
Tools for architecture based autonomic systems

Noel De Palma1, Konstantin Popov2, Nikos Parlavantzas1, Per Brand2,Vladimir Vlassov3
1INRIA, Grenoble, France, 2SICS, Stockholm, Sweden, 3KTH, Stockholm, Sweden

noel.depalma@inrialpes.fr, kost@sics.se, nikolaos.parlavantzas@inrialpes.fr,
perbrand@sics.se, vladv@kth.se,

Abstract
Recent years have seen a growing interest in

autonomic computing, an approach to providing
systems with self managing properties [1]. Autonomic
computing aims to address the increasing complexity
of the administration of large systems. The
contribution of this paper is to provide a generic tool
to ease the development of autonomic managers. Using
this tool, an administrator provides a set of alternative
architectures and specifies conditions that are used by
autonomic managers to update architectures at
runtime. Software changes are computed as
architectural differences in terms of component model
artifacts (components, attributes, bindings, etc.). These
differences are then used to migrate into the next
architecture by reconfiguring only the required part of
the running system.

1. Introduction

Our computing environments are increasingly
sophisticated: they involve numerous, complex
software systems that cooperate in potentially
distributed environments. These systems are developed
with heterogeneous programming models and typically
expose proprietary configuration facilities. As a result,
the administration of these systems (installation,
configuration, tuning, repair…) is becoming
increasingly costly in terms of human, hardware, and
software resources. A promising approach to reducing
the costs of administration is to build autonomic
systems. Autonomic systems are able to “reason” about
their own properties and to control their own behavior
at run time. For this purpose, they embed autonomic
managers which implement control loops that regulate
the managed system. The managed system can be a
single hardware or software element, or it may be a
complex system, such as a cluster of machines, or a
distributed middleware infrastructure. The autonomic
manager interacts with the managed system through
two types of elements: sensors to watch the state of the
system, and actuators to reconfigure it. Importantly,
the autonomic manager also embeds knowledge of the

system, which is used as a basis for various
management functions.

In the architecture-based management approach [2],
the knowledge of the system is a formal or semi-formal
description of the organization of the managed system.
This description is typically based on components and
bindings. The environment of the applications (e.g.,
hardware resources, system services) may be described
in the same way. When an event occurs in the managed
system and triggers an autonomic response, the
manager first analyses the event, choose a
reconfiguration plan to fix the problem and then
executes the plan using the system's actuators to
change the managed system accordingly. The
manager’s job can be partially seen as a function that
updates the architecture of the system from a given
running configuration to a target configuration. In
other words, the system is dynamically updated from a
component structure to another. The contribution of
this paper is to provide a generic tool to ease the
development of autonomic managers. Using this tool,
an administrator provides a set of alternative
architectures and specifies conditions that are used by
autonomic managers to update the architecture at
runtime. Software changes are computed as
architectural differences by an architecture diff
algorithm in terms of component model artifacts
(components, attributes, bindings...). These differences
are then used by a change manager to reconfigure only
the required part of the running system to update into
the target architecture. As a first step, this work focuses
on distributed applications running on a local area
network (e.g., a cluster) and under the control of a
single autonomic manager.

This paper is organized as follows. Section 2
describes our main requirements, and Section 3
discusses related work. Section 4 then presents our
design principles, and Section 5 provides an overview
of our architecture. Sections 6, 7 and 8 give more
details about the used component model, the diff
algorithm and change management. Finally, Section 9
describes a use case, and Section 10 concludes the
paper.

2. Requirements
Our approach is driven by the following requirements:

• Architecture-based management: the

architecture-based approach requires (i) providing
meta-data that describe all the alternative
architectures of the system, and (ii) providing fine-
grained operations to monitor and to reconfigure
the architecture at runtime.

• Architecture comparison: our autonomic
manager requires a comparison algorithm, able to
automatically compute the differences between the
current runtime architecture of a system and a
target architecture. From these differences, the
manager should produce a reconfiguration script to
dynamically update the current architecture into
the target one.

