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Abstract—In modern society, wireless devices are commonly
carried by humans. The wireless communication is therefore
affected by pedestrian mobility in urban outdoor and indoor
spaces which is the scenario we consider in this work. Many
of the mobility models currently used for evaluating wire-
less communication systems have poor resemblance to reality.
Although advances have recently been made, there is still a
lack of understanding on which elements of mobility affect
system performance. In the civil-engineering field of transport
and urban planning there exist advanced pedestrian mobility
models, used for designing and dimensioning public spaces for
pedestrian crowds and emergency evacuation. These models
capture micro-mobility of pedestrians better than most mobility
models used in mobile networking since the application domain
requires that they realistically capture node interactions with
its physical environment as well as other nodes. In this work
we use Legion Studio, a commercial simulator, to explore which
elements of pedestrian mobility are important with respect to
system performance and how sensitive the connectivity metrics
of nodes are to input mobility parameters. These studies give
insight into whether relatively simple mobility models suffice for
evaluating wireless systems. Furthermore, they contribute to our
understanding of which parameters are important for modelling
mobility and the accuracy in which these parameters need to be
estimated to give dependable results.

I. INTRODUCTION

It is well known that mobility significantly affects the
performance of wireless communication systems [1], [2]. On
the one hand, mobility causes disruptions when connected ad-
hoc networks are partitioned as nodes move out of communi-
cation range. On the other hand, mobility can be exploited to
forward messages across network partitions by having nodes
physically store, carry and forward messages [3]. Mobility
is therefore a crucial component of these systems and it is
essential to realistically capture mobility when evaluating their
performance.

In many wireless systems the mobile terminals are carried
by humans and this is the scenario that we target for; pedes-
trians in urban areas. Much of the performance evaluation
of these types of systems uses synthetic mobility models
where nodes randomly move in a closed area. These random
waypoint/direction models however reflect reality poorly and
therefore a series of models have been proposed that address
some of the shortcomings [4], [5], [6], [7], [8]. Although
advances have recently been made towards more realistic mo-
bility models, there are still many elements of human mobility
that are ignored or inadequately captured in current models. As
examples of this, they commonly assume a free flow of nodes

and ignore node-to-node interactions. The structure of space
in which mobility occurs is either not considered or only in
a very limited way. They do not consider cultural aspects of
mobility such as differences in personal space requirements
and walking speed, and in contrast to real-life they usually
assume a closed-system and thus do not consider the effects
of arrival processes and sojourn times in the area under
inspection. We feel that there is still a lack of understanding
of which elements of mobility are important when it comes to
evaluating wireless communication systems, in particular with
respect to the sensitivity of system performance to individual
mobility parameters.

In the area of urban planning and transportation research,
advanced mobility models for flows of pedestrians as well
as for individual pedestrians in a flow have been devised [9].
These models are primarily used for designing and dimension-
ing large-scale public spaces in order to optimize for large
crowds, emergency and evacuation strategies. It is thus of
primary importance to realistically capture the structure of
the physical space, how nodes interact with it and how they
interact with each other. These models therefore better capture
micro-mobility of pedestrians than most mobility models used
in mobile networking. We believe that these models can
be of great use for evaluating the performance of mobile
communication and we are convinced that they can give insight
into which elements of mobility affect performance.

In this paper we study how mobility affects the perfor-
mance of wireless communication systems. Our approach is
based on a detailed and realistic micro-level mobility model
implemented in Legion Studio1; a commercial pedestrian sim-
ulator package that is commonly used by architects and civil
engineers to design and dimension large-scale public spaces.
The mobility model in Legion Studio is based on advanced
analytical models that have been calibrated by measurement
studies [10]. To the best of our knowledge, Legion Studio is
the most advanced and realistic simulation model available
for micro-level pedestrian mobility and it has, as far as we
know, not been used before in the context of evaluating mobile
communication systems.

The focus of our current work is on how micro-level mo-
bility parameters (such as speed, arrival process and personal
space requirements) affect the connectivity parameters (such
as contact duration, contact rate and number of neighbours) of

1http://www.legion.com



mobile wireless systems. In particular, the goal of our study
is to explore the performance sensitivity of mobile communi-
cation with respect to the micro-level mobility metrics and we
want to address the following:

• Is connectivity highly sensitive to even small changes in
input mobility parameters?

