
A Layered Formal Framework for
Modeling of Cyber-Physical Systems

George Ungureanu and Ingo Sander

KTH Royal Institute of Technology, Sweden

March 30, 2017

• Our vision for this framework is to unify and incorporate state-of-the-art modeling
techniques spanning from different research fields.

• This presentation tries to demonstrate that this vision is not only fully justified,
but also can elegantly be applied if we respect some overarching principles.

Motivation

A Typical Sight...

short f(short int dir ,long m,double *x,double *y) {

long n,i,i1 ,j,k,i2,l,l1,l2;

double c1,c2,tx ,ty,t1,t2,u1,u2 ,z;

n = 1;

for (i=0;i<m;i++)

n *= 2; i2 = n >> 1; j = 0;

for (i=0;i<n-1;i++) {

if (i < j) {

tx = x[i]; ty = y[i];

x[i] = x[j]; y[i] = y[j];

x[j] = tx; y[j] = ty;

}

k = i2;

while (k <= j) {

j -= k;

k >>= 1;

}

j += k;

}

c1 = -1.0; c2 = 0.0; l2 = 1;

for (l=0;l<m;l++) {

l1 = l2; l2 <<= 1;

u1 = 1.0; u2 = 0.0;

for (j=0;j<l1;j++) {

for (i=j;i<n;i+=l2) {

i1 = i + l1;

t1 = u1 * x[i1] - u2 * y[i1];

t2 = u1 * y[i1] + u2 * x[i1];

x[i1] = x[i] - t1;

y[i1] = y[i] - t2;

x[i] += t1;

y[i] += t2;

}

z = u1 * c1 - u2 * c2;

u2 = u1 * c2 + u2 * c1;

u1 = z;

}

c2 = sqrt ((1.0 - c1) / 2.0);

if (dir == 1)

c2 = -c2;

c1 = sqrt ((1.0 + c1) / 2.0);

}

if (dir == 1) {

for (i=0;i<n;i++) {

x[i] /= n;

y[i] /= n;

}

}

return(TRUE);

}

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 1 / 23

• Often when we try to understand the specifications of a problem we end up in the
situation to “read the source code” due to various reasons, but mainly due to the
lack of documentation, or unclear specifications.

• Although this C code is well structured, one might have difficulties in
understanding “what it does”...

Motivation

A Typical Sight...

short j = threadIdx . x; short i = j /2; short k = j %2; short h = i /2; short l = j %4; short m = i %2;

for (short s=1; s<=n ; s++){

p = M/(1<<(2*s)) ;

x = 2*(h+(h/(1<<2*(n-s)))*(1<<2*(n-s))*3);

r_tmp = (h%(1<<2*(n-s)))*(1<<2*(s-1));

x0 = x+l*p ;

sign1= m*(-2)+1;

r0 = r_tmp + k*(N/4);

x1 = x0+sign1 *2*p ;

SB[x0] = SA[x1] + sign1*SA[x0] ;

SB[x0+1] = SA[x1+1] + sign1*SA[x0+1];

short inx1 = x0 -m*2*p + m;

short inx2 = x0 + (!m)*2*p ;

SA[inx1] = SB[inx1] ;

SA[inx2+m] = sign1*SB[inx2]*SROT [2*r0+m] + SB[inx2 +1]* SROT [2*r0 +(!m)] ;

__syncthreads () ;

sign2 = k*(-2)+1;

r1 = r_tmp *2;

x2 = x0+sign2*p ;

SB[x0] = SA[x2] + sign2*SA[x0] ;

SB[x0+1] = SA[x2+1] + sign2*SA[x0+1];

short inx3 = x0 -k*p + k ;

short inx4 = x0 + (! k)*p ;

SA[inx3] = SB[inx3] ;

SA[inx4+k] = sign2*SB[inx4]*SROT [2*r1+k] + SB[inx4 +1]* SROT [2*r1 +(!k)] ;

__syncthreads ();

}

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 2 / 23

• ... it gets even worse when you go to specialized platforms. This CUDA code
performs the same function as the previous, but it is impossible to read.