• Consistent change management: we require a

change manager, able to interpret the
reconfiguration script generated by the
architecture comparison. Importantly, this
manager needs to ensure the system's consistency
during reconfiguration.

3. Related work

Much work has focused on the problem of detecting
changes between documents, both flat and structured
documents. In the context of flat documents, the GNU
diff tool supports comparing plain files and reporting
their difference; the tool is notably used by CVS [13].
Based on the Longest Common Subsequence
algorithm, the diff tool is inadequate to compare
structured data as it does not understand hierarchical
structure information. In the context of structured
documents, document comparison often relies on tree
distance algorithms. A good example is Valiente's
algorithm [12], based on bottom up mapping of the
rooted trees given by the largest common forest
between them. Many solutions have been provided for
XML [4, 10, 11, 14]. Diffx [14] uses tree fragment
mapping: it iteratively identifies the largest matching
tree fragments between the tree representations of the
two versions of the document. Diffx handles
differences in both the structure and the content of the
two trees. Xdiff [11] is another solution which uses a
complete top-down mapping mechanism relying on the
node signature when matching the nodes. This
signature represents the path from the root to the given
node. Xdiff is more suited when the structure of the
document remains unmodified.

The comparison problem has also been addressed in
the area of object-oriented design. Specifically, in the
context of UML, UMLDiff [15] compares the logical
view of object-oriented software systems, which
concerns classes, the information they may own, the
services they can deliver, and the associations and
relative organization among them. UMLDiff is a
domain-specific structural-differencing algorithm,
aware of the UML semantics.

Unlike all this work, we focus on computing
differences between running component structures.
Moreover, we support dynamic system reconfiguration
based on these differences, expressed as sets of
reconfiguration operations. Our comparison of
component structures is based on a tree comparison
algorithm, extended with component model semantics.

4. Design Principles

The requirements described in Section 2 are
addressed using the following design principles.

4.1. Architecture-based management

Our first design principle is to use a component-
based structure: the managed system is built or, at
least, wrapped as a set of components. Components
provide control interfaces that are entry points for
sensors and actuators, which, together with analyzers
and planners, make up the control loop. The
component-based structure potentially allows fine-
grained dynamic reconfiguration, a prerequisite for
autonomic behavior. Our second principle is to
enhance the component-based architecture with meta-
data. The autonomic manager maintains a meta model
of the system’s distributed architecture. This meta
model is isomorphic to the runtime structure of the
system, but adds some meta data concerning the
infrastructure as a whole. Specifically, the model
contains (i) the application’s distributed architecture in
terms of component and binding, (ii) system node-
specific information, and (iii) the relations between
nodes and components (i.e., which components are
running on which node). Architectures are described
using an architecture description language (ADL).
Initially all the ADL files are interpreted to generate
the model that represents all the alternative
architectures. The model of the system is maintained
by the autonomic manager when (i) the application's
architecture evolves1 and (ii) when a new node is
inserted or removed in the system. We suppose that all
reconfiguration operations related to components go
through the autonomic manager. Nodes are equipped

1 e.g. When the system is initially deployed, when components are
added or removed and when a component's configuration change.

with a discovery module that enables the autonomic
manager to detect nodes insertion or removal.

4.2. Architecture comparison

With component-oriented technology that supports
composition, a software system is structured as a
hierarchy of interconnected components. As we discuss
later, a component structure can be seen as a tree of
components. Our third principle is to exploit the
similarity between comparing component structures
and trees. In particular, we choose to update an existing
tree comparison algorithm into a component structure
comparison algorithm, taking into account component
semantics and identifying the changes we can do using
dynamic reconfiguration operations.