• Are some input parameters more important than others?
If so, which?

We believe that these are fundamental questions to ask when it
comes to modelling mobility for the sake of evaluating wire-
less communication systems. They contribute to understanding
whether mobility can be captured by relatively simple analytic
or simulation models to give meaningful performance results,
or if other more advanced measures are needed. Also, they help
us understand whether a rough estimate of input parameters is
sufficient or if accurate estimates of the empirical distributions
are needed.

The rest of this paper is organized as follows. In section
II we further motivate and position our work with respect to
the work of others. Section III gives an overview description
of Legion Studio, the mobility simulator used in our studies,
and section IV describes our simulation settings and results.
In section V we conclude and discuss future work.

II. BACKGROUND & RELATED WORK

Human mobility can be classified as consisting of three
levels: strategic, tactical and operational mobility [9]. At the
strategic level humans decide their daily movement patterns
and the activities they would like to perform, such as go to
work or take a walk in the park. The tactical level, considers
the implementation of a strategic decision, such as choosing
a way of travel or a shortest path, taking into consideration
environmental factors like obstacles and congestion. At the
operational level, the physical process of human movement is
considered, including walking speed, physical size of nodes
and interaction with other traffic due to queuing or to avoid
collisions. The performance of mobile wireless communication
systems is likely to be affected in a different way by each
level. Decisions at the strategic and tactical levels determine
the regularity and routines in moving patterns which in turn
affect the inter-meeting time with other individual nodes.
Some routing protocols for delay-tolerant networks try to take
advantage of such non-randomness in node mobility patterns
to efficiently route messages to a given destination node [11],
[12]. Mobility at the operational level presumably affects node
connectivity and the duration of individual contacts while on
the move. This determines the amount of data that can be
transferred over each contact which is of great importance
when forwarding packets between nodes according to a routing
protocol or when disseminating data for content distribution
applications [13], [14], [15].

A series of works have identified that mobility can sig-
nificantly affect the performance of wireless communication
systems [16], [1], [2]. By simulating various ad-hoc routing
protocols under different mobility models, the work in [1]
confirms that the choice of mobility model matters and that

performance ranking of protocols may vary with the mobility
model used. Our work differs from [1] in that we focus
strictly on a certain scenario, namely pedestrian mobility. Also,
currently we do not focus on particular applications or (ad-hoc)
routing protocols but are more interested in how sensitive the
node connectivity metrics are to variations in mobility input
parameters at the operational level.

In the recent past, random mobility models (such as random
waypoint [17] or random direction [18]) have commonly been
used to evaluate mobile wireless systems. These models have
a poor resemblance with real life mobility for various reasons:

• At the operational level, they assume a free flow of nodes
and therefore do not capture interactions between nodes,
queuing effects or node interactions with the physical
neighborhood and with obstacles.

• At the strategic level, they neither capture the social
clustering of humans nor regularities in human mobility
such as due to working day cycles or social networks.

• They assume a closed system and therefore they do not
allow for assessing the effect of arrival processes and
sojourn times in an area.

Recently a number of mobility models have been proposed
to address some of these shortcomings. The Manhattan mo-
bility model in [1] captures obstacles by assuming that nodes
are confined to streets and it models pedestrian interactions
by assuming that fast nodes slow down when blocked by a
slower node. It is however 1-dimensional in the sense that it
does not assume that nodes have physical size nor that streets
have width. In contrast, the Legion mobility model we use
is a much more detailed model of pedestrian behaviour than
the Manhattan model. In Legion Studio, as in real-life, fast
nodes may slow momentarily down due to slow nodes, but if
space allows, they will overtake when there is opportunity. The
obstacle mobility model [5] also captures movements of nodes
where obstacles block or restrict their freedom to roam or
their signal propagation. It does however not capture detailed
operational-level pedestrian mobility. Another mobility model
that focuses on pedestrians in urban areas is proposed in [19].
It assumes that pedestrians can be modelled by a finite number
of flows where each node belongs to one particular flow. They
formulate the flows as a linear programming optimization
problem, and by measuring the densities of pedestrians at
different observation points in the graph topology they can
solve the optimization problem to obtain the rate of each flow.
This model is thus not a detailed operational level model,
but rather models tactical mobility. Some mobility models
do not explicitly model the physical movements of nodes
but instead model the temporal clustering due to regularity
in their movements. This clustering and non-randomness in
human mobility stems from mobility at the strategic level
and it strongly affects the node inter-meeting times which is
particularly important for routing in delay-tolerant networks,
as previously discussed. These models can thus be classified
as purely strategic or tactical level models and they can be
based on social networks [6], [8] or diurnal regularity in human
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Fig. 1. The simulation scenarios: A part of a downtown Stockholm (left) and a two-level subway station (right).