• Now think from the perspective of the machine: although a computer will politely
execute the code given, it has no idea “what” it does.

• And since we have the machine’s perspective in mind, a full system specification
would not be of much help, would it? Usually specifications are written using
internal conventions and are meant for engineers rather than parsers.

• So this leads us to the question...

Motivation

The Problem

How can we describe systems understood by

humans

and

machines?

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 3 / 23

• What is the best way to describe systems in order to make sense for both humans
(engineers) and machines (design automation tools)?

Motivation

A Change of Perspective

f f fx(0) X(0)

f f fx(1) X(4)

f f fx(2) X(2)

f f fx(3) X(6)

f f fx(4) X(1)

f f fx(5) X(5)

f f fx(6) X(3)

f f fx(7) X(7)

w w w

w w w

w w w

w w w

w w w

w w w

w w w

w w w

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 4 / 23

• ... what does this system perform? Evidently, the Discrete Fourier Transform using
the Cooley-Tuckey algorithm.

• How did you, as humans understood its purpose? I presume due to the
unmistakable butterfly pattern, which is taught in school in signal processing
classes.

• The grand advantage of this specification format

– it is not bound to any execution model. It describes “what” it does rather
than “how” to do it.

– if we provide clear semantics for the nodes and the edges, it is more likely
that a machine is able to generate the previous code (or at lease platform
code satisfies the correct functionality), than the other way around.

• An analyzable formal framework/language for application modeling is easier said
than done! CPS: complex systems with a huge amount of interleaving concerns
that need to be captured.

•

Motivation

System Design Principles

Orthogonalization of concerns Layers

computation · communication · function ·
behavior · contract · timing · synchronization

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

Capturing of concerns Atoms

primitive building blocks

clear core semantics

side-effect free

%

�f1

≥ 0

Interactions of concerns Patterns

composition & hierarchy

interfaces
 %

farm

a

ns i od

〈0..1024〉

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 5 / 23

• We propose three key principles that are crucial to just even dare tackling with the
complexity of CPS.

• the first key principle is orthogonalization of concerns, i.e. separation of aspects in
a CPS in order to handle complexity by the “divide-et-impera” rule.

– for this, we introduce the concept of layers as separate environments for each
aspect in order to exploit it

• another key principle is to correctly capture and express the concerns using an
appropriate set of building blocks, enough to abstract the aspect’s semantics.

– we push orthogonalization to its limits by deconstructing the semantics of
each layer to their core, in form of indivisible building blocks called atoms.

– keep a reasonable number of symbols for handling complex behaviors.

• since by itself, separation is not enough in the context of interleaving concerns we
need to express interaction

– we define patterns for building complex behaviors from atoms.

The ForSyDe-Atom Framework

The ForSyDe-Atom Modeling Framework

p2

p1 p3

https://github.com/forsyde

ForSyDe-Atom

EDSL in the functional programming language Haskell

focus on capturing aspects of systems in a structured manner

provide a proper front-end for formal analysis tools

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 6 / 23

• we developed this framework under the name ForSyDe-Atom which is part of
the ForSyDe project.

The ForSyDe-Atom Framework

Layers in ForSyDe-Atom

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

Regular structure of signals

Tagged event

Extended value

Value

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 7 / 23

• this is the layer structure presented in the paper: we analyzed CPS from the
perspective of four concerns: the functionality, the behavior, the timing and
synchronization and the structure of communication and computation.

• we make heavy use of concepts from functional programming for expressing and
implementing this framework.

• the main idea is to “wrap” the system functionality (i.e. its data path) with layers
abstracting different aspects. Each layer is associated with a data type which
contains symbols and information relevant for the aspect we are trying to capture,
and basically enable computation and analysis on that layer.

• I will go through these layers and demonstrate their usage on the previous FFT
Example in a tutorial style...