4.3. Consistent change management
Change management aims at interpreting
reconfiguration scripts while maintaining the system in
a consistent state. As we see later, change management
considers structural changes that can be applied on the
distributed component structure. It can take the form of
adding/removing components (via component
factories) or modifying component attributes and
bindings (via control interfaces seen in Section 6). Our
fourth principle is that the autonomic manager must
govern the lifecycle of the system's components for
consistency reasons. This implies that components
must provide reconfiguration-aware lifecycle
operations.

4.4. Analysis and decision
The analysis and decision aspects of the control loop
are not the main focus of this paper. They are realized
using a rules engine based on a classical first-order
predicate logic to perform inference. The inference
rules are specified by means of a description language.
We choose a rule system in order to support easily
changing the management logic, and to avoid coupling
this logic with low-level management code.

5. Architecture Overview
Our autonomic manager is designed for reusability.
Administrators describe all the alternative architectures
using an ADL (architecture description language) and
add associated rules that will trigger specific
architectures. These rules contain conditions that match
against an event working set, which is dynamically
updated by monitoring the system. Since many
conditions can be true at a time, administrators

typically have to specify priorities between
architectures. The core of the autonomic manager
(depicted in figure 1) is then composed of:

• The meta-data of the current architecture
• All the meta-data corresponding to the alternative

architectures
• The event working set filled in real time by

monitoring the runtime system.
• A rules engine that trigger architecture swaps

according to the events that occur in of the system
and the conditions associated with the
architectures. Our system is based on the Java
Rules Engine API described by the JSR-94
standard. Specifically, our prototype uses the
Drools rules engine, which conforms to JSR-94
and provides a declarative language for defining
rules.

• The architecture comparison tool used to compute
the reconfiguration script in order to swap between
the current running architecture and the target
architecture requested by the rules engine.

The Changes Manager is used to interpret the
reconfiguration script. This tool uses the Nodes
Manager to allocate new, available nodes if necessary.
It then contacts the Software Resource Repository to
retrieve the necessary software resources and deploy
them on the new nodes. In the following sections, we
describe the component model we use, and then focus
on architecture comparison and change management.

Figure 1. Overall architecture
6. The Fractal component model
The Fractal component model [8] is a general
component model, which is intended to support
implementing, deploying, and dynamically
configuring, complex software systems, including in
particular operating systems and middleware. This

motivates the three main features of the model: (i)
support for composite components to provide a
uniform view of applications at various levels of
abstraction, (ii) introspection capabilities to discover
the structure of a running system, and (iii)
reconfiguration capabilities to deploy, and dynamically
configure a system.

In more detail, a Fractal component is a run-time
entity that is encapsulated and has one or more
interfaces. An interface is an access point to a
component supporting a finite set of methods.
Interfaces can be of two kinds: server interfaces, which
accept method calls, and client interfaces, which emit
method calls. The signatures of both kinds of interface
can be described by a standard Java interface
declaration, with an additional role indication (server
or client). A Fractal component can be composite, i.e.,
defined as an assembly of several sub-components, or
primitive, i.e., encapsulating an executable program.
Communication between Fractal components is only
possible if their interfaces are bound. The Fractal
model thus provides two mechanisms to define the
architecture of an application: bindings between
component interfaces, and encapsulation of
components in a composite component.

The above features (hierarchical components,
explicit bindings between components, separation
between component interfaces and component
implementation) are relatively classical. The originality
of the Fractal model lies in its open reflective features.
Indeed, Fractal components can be endowed with
controllers, which provide access to a component
internals and allowing component introspection and
well-scoped dynamic reconfiguration. A controller
provides a control interface and implements a control
behavior for the component, such as controlling the
activities in the components (suspend, resume). The
Fractal model allows for arbitrary (including user
defined) classes of controller. It specifies, however,
several useful forms of controllers, which can be
combined and extended to yield components with
different control features. These controllers include the
following:

• Attribute controller: supports an interface with

getter and setter methods for attributes, that is,
configurable component properties.