movements [7], [20]. Although advances have recently been
made with more realistic human mobility models there is still a
lack of understanding which parameters affect the performance
of mobile communications, not least at the operational level.

Recently there has been significant interest in measuring the
connectivity of mobile devices [2], [21], [22]. Connectivity
traces are collected from mobile devices that are distributed
to a set of users in a controlled group (e.g. conference
participants, a sample of students on campus). These stud-
ies are mostly analyzing the frequency of transfer oppor-
tunities by studying the distribution of inter-meeting times
between devices. Less attention has been paid to studying
the individual contacts and what affects their duration and
frequency. Although these experiments have shown interesting
results they are severely limited in many ways. The traces
inherently suffer from limitations with the respective radio
technology employed which can make it hard to draw general
conclusions about the effects of mobility. As an example of
technical limitations, the Bluetooth devices frequently used
in measurements perform neighbour discovery approximately
every 2 minutes. This is likely to filter out many of the
short contact opportunities as we address in the current work.
Also, performing large-scale measurements is expensive and
resource demanding and still each experiment only captures
a particular scenario. Reproducing the environment between
individual experiments to single out the effect of one factor
is difficult because of issues such as variations in the radio
channel, mobility and randomness in the MAC layer con-
tention. We therefore conclude that although collecting traces
is important, simulations are, and will remain, an invaluable
tool for evaluating the performance of mobile networks.

III. LEGION STUDIO MOBILITY SIMULATOR

Legion Studio is a commercial simulation software package
used by architects and civil engineers for designing large-
scale public spaces via simulation of pedestrian behavior.
Legion Studio can import AutoCAD drawings of real life
structures and buildings in urban areas such as subway stations
or shopping malls. The multi-agent pedestrian model is based
on advanced analytical and empirical models [23] which have

been calibrated by measurement studies [10]. Each pedestrian
is represented as a two-dimensional entity with a circular form
and a size that approximates the size of an actual pedestrian.
Most of the navigation decisions can be made by the entities
themselves based on the individual interaction with other
nodes and with the surrounding environment, although overrid-
ing certain choices is possible. The movement patterns follow
the least effort principle where, just like in reality, each entity
tries to minimize the dissatisfaction before choosing its next
move. It should be noted that dissatisfaction in Legion Studio
can have different aspects, including inconvenience, frustration
and spatial discomfort. The three levels at which an entity
can take its navigation decision, strategic, tactical (macro-
navigation) and operational (micro-navigation), allow correct
capturing of issues such as queuing behind slower nodes
or at bottlenecks, as well as personal space requirements.
Dynamics increase because Legion Studio allows the use of
open systems, where entities can enter or leave the system
according to a certain pattern. The ability of registering the
spatial and temporal position of each node provides extensive
information that can be used for examining user behaviors in
the context of evaluating mobile communication systems.

In summary, Legion Studio offers a more sophisticated
way of simulating operational-level pedestrian mobility than
most current mobility models in the field of communication
networks. For a more detailed description of the simulation
model we refer to [23].

IV. EVALUATION

Evaluation scenarios

Our evaluation considers two scenarios with different char-
acteristics. The first scenario is an outdoor urban scenario that
models the Östermalm area of central Stockholm, shown in
Fig. 1(a). It consists of a grid of interconnected streets where
each street is 2 m wide and lengths vary between 20 m and
200 m. There are 12 passages that connect the area to the
outside world and we assume that all streets have equal node
arrival rates denoted by λ. Upon arriving at an intersection,
nodes continue to move on the same street (if possible) with
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Fig. 2. The impact of speed distribution (2(a)) on and arrival process (2(b)) on mean contact duration. 2(c) shows the histogram of the contact duration
fitted log-normal pdf.

probability 0.5 or turn to other adjoining streets with equal
probabilities. The scenario is relatively large with an active
area of approximately 5872 m2 that the nodes can move in.
Nodes in the scenario move constantly so it is characterized
by high mobility. We note that we have experimented with
different routing probabilities and replaced the center streets
with a wide square and found that this does not significantly
affect our result.