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Function Layer

The Function Layer: FFT Example

f f fx(0) X(0)

f f fx(1) X(4)

f f fx(2) X(2)

f f fx(3) X(6)

f f fx(4) X(1)

f f fx(5) X(5)

f f fx(6) X(3)

f f fx(7) X(7)

w w w

w w w

w w w

w w w

w w w

w w w

w w w

w w w

f f fx(0) X(0)

f f fx(1) X(4)

f f fx(2) X(2)

f f fx(3) X(6)

f f fx(4) X(1)

f f fx(5) X(5)

f f fx(6) X(3)

f f fx(7) X(7)

w w w

w w w

w w w

w w w

w w w

w w w

w w w

w w w

Functional description
f(w, a, b) =

(a+ wb, a− wb)

ForSyDe-Atom code
f w a b =

(a + w * b, a - w * b)

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 8 / 23

• operations on data (data path) + side-effect free

• in the FFT Example, the basic functional block is the butterfly function, captured
by the block f .

– two inputs, two outputs
– takes a parameter w which is the “twiddle factor”
– the mathematical formulation of f can be expressed in the left equation.

• the nice thing with choosing a functional programming language as host is that the
code looks pretty similar like the maths.

• the function f tells what happens with the input data, but does not tell what
happens if the data does not arrive, is corrupted, or in any case, if some error
occurred and was propagated throughout the system. This set of events and their
responses are captured in a layer above...

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Behavior Layer

The Behavior Layer

Example 1: Absent events

synchronous languages

> present and ⊥ absent

resolution ⇒ clock calculus

operands resolution

> > >
⊥ ⊥ ⊥
> ⊥ throw error

Example 2: Multi-valued logic

modeling CMOS : IEEE 1164 standard with 9 values logic

digital modeling : 4-value logic subset 1, 0, Z, X

CAN transmission : SAE J1939 standard T, F, Error, Not Installed

multiple sources : Belnap’s relevance logic true, false, both, neither

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 9 / 23

• tries to answer the question “what happens when a special event occurs”

• “special” events usually describe a state of the system which cannot be captured
by the set of values

• example events: absent events or multi-valued logic.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Behavior Layer

Behavior Atoms

�

1

2

3

6
Σ

The resolutionB pattern

“Lifts” a function in the behavior layer domain

applies a resolution

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 10 / 23

• we need to extend the value types with symbols with clearly-defined semantics,
and define composable atomic operations on those symbols.

• resolution pattern: simulates a normal evaluation cycle in the synchronous
language Lustre.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Behavior Layer

Behavior Atoms

�

⊥
⊥
⊥

⊥
Σ

The resolutionB pattern

“Lifts” a function in the behavior layer domain

applies a resolution

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 10 / 23

• we need to extend the value types with symbols with clearly-defined semantics,
and define composable atomic operations on those symbols.

• resolution pattern: simulates a normal evaluation cycle in the synchronous
language Lustre.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Behavior Layer

Behavior Atoms

�

1

⊥
3

error
Σ

The resolutionB pattern

“Lifts” a function in the behavior layer domain

applies a resolution

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 10 / 23

• we need to extend the value types with symbols with clearly-defined semantics,
and define composable atomic operations on those symbols.

• resolution pattern: simulates a normal evaluation cycle in the synchronous
language Lustre.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Behavior Layer

The Behavior Layer: FFT Example

f f fx(0) X(0)

f f fx(1) X(4)

f f fx(2) X(2)

f f fx(3) X(6)

f f fx(4) X(1)

f f fx(5) X(5)

f f fx(6) X(3)

f f fx(7) X(7)

w w w

w w w

w w w

w w w

w w w

w w w

w w w

w w w

f f fx(0) X(0)

f f fx(1) X(4)

f f fx(2) X(2)

f f fx(3) X(6)

f f fx(4) X(1)

f f fx(5) X(5)

f f fx(6) X(3)

f f fx(7) X(7)

w w w

w w w

w w w

w w w

w w w

w w w

w w w

w w w

� � �x(0) X(0)

� � �x(1) X(4)

� � �x(2) X(2)

� � �x(3) X(6)

� � �x(4) X(1)

� � �x(5) X(5)

� � �x(6) X(3)

� � �x(7) X(7)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

� � �x(0) X(0)

� � �x(1) X(4)

� � �x(2) X(2)

� � �x(3) X(6)

� � �x(4) X(1)

� � �x(5) X(5)

� � �x(6) X(3)

� � �x(7) X(7)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

Functional description
fB(w, aB , bB) =

f(w)� (aB , bB)

ForSyDe-Atom code
import ForSyDe.Atom.Behavior as B

fB w = B.resolution22 (f w)

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 11 / 23

• coming back to the FFT Example, in order to “wrap” function f with a behavior,
we use the default behavior atom, expressed with the operator �.