• Binding controller: supports binding and
unbinding the client interfaces of the component to
server interfaces.

• Content controller: supports listing, adding and
removing the subcomponents of a composite
component.

• Life-cycle controller: supports controlling the
component execution (starting/stopping
components). When a component is stopped, its
state can be saved or restored.

Based on this component model, the meta-data
associated with each component and maintained by our
autonomic manager contain:

• The set of subcomponents that belong to the

component (in the case of composite components)
• The set of client and server interfaces of the

component
• The implementation of the functional interfaces of

the component (in the case of primitive
components)

• The set of attributes maintained by the component
• The set of binding involving component interfaces
• The machine where the component is running

7. Using a tree comparison algorithm
A software system built using a component technology
such as Fractal is structured as a hierarchy of
interconnected components4. Such component
hierarchies represent the trees we want to compare.
Finding the difference between two component
systems is then analogous to the tree-to-tree
comparison algorithms that have been used for finding
differences between structured data such as LATEX
files or XML [3][4]. These algorithms try to find a
sequence of elementary operations which transform
one tree into the other. Such sequences are called edit
scripts and can be seen as reconfiguration scripts that
update a tree into another. Selkow's algorithm [5] is a
particular solution used when trees are of depth two.
The algorithms developed by Tai [6] and Zhang[7]
solve the generalization of the problem to trees of any
depth. The difference is that tree transversal is
performed in post-order with Zhang instead of pre-
order. These algorithms compute the minimum set of
operations (called the minimum distance) to update the
first tree into the second one.
Our approach to comparing component trees relies on
and extend Zhang's algorithm. Specifically, Zhang’s
algorithm works on simple labeled trees and assumes
three kind of reconfiguration operations on a tree:
adding/removing an element and modifying the label
of an element. We update this algorithm to become
aware of the component meta-model and of the
available reconfiguration operations. Furthermore,
Zhang’s algorithm assumes that all reconfiguration
operations can be applied on a tree without constraints,
which is not true in our case. Our comparison

4 We forbid component sharing

algorithm takes care of two specific problems: (i) the
component identity and (ii) the difference between the
expected and the possible kind of reconfiguration
operations. We explain these problems in the
following.

7.1. Identity
Comparing running component structures requires a
method for recognizing components that are the ‘same’
in the two structures. For example, the tool must be
able to differentiate between the migration of a
component and the removal and the addition of
different instances of the same component type. These
choices are not equivalent. In the first case, the state of
the instance must be preserved. In the second case, the
new component is starting up and comes with a new
state. As a result, we need a strong notion of
component identity in the meta model. The identity
function will be used by the algorithm to know if a
component in the first tree T1 is present in the second
tree T2. This mean that the two components are the
same if they have the same identifier even though their
configuration may differ. It also means that there is at
least a sequence of operations that reconfigure the
component instance in T1 into the component instance
in T2. Our solution is to add a persistent component
reference as meta-data in the component model.
Components belonging to a given architecture are then
referenced through a persistent id in the meta model,
which is mapped to the current component's reference.

7.2. Expected and possible kind of changes
The kinds of changes we can expect derive from
component semantics and cover the following:

• Modifying the structure of a component
(adding/removing subcomponents, and
modifying the interconnection pattern)

• Modifying the placement of components
• Modifying components’ implementation (for

primitive component)
• Modifying components’ interfaces
• Modifying the set of attributes held by a

component

The kinds of changes supported by our component
model are the following:

• Adding/Removing components
• Adding/Removing bindings
• Getting/setting attributes

Thus, our model does not directly support changes
related to interfaces, implementations and component
placement; these changes require the use of compound

reconfiguration operations that include deleting a
component and re-creating it. The comparison
algorithm must be able to detect these kinds of changes
and the related compound reconfiguration operations.
The algorithm computes what components have been
deleted, what components have been added, what
components have been reconfigured and what
components have not been modified. It then generates
the reconfiguration script to update the system. The
reconfiguration script must ensure the consistency of
the system. Each kind of reconfiguration operation has
some constraints to maintain consistency. We will
detail these issues in the next section and we present
the compound operations and their associated
constraints.

