name="workerPort" value="8098" /> 
 </attributes> 
 <virtual-node name="node2" /> 
 <bundle> name="tomcat" version="6.0" /> 
</component> 
 
<component name="tomcat2" type="tomcat"> 
 <attributes> 
  ... 
  <attribute name="workerPort" value="8098" /> 
 </attributes> 
 <virtual-node name="node3" /> 
 <bundle> name="tomcat" version="6.0" /> 
</component> 
 
<component name="tomcat3" type="tomcat"> 
 <attributes> 
  ... 
  <attribute name="workerPort" value="8098" /> 
 </attributes> 
 <virtual-node name="node4" /> 
 <bundle> name="tomcat" version="6.0" /> 
</component> 
 
<binding 
src="plb.workers"dest="tomcat1.endpoint" /> 
<binding 
src="plb.workers"dest="tomcat2.endpoint" /> 
<binding 
src="plb.workers"dest="tomcat3.endpoint" /> 
</component> 

Figure 3. Low configuration 
                                                             

7 The autonomic manager will allocate the real 
physicals machine. 
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Similarly, figure 4 shows the ADL description for the 
high-load configuration, in which the load balancer is 
bound to a pool of ten web containers. 
 
<component name="highloadconfig"> 
 
<component name="plb" type="HTTPLB"> 
 <attributes> name="port" value="8081" 
</attributes> 
 <virtual-node name="node1" /> 
 <bundle> name="plb" version="plb" /> 
</component> 
 
<pool name="tomcatCluster" begin=”0” end=”9” 
<component name="tomcat1" type="tomcat"> 
 <attributes> 
  <attribute name="workerPort" value="8098" /> 
 </attributes> 
 <virtual-node name="node2" /> 
 <bundle> name="tomcat" version="6.0" /> 
</component> 
</pool> 
 
<binding  src="plb.workers" 
 dest="tomcatCluster.endpoint" /> 
</component> 

Figure 4. High configuration 
We now describe the rules associated with these 
alternative configurations. These rules are very simple 
here, and they are described using Drools. Rules in 
Drools have a two-part structure (when <condition> 
then <action>) using first order logic for knowledge 
representation. Each time a new fact is inserted in the 
working memory, the inference engine matches facts 
against rules and infers conclusions that result in 
actions. We choose Drools for its expressiveness even 
though this limits the scalability of our prototype in 
terms of the number of facts and rules. Indeed, we 
currently target use cases with a limited scale. 
 
rule "average load" 
when 
 $report : sensorReport() 
 $avgload : from accumulate( 
             LoadItem(report==$report, 
                      $type==http, 
                      $load : load ) 
                      average($load)) 
then 
  # average load for all the nodes that 
  # contain a web container is $load 
  # delete the report 
  # add the average load as a new fact 
  modify(newload) { 
    load=$avgload) 
  } 

end 

According to the first rule ("average load"), the engine 
will initialize the load variable to zero for each 
sensorReport()9 in the working memory. It will then 
iterate over all LoadItem() objects to calculate the 
average load into the $load variable. Only the load 
corresponding to nodes that contain a web container is 
taken into account. The engine will then modify the 
fact that contains the load in the working memory, 
which may trigger the two following rules: 
rule "swap to lowloadconfig" 
duration 10000 
when 
 $load : newload(load<lowthreshold) and  
 currentarchi(type==highloadconfig) 
then 
  reconfigure(target==lowloadconfig) 
end 

The "swap to lowloadconfig" rule states that if the 
system is currently in the high load configuration and 
if the load is too low, then the system should be 
reconfigured into the low load configuration. 
rule "swap to highloadconfig" 
duration 10000 
when 
 $load : newload(load>highthreshold) and  
 currentarchi(type==lowloadconfig) 
then 
 reconfigure(target==highloadconfig) 
end 

Similarly, the "swap to highloadconfig" rule concerns 
the transition to the low load configuration. To avoid 
unstable behavior and oscillation, the administrator can 
set a duration attribute for each rule. This attribute 
dictates that the rule will fire after the specified 
duration, if its condition is still true. In our example, 
the system will be reconfigured if the threshold 
condition remains valid for 10sec.  

10. Conclusion 
Autonomic computing has emerged as a promising 
approach to tackling the increasing complexity of our 
software systems. The approach relies on using  
autonomic managers that monitor a system and its 
environment, determine appropriate changes to the 
system in response to events, and execute these 
changes on the system. The contribution of this paper 
is to provide a generic tool to ease the development of 
autonomic managers. Using this tool, an administrator 

                                                             
9 The report fact is periodically updated in the working 
memory by the system's sensor. This report contains an array list of 
the load for each node and a set of properties that indicate which 
kind of service run on the node. (e.g. : “http “ means that a web 
container run on the given node). 



provides a set of alternative architectures and specifies 
the conditions under which the architecture should be 
dynamically updated by the autonomic manager.  

Our solution is based on system knowledge in the 
form of a set of interconnected components. This 
knowledge includes a model of the current system but 
also of the alternative architectures. A rule engine 
triggers reconfiguration, which uses an architecture diff 
tool together with a change manager to swap between 
system architectures. The architecture diff tool relies 
on a tree comparison algorithm that has been extended 
to take into account component model semantics. A 
first prototype has been implemented using Drools, and 
is currently being evaluated using the self-optimization 
scenario. Scalability and usability evaluation using 
additional self-management scenarios is postponed as a 
future work. 
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