The second scenario is a two-level indoor subway station,
shown in Fig. 1(b). The train platform is connected to the
entry-level with escalators and nodes can arrive either in
batches from an incoming train or on foot through one of
the doors on the entry-level. The train arrivals/departures thus
contribute to burstiness in the node arrival and departure pro-
cesses. Nodes will congregate at the platforms when waiting
for the next train arrival or in the store or restrooms at the
entry level. Since the station is relatively densely populated
with people and since its structure severely constrains mobility,
the physical interaction of nodes is high, which in turn can
lead to queuing. The escalators are the main bottlenecks where
queuing effects are observed. The active area of the scenario
is about 1921 m2.

The mobile nodes may communicate over short-range radio,
such as Bluetooth or 802.11. We assume a simple model of
the physical layer in which nodes connect if they are within a
transmission range Δ of one another. Currently we do not con-
sider radio or data-link issues such as interference, shadowing,
fading or MAC-layer contention. In dense pedestrian scenarios
these issues are certainly important if a large fraction of the
nodes have a communication device. Many of the scenarios
considered here however have a relatively low density. Also,
if the penetration of active devices in a crowd is low, the
mobility of the device-carrying nodes is still constrained by
the crowd. This will affect some of the connectivity parameters
studied here, in particular the contact duration.

Simulation setup

Each simulation run conducted in Legion Studio results in
a mobility trace file, containing a snapshot of the positions of
all nodes in the system every 0.6 s. We assume a node trans-

mission range of Δ = 10 m. For obtaining the connectivity
metrics from the mobility traces we parse them with custom
scripts or feed them into a system simulator [24]. In processing
the simulation runs we sample only values after steady state
has been reached to avoid any bias due to the initial transient.

Performance metrics

We are interested in evaluating how the connectivity of the
nodes is affected by mobility and how sensitive the connec-
tivity metrics are to changes in mobility input parameters. We
study both the mean and full empirical distributions of the
following connectivity metrics:

• Contact duration - This is the time that two nodes are
physically within direct communication range. In this
work we do not consider a particular radio technology but
we note that our definition of contact duration includes
the node discovery and contact setup time which can
be different for different radios. The amount of data
that can be transferred over a contact thus depends the
channel bitrate and the remaining contact duration after
connection setup.

• Contact rate - We calculate the contact rate as the number
of contacts of non-zero duration that a node makes,
divided by the lifetime of the node in the simulation.
Since we study open systems, the contact rate is a more
suitable metric than the number of contacts since the rate
is (by definition) normalized by the simulation sojourn
time of a node.

• Inter-contact time - In this work we define the inter-
contact time as the elapsed time from the beginning of
one contact to the beginning of the next (in some works
this is referred to as the inter-any-contact time). We do not
consider inter-meeting times (i.e. elapsed time between
contacts of the same pair of nodes) in this study since
it is mainly determined by mobility at the strategic and
tactical levels. The current study focuses on operational-
level mobility.



A. Östermalm scenario results

With the Östermalm scenario we consider how the input
speed distribution and arrival process affects the connectivity
metrics and their distributions. We point out that the input
speed distribution only gives the target speed of nodes but
in the simulator, the actual empirical speed distribution is
different since node speed is affected by inter-node dynam-
ics and the physical space (i.e. nodes may slow down due
to congestion and they can momentarily speed up when
overtaking other slower nodes). Legion Studio also allows
one to configure different cultural profiles that modify node
parameters such as the physical size, dissatisfaction levels
due to queuing or constraints, and desired inter-node distance.
We have explored the effect of varying these parameters and
found that the connectivity metrics show high insensitivity to
changes. Therefore we do not discuss these further.