– symbol convention in ForSyDe–Atom is inner operator for atom, outer
shape for layer.

• both the mathematical expression and the figure suggest that � takes the
previously defined f(w) as argument, and applies it on the wrapped inputs.

• the code makes use of partial application which avoids redundant argument calls.

• this system now expresses functionality and behavior, but tells nothing of how the
data is handled upon arrival, or how the data even arrives. For this we need to
capture timing and synchronization aspects defined in a layer above...

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The MoC Layer

Models of Computation founded in the tagged signal model1

“a common meta model for describing properties of concurrent systems (...)”

Atoms enabled by signals
⇒ agnostic of their own MoC

Supported MoCs:

Synchronous Data Flow (SDF)
Synchronous (SY)
Discrete Event (DE)
Continuous Time (CT)

s = {e0, e1, ...} ∈ S

where ej = (tj , vj)

vj ∈ V, tj ∈ T

tj ≤ tj+1, ∀ j ∈ N

1E.A. Lee and A. Sangiovanni-Vincentelli. “A framework for comparing models of
computation”. In: IEEE TCAD 17.12 (Dec. 1998), pp. 1217–1229.

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 12 / 23

• MoC = classes of behaviors dictating the semantics of computation and
concurrency in a network of processes.

• model describes signals as “sets of tagged events”, where the set of tags itself is a
partial order. This means that in our framework, the tags and the set constructors
will play the main role and will act as enablers for the MoC layer.

• like all atoms in our framework, MoC atoms themselves are agnostic of the
semantics they are implementing, and are presented as interfaces. The ones
enabling atoms (and basically overloading the interfaces with the actual MoC
semantics) are signals, i.e. a SY signal will overload an atom with SY semantics.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The Synchronous MoC

4,3,2,1

3,2,1

+

The combM pattern

synchronizes the input signals

“Lifts” a function and applies it on each event

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 13 / 23

• One example is the SY MoC which is one of the most widely-used MoCs due to its
similarities with the RTL logic.

• assumes computation is performed with 0 delay, and happens at certain
synchronization points, where data is assumed to be available.

• here you see an example of a combinatorial process (pattern, it can be further be
decomposed), which synchronizes two signals, applying function (+) on each pair
of synchronous events.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The Synchronous MoC

4
6,4,2

+

The combM pattern

synchronizes the input signals

“Lifts” a function and applies it on each event

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 13 / 23

• One example is the SY MoC which is one of the most widely-used MoCs due to its
similarities with the RTL logic.

• assumes computation is performed with 0 delay, and happens at certain
synchronization points, where data is assumed to be available.

• here you see an example of a combinatorial process (pattern, it can be further be
decomposed), which synchronizes two signals, applying function (+) on each pair
of synchronous events.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The Continuous MoC

2 4 6 8 10
0

0.5

1

0(t)

1(t)

2 4 6 8 10

−1

−0.5

0

0.5

1

sin(t) −1

−0.5

0

0.5

1

×

The combM pattern

synchronizes the input signals

“Lifts” a function and applies it on each event

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 14 / 23

• The CT MoC assumes that events are associated with an explicit tag, suggesting
that they can “happen” at any physical instant in time.

• the combinatorial process’ job is to synchronize these instants and output a signal
respecting the time behavior.

• ForSyDe ’s CT implementation is particularly useful thanks to the functional
host. This way we can express functions over time as events, rather than sampled
values. In this case the first signal has two events, and the second only one event.
The output will be expressed as a function over time as well, and it will be
evaluated only when plotted or sampled explicitly.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The Continuous MoC

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
2 4 6 8 10

−1

−0.5

0

0.5

1

(0 × sin)(t)

(1 × sin)(t)

×

The combM pattern

synchronizes the input signals

“Lifts” a function and applies it on each event

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 14 / 23

• The CT MoC assumes that events are associated with an explicit tag, suggesting
that they can “happen” at any physical instant in time.