8. Change management
Performing arbitrary dynamic changes to an
application may introduce inconsistencies and failures.
Change management is concerned with maintaining
consistency while minimizing the disruption of the
running application [9]. Consistency is generally
maintained whenever the new application version can
resume computation from the former application global
state. Our approach to maintaining consistency consists
in associating a number of constraints with the
reconfiguration operations and ensuring that the
component structure satisfies these constraints during
reconfiguration. Specifically, once the reconfiguration
sequence has been computed, we consider the
following constraints:

• Added components can be introduced in the
system without any restrictions. All their
attributes are new as well as their binding and
subcomponent relationships.

• Removed components must be deleted with
care from the system because other
components may still have references to them.
We therefore impose the following constraint:
to remove a component, all bindings which
point to the component should first be
removed, and the component should then be
stopped. Stopping the component ensures that
(i) all its activities have been suspended, (ii)
its state is consistent and can be serialized,
and (iii) its activities can be resumed after the
reconfiguration.

• Reconfigured components also require
specific care. If these components have been
reconfigured in terms of their attributes,
bindings, or subcomponents, then they must
be stopped before performing the changes. If
the reconfiguration involves moving a
component or modifying its interfaces, then

the following steps are followed: all bindings
which point to the component should be
removed, the component should be stopped,
its state should be saved5, the component
should then be deleted and recreated on the
target machine, its state and all the bindings
involving the component should be restored,
and finally its computation should be
resumed. In the case of interface
modifications, we also verify interface
compliance with interconnected components.

9. Use Case
Our use case illustrates self-optimization, an autonomic
behavior that maximizes server utilization with no
human intervention. Figure 2 depicts a classical pattern
in standard QoS infrastructures. In this pattern, a given
server S is replicated at deployment time, and a front-
end proxy P acts as a load balancer and distributes
incoming requests among the replicas.

Figure 2. Load balancing among replicas
We want to provide a self-optimization manager

which aims at autonomously increasing/decreasing the
number of replicated servers used by the application
when the load increases/decreases. To this purpose, the
manager can swap between two architecture
descriptions corresponding to two strategies: the first
strategy is used when the load is low (i.e., under a
specific threshold) and the second strategy is used
when the load is high (i.e., above a threshold). The
architecture corresponding to the first strategy is
composed of one proxy component bound to three
servers. The architecture corresponding to the second
strategy is composed of one proxy component bound to
ten servers. In this example, the server components are
wrapped web containers6. The used sensor is a probe
that collects CPU usage information on all the nodes
where such a server is deployed. This probe computes
a moving average of the collected data in order to
remove artifacts characterizing the CPU consumption.
To observe a general load indication of the whole

5 When stopped, a component is serializable.
6 We consider that web containers do not share

their node with each others.

replicated server, the autonomic manager calculates the
average CPU load across all nodes. Actuators allow
updating the server's configuration.

We illustrate in the following the ADL files
corresponding to the alternative architectures and the
conditions attached with each of the architectures.
Figure 3 shows the ADL description for the first
architecture, the low-load configuration, which
contains a load balancer (PLB) bound to three web
containers (tomcat). The autonomic manager uses this
ADL description to initially deploy the system. The
bundle tag specifies which software to install and the
virtual node tag provides placement information: if two
components have the same virtual node then they are
placed on the same physical machine7.