• the combinatorial process’ job is to synchronize these instants and output a signal
respecting the time behavior.

• ForSyDe ’s CT implementation is particularly useful thanks to the functional
host. This way we can express functions over time as events, rather than sampled
values. In this case the first signal has two events, and the second only one event.
The output will be expressed as a function over time as well, and it will be
evaluated only when plotted or sampled explicitly.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The MoC Layer

The MoC Layer: FFT Example

� � �x(0) X(0)

� � �x(1) X(4)

� � �x(2) X(2)

� � �x(3) X(6)

� � �x(4) X(1)

� � �x(5) X(5)

� � �x(6) X(3)

� � �x(7) X(7)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

� � �x(0) X(0)

� � �x(1) X(4)

� � �x(2) X(2)

� � �x(3) X(6)

� � �x(4) X(1)

� � �x(5) X(5)

� � �x(6) X(3)

� � �x(7) X(7)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

f(w) f(w) f(w)

 x(0) X(0)

 x(1) X(4)

 x(2) X(2)

 x(3) X(6)

 x(4) X(1)

 x(5) X(5)

 x(6) X(3)

 x(7) X(7)

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

 x(0) X(0)

 x(1) X(4)

 x(2) X(2)

 x(3) X(6)

 x(4) X(1)

 x(5) X(5)

 x(6) X(3)

 x(7) X(7)

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

Functional description
fM (w, saM , sbM) =

fB(w) (saM , sbM)

ForSyDe-Atom code
import ForSyDe.Atom.MoC as M

fM w = M.comb22 (fB w)

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 15 / 23

• coming back to the FFT Example, enhancing fB with a timing behavior is
straightforward: we use the pattern, which takes the previous fB as argument,
and now we can assume that the graph edges are signals of events of extended
values.

• following the principle of function overloading associated with polymorphic types,
two input SY signals would transform the process into as SY process, whereas
two CT signal would transform it into a CT process, a.s.o.

• while having introduced the needed blocks for describing and simulating CPS,
modeling a FFT with only MoC layer elements (processes and signals) is not
particularly great, nor scalable.

• we can easily observe that most interconnections follow repetitive patterns.
Thankfully there is such a layer which exploits recursive structures...

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer

Algorithmic Skeletons2

formalization of regular/recursive patterns
parallel computation and communication

Algebra of types: category theory3

types expose parallelism
functions that exploit this potential
transformational framework ⇔ equational reasoning

2Murray I. Cole. Algorithmic skeletons: structured management of parallel computation.
Pitman London, 1989.

3Richard Bird and Oege de Moor. Algebra of Programming. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1997.

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 16 / 23

• This layer is concerned with algorithmic skeletons = high level structures capturing
computation/communication which has the potential to be executed in parallel.

• Algorithmic skeletons are founded in an algebra of types called category theory,
which describes a class of types that through their construction they have the
potential to be evaluated in parallel.

– example: vector

• This theory also provides a framework based on equational reasoning for semantic
preserving transformations from specification model to efficient implementations.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

Computation Patterns

f

f

f

f

· · ·

farmS = 0

f

f

f

· · ·

reduceS = 4

f

f

f

· · ·

pipeS = 1 = (◦)4

f

f

f

· · ·

recurS = (f1)0 initsS

f

f

f

· · ·

prefixS = (f4)0 initsS

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 17 / 23

• The factorization theorem states that a function on a categoric type is a
catamorphism iff it can be expressed in terms of a map and a reduce.

• This theorem justifies the choice of these two skeletons as atoms in the
ForSyDe–Atom framework.

• We describe an extensive library of patterns in terms of these two atoms.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

Communication Patterns

oddsS evensS bitrevS

concat2S splitS

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 18 / 23

• The patterns do not necessarily need to describe parallel computation.
Communication patterns such as permutations can also be defined in terms of map
and reduce.

• Instead of wrapping an arbitrary function, these patterns operate on the type
constructors themselves.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

 x(0) X(0)

 x(1) X(4)

 x(2) X(2)

 x(3) X(6)

 x(4) X(1)

 x(5) X(5)

 x(6) X(3)

 x(7) X(7)

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

 x(0) X(0)

 x(1) X(4)

 x(2) X(2)

 x(3) X(6)

 x(4) X(1)

 x(5) X(5)

 x(6) X(3)

 x(7) X(7)

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

f(w)� f(w)� f(w)�

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

Functional description
fM (w, saM , sbM) =

fB(w) (saM , sbM)

ForSyDe-Atom code
import ForSyDe.Atom.MoC as M

fM w = M.comb22 (fB w)

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. first, we notice that all the processes in our FFT network are replicas of the same block
fM . While the unequal segmentation at each stage forbids us to group all processes in a
column into a farm pattern, we can do that at least for each stage.

2. the butterfly pattern now takes a vector of twiddles as argument and distributes it across
processes. It also now operates on two vectors of signals.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

butterfly

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

Functional description
butterflyS(w, vsaS , vsbS) =

fM 0 〈twiddles〉0 (vsaS , vsbS)

ForSyDe-Atom code
import ForSyDe.Atom.Skeleton.Vector as V

butterfly = V.farm32 fM twiddles

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. we now need to capture the fact that for each segment the vector is split and merged back
do form the butterfly communication pattern.

2. this can be easily done by adding the split and cat patterns. But now we can observe
that for each stage, the new split-butterfly-cat is the same, and it is replicated with a factor
of 2(n−1)

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

f(w)�

〈twiddles〉

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

Functional description
segmentS(vs) =

(catS ◦ butterflyS ◦ splitS)(vs)

ForSyDe-Atom code
segment = V.concat2 . butterfly

. V.split

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. this can be easily done by adding the split and cat patterns. But now we can observe
that for each stage, the new split-butterfly-cat is the same, and it is replicated with a factor
of 2(n−1)

2. we can further capture this property by embedding each FFT stage into a farm pattern,
and making sure we group the input vectors into smaller vectors of a specified length.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

x(0) X(0)

x(1) X(1)

x(2) X(2)

x(3) X(3)

x(4) X(4)

x(5) X(5)

x(6) X(6)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

b
i
t
r
e
v

fft

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

nstages

Functional description
stageS(l, vs) = (concatS

◦ (segmentS0) ◦ groupS(l))(vs)

ForSyDe-Atom code
stage l = V.concat . V.farm11 segment .

V.group l

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. what we are left with is a pipeline of N stages, where each stage differs from the others only
through its partition size for the input vector. Well, this partition is just a parameter taken
by the groupS pattern, thus we can capture the whole pipeline using a pipeS pattern which
distributes the partition sizes to each stage accordingly.

2. one last addition we make is applying the bit-reversal permutator pattern on the output, in
order to get the FFT bins in order. We can also generate the vector of lengths from one
parameter, which is the number of stages fro the FFT network.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

x(0) X(0)

x(1) X(1)

x(2) X(2)

x(3) X(3)

x(4) X(4)

x(5) X(5)

x(6) X(6)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

b
i
t
r
e
v

fft

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

nstages

Functional description
fftS(vs) =

stageS 1 (〈2, 4, 8〉, vs)

ForSyDe-Atom code

fft = V.pipe2 stage (vector [2,4,8])

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. what we are left with is a pipeline of N stages, where each stage differs from the others only
through its partition size for the input vector. Well, this partition is just a parameter taken
by the groupS pattern, thus we can capture the whole pipeline using a pipeS pattern which
distributes the partition sizes to each stage accordingly.

2. one last addition we make is applying the bit-reversal permutator pattern on the output, in
order to get the FFT bins in order. We can also generate the vector of lengths from one
parameter, which is the number of stages fro the FFT network.