<component name="lowloadconfig">

<component name="plb" type="HTTPLB">
 <attributes> name="port" value="8081"
</attributes>
 <virtual-node name="node1" />
 <bundle> name="plb" version="plb" />
</component>

<component name="tomcat1" type="tomcat">
 <attributes>
 ...
 <attribute name="workerPort" value="8098" />
 </attributes>
 <virtual-node name="node2" />
 <bundle> name="tomcat" version="6.0" />
</component>

<component name="tomcat2" type="tomcat">
 <attributes>
 ...
 <attribute name="workerPort" value="8098" />
 </attributes>
 <virtual-node name="node3" />
 <bundle> name="tomcat" version="6.0" />
</component>

<component name="tomcat3" type="tomcat">
 <attributes>
 ...
 <attribute name="workerPort" value="8098" />
 </attributes>
 <virtual-node name="node4" />
 <bundle> name="tomcat" version="6.0" />
</component>

<binding
src="plb.workers"dest="tomcat1.endpoint" />
<binding
src="plb.workers"dest="tomcat2.endpoint" />
<binding
src="plb.workers"dest="tomcat3.endpoint" />
</component>

Figure 3. Low configuration

7 The autonomic manager will allocate the real
physicals machine.

P

S

S
requests

S

Similarly, figure 4 shows the ADL description for the
high-load configuration, in which the load balancer is
bound to a pool of ten web containers.

<component name="highloadconfig">

<component name="plb" type="HTTPLB">
 <attributes> name="port" value="8081"
</attributes>
 <virtual-node name="node1" />
 <bundle> name="plb" version="plb" />
</component>

<pool name="tomcatCluster" begin=”0” end=”9”
<component name="tomcat1" type="tomcat">
 <attributes>
 <attribute name="workerPort" value="8098" />
 </attributes>
 <virtual-node name="node2" />
 <bundle> name="tomcat" version="6.0" />
</component>
</pool>

<binding src="plb.workers"
 dest="tomcatCluster.endpoint" />
</component>

Figure 4. High configuration
We now describe the rules associated with these
alternative configurations. These rules are very simple
here, and they are described using Drools. Rules in
Drools have a two-part structure (when <condition>
then <action>) using first order logic for knowledge
representation. Each time a new fact is inserted in the
working memory, the inference engine matches facts
against rules and infers conclusions that result in
actions. We choose Drools for its expressiveness even
though this limits the scalability of our prototype in
terms of the number of facts and rules. Indeed, we
currently target use cases with a limited scale.

rule "average load"
when
 $report : sensorReport()
 $avgload : from accumulate(
 LoadItem(report==$report,
 $type==http,
 $load : load)
 average($load))
then
 # average load for all the nodes that
 # contain a web container is $load
 # delete the report
 # add the average load as a new fact
 modify(newload) {
 load=$avgload)
 }

end

According to the first rule ("average load"), the engine
will initialize the load variable to zero for each
sensorReport()9 in the working memory. It will then
iterate over all LoadItem() objects to calculate the
average load into the $load variable. Only the load
corresponding to nodes that contain a web container is
taken into account. The engine will then modify the
fact that contains the load in the working memory,
which may trigger the two following rules:
rule "swap to lowloadconfig"
duration 10000
when
 $load : newload(load<lowthreshold) and
 currentarchi(type==highloadconfig)
then
 reconfigure(target==lowloadconfig)
end

The "swap to lowloadconfig" rule states that if the
system is currently in the high load configuration and
if the load is too low, then the system should be
reconfigured into the low load configuration.
rule "swap to highloadconfig"
duration 10000
when
 $load : newload(load>highthreshold) and
 currentarchi(type==lowloadconfig)
then
 reconfigure(target==highloadconfig)
end

Similarly, the "swap to highloadconfig" rule concerns
the transition to the low load configuration. To avoid
unstable behavior and oscillation, the administrator can
set a duration attribute for each rule. This attribute
dictates that the rule will fire after the specified
duration, if its condition is still true. In our example,
the system will be reconfigured if the threshold
condition remains valid for 10sec.