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
�

v
�

t

v
�

t

v
�

t

v
�

t

The ForSyDe-Atom Framework The Skeleton Layer

The Skeleton Layer: FFT Example

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

f(w)�

〈twiddles〉

8
f(w)�

〈twiddles〉

4
f(w)�

〈twiddles〉

2

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(3)

x(7) X(7)

butterfly

s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

x(0) X(0)

x(1) X(1)

x(2) X(2)

x(3) X(3)

x(4) X(4)

x(5) X(5)

x(6) X(6)

x(7) X(7)

butterfly
s
p
l
i
t

c
o
n
c
a
t
2

segment

g
r
o
u
p

c
o
n
c
a
t

stage

b
i
t
r
e
v

fft

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

nstages

Functional description
fftS(N, vs) = bitrevS◦

stageS 1 (widthsS(N), vs)

ForSyDe-Atom code
fft n = V.bitrev .

V.pipe2 stage (widths n)

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 19 / 23

• Coming back to the FFT Example. We need to make use of these
computation/communication patterns to reach a simpler, parameterizable form.

1. what we are left with is a pipeline of N stages, where each stage differs from the others only
through its partition size for the input vector. Well, this partition is just a parameter taken
by the groupS pattern, thus we can capture the whole pipeline using a pipeS pattern which
distributes the partition sizes to each stage accordingly.

2. one last addition we make is applying the bit-reversal permutator pattern on the output, in
order to get the FFT bins in order. We can also generate the vector of lengths from one
parameter, which is the number of stages fro the FFT network.

The ForSyDe-Atom Framework

FFT Example : Code

1 import ForSyDe.Atom.Behavior as B

2 import ForSyDe.Atom.MoC as M

3 import ForSyDe.Atom.Skeleton.Vector as V

4
5 fft n = V.bitrev . V.pipe2 stage (widths n)

6 where

7 stage l = V.concat . V.farm11 segment . V.group

8 segment = (V.concat2 <>) . (butterfly <>) . V.split

9 butterfly = V.farm32 fM twiddles

10 fM w = M.comb22 (B.default22

11 (\a b -> a + w * b, a - w * b))

Code available at https://github.com/forsyde/forsyde-atom
ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 21 / 23

• ...and we were able to do that in just 11 lines of code (including the library
imports).

• + 3 additional lines for defining twiddles and widths (found in the public
repository).

• coming back to the original question which drove our research:

– how can this code be useful for humans?

well-structured, red keywords are patterns and the prefix is their layer.
parametrizable patterns: avoid boilerplate code.
associated with a visual structure which can be expanded/collapsed and
projected to show different aspects of the system.

– how can this code be useful for machines?

each pattern can be deconstructed into a small set of symbols with known and
well-defined semantics.
translates into an intermediate structure that enables design transformations
and design space exploration.
acts as an executable specification...

The ForSyDe-Atom Framework

FFT Example : Executable Specification

%

%

%

%

%

%

%

%

0 20 40 60 80 100 120 140 160 180
0

50

100

0

50

100

150

butterfly

s
p
l
i
t

c
a
t

segment

g
r
o
u
p

c
o
n
c
a
t

stage

b
i
t
r
e
v

fft

f(w)�

〈twiddles〉

l

〈8, 4, 2〉

nstages

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 22 / 23

• .. an example simulation testbench for the previous code

• describe one double-sine input signal of a certain MoC (say SY).

• inject this signal into a network of delay processes, to get the correct vector of
input samples.

• we instantiate a 128-bin FFT (i.e. N = 7 stages).

• the output shows the two stable sine components after the 128th sample, i.e. after
the delay network has been filled.

Conclusions & Future Work

Conclusions & Future Work

Framework for modeling CPS

frontend enabling formal design flows, driven by:

orthogonalization of concerns: four separate layers of interleaving concerns.
capturing of concerns: atoms as symbols with clear semantics.
interaction of concerns: patterns of atom as hierarchical blocks.

step-by-step demonstration on a typical FFT Example.

ForSyDe–Atom

shallow-EDSL, proof-of-concept for the presented framework.

publicly available at https://github.com/forsyde/forsyde-atom

Future work

development of existing layers and exploration of new aspects (e.g. validation, adaptivity).

deep-EDSL and full compiler flow.

ugeorge@kth.se (KTH) ForSyDe-Atom March 30, 2017 23 / 23