10. Conclusion
Autonomic computing has emerged as a promising
approach to tackling the increasing complexity of our
software systems. The approach relies on using
autonomic managers that monitor a system and its
environment, determine appropriate changes to the
system in response to events, and execute these
changes on the system. The contribution of this paper
is to provide a generic tool to ease the development of
autonomic managers. Using this tool, an administrator

9 The report fact is periodically updated in the working
memory by the system's sensor. This report contains an array list of
the load for each node and a set of properties that indicate which
kind of service run on the node. (e.g. : “http “ means that a web
container run on the given node).

provides a set of alternative architectures and specifies
the conditions under which the architecture should be
dynamically updated by the autonomic manager.

Our solution is based on system knowledge in the
form of a set of interconnected components. This
knowledge includes a model of the current system but
also of the alternative architectures. A rule engine
triggers reconfiguration, which uses an architecture diff
tool together with a change manager to swap between
system architectures. The architecture diff tool relies
on a tree comparison algorithm that has been extended
to take into account component model semantics. A
first prototype has been implemented using Drools, and
is currently being evaluated using the self-optimization
scenario. Scalability and usability evaluation using
additional self-management scenarios is postponed as a
future work.

11. References
[1] J. O. Kephart and D. M. Chess, “The Vision of Autonomic

Computing”, IEEE Computer Magazine, 36(1), 2003.

[2] S. Sicard, F. Boyer, Noel De Palma: Using components for
architecture-based management: the self-repair case. ICSE
2008.

[3] D. T. Barnard, G. Clarke, and N. Duncan. Tree-to-tree
correction for document trees. Technical report, Departement
of Computing andf Information Science Queen’s University
Kingston Ontario, Canada, January 1995.

[4] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in
XML documents. In 18. International Conference on Data
Engineering (ICDE) San Jose, California, USA, February 26-
March 1, 2002, 2002.

[5] S. M. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6(6):184{186, December 1977.

[6] K.-C. Tai. The tree-to-tree correction problem.Journal of the
ACM, 26(3):422–433, July 1979.

[7] K. Zhang and D. Shasha. Simple fast algorithms for the editing
distance between trees and related problems. SIAM Journal of
Computing, 18:1245–1262, 1989.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani, “The Fractal Component Model and its Support in
Java”, Software Practice and Experience, special issue on
Experiences with Auto-adaptive and Reconfigurable Systems,
volume 36, number 11-12, 2006.

[9] J. Kramer, J. Magee, The evolving philosophers problem, IEEE
Transactions on Software Engineering Volume 16, Issue 11,
(November 1990) , Pages: 1293 - 1306 , Year of Publication:
1990, ISSN:0098-5589

[10] Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-
centric management of versions in Proceedings of the Twenty-
seventh International Conference on Very Large Data
Bases:Roma, Italy, 11–14th September, 2001, pages 581–
590,Los Altos, CA 94022, USA, 2001. Morgan
KaufmannPublishers.

[11] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An effective
change detection algorithm for XML documents. In 19th
International Conference on Data Engineering, March 5 -
March 8, 2003 – Bangalore, India, 2003.

[12] G. Valiente. “An efficient bottom-up distance between trees”.
Proceedings of the 8th International Symposium on String
Processing and Information Retrieval, Santiago, Chile,
November 13-15, 2001.

[13] “Concurrent Versions Systems”. GNU CVS
http://www.gnu.org/software/cvs

[14] R. Al-Ekram, A. Adma, O. Baysal. DiffX: An algorithm todetect
changes in multi-version XML Documents., In IBM Centre for
Advanced Studies Conference Proceedings of the 2005
conference of the Centre for Advanced Studies on
Collaborative research,Toranto, Ontario, Canada, Pages: 1 –
11, 2005, ISSN:1705-7361.

[15] Z. Xing, E. Strouilia. UMLDiff: An algorithm for object-
oriented design differencing.. In Automated Software
Engineering in Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering,
Long Beach, CA, USA, Pages: 54 – 65, 2005, ISBN:1-59593