In Fig. 2 we study the effect of the speed distribution
and arrival process on the mean contact duration. In 2(a)
we consider three different speed distributions: constant with
speed 1.3 m/s, uniform(0.6; 2.0), and truncated normal(0.6;
2.0) with a mean of 1.3 m/s. The reason for choosing 1.3
m/s as a mean speed value is based on the study in [25]
and we have found that changing the absolute value only
shifts the performance curves by a constant factor but does
otherwise not affect performance (graphs are omitted due to
space constraints). In order to facilitate the comparison, in all
cases a Poisson arrival process is considered. Due to different
factors (for example, cultural profiles or aging) people do
however not move at constant speed. Therefore the normal and
uniform speed distributions are closer to reality and these give
similar results, with the uniform distribution giving slightly
longer contact durations. The reason is that with the uniform
distribution there is a larger amount of slow nodes in the
scenario which increases the average contact durations.

Fig. 2(b) studies the effect of different arrival processes on
connectivity. All the arrival processes have the same mean λ:
a Poisson process with rate λ, 4-stage Erlang where each stage
has rate 4λ and a two-phase hyperexponential inter-arrival
time distribution with arrival rates 0.35λ and 5.7λ in the first,
respectively, second phase, and selection probabilities 0.31 and
0.69. The Erlang distribution has a coefficient of variation 1/2
and the hyper-exponential distribution has a coefficient of vari-
ation 2. The speed distribution in all cases is normal with mean
1.3 m/s. At low arrival rates the hyper exponential arrivals
result in longer contact durations than the other processes.
This is due to burstiness of the process: bursty periods of short
inter-arrival times are followed by longer inter-arrivals. Nodes
arriving during a bursty period have a high probability of being
connected upon arrival and thus stay connected for a relatively
long time as they move in a connected group. We believe that
arrival processes in real life are in many cases bursty since
common phenomena in urban life contribute to this, such as
traffic lights, elevators and arrivals of trains and buses. At
higher arrival rates the distinction between arrival processes
diminishes and the average contact duration increases. This is
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Fig. 3. Empirical pdf of contact duration for three speed distributions.

due to the clustering of nodes in the scenario which leads to
queuing that forces faster nodes to slow down, thus increasing
the contact duration with the surrounding nodes.

In addition to studying the mean values we have also looked
at how the distribution of the contact duration is affected by the
speed and arrivals. Fig. 2(c) shows the histogram of contact du-
rations under a Poisson arrival process with a per-entry arrival
rate of λ = 0.15 s−1. The histogram shows a sharp peak in the
contact durations at approximately 8 s. This is due to contacts
with nodes moving in opposite directions. The mean duration
of this type of contacts is given by d = 2Δ/|va−vb| where Δ
is the communication range and |va − vb| is the relative speed
of the nodes. For Δ = 10 m and a mean speed of 1.3 m/s the
average duration of these contacts is 7.7 s. The histograms for
the Erlang and Hyper-exponential have high resemblance and
are therefore omitted from the plot. In other words, we find
that the arrival process does not alter the shape of the contact
duration and this is further verified by a statistical comparison.
We have compared the empirical contact distribution with
five standard probability distributions: exponential, power-law,
gamma, weibull and log-normal. Although all distributions are
rejected by a Kolmogorov-Smirnov (KS) test, a log-normal
distribution with parameters with μ = 2.2 and σ = 0.7 gives
the closest fit (i.e. lowest KS statistics) for all three arrival
processes. As seen from Fig. 2(c) the log-normal distributions
is however only a rough estimate and it does not well capture
the sharp spike at 8 s.

Fig. 3 illustrates how the speed distribution affects the
contact duration. The speed affects both the height and the
width of the spike due to contacts in opposite directions and
this is well reflected in the mean value analysis in Fig. 2(a).
The basic shape of the empirical contact distribution however
remains the same.

In summary, we see that the speed distribution and arrival
processes have a small effect on the mean contact duration.
The shape of the underlying empirical distributions for the
contact durations however remains the same and they are all
roughly approximated by the same log-normal distribution.

Fig. 4(a) shows that up to a certain point (λ = 0.7 s−1) the
contact rate increases approximately linearly with the arrival
rate, and that the absolute value is highly insensitive to the
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Fig. 4. The impact of speed distribution (4(a)) and arrival process (4(b)) on mean contact rate. 4(c) shows the histogram of the inter-contact time and a
fitted gamma pdf.

shape of the speed distribution. The violation of the linearity,
observed in the end of the graphs marks the beginning of a
saturation phase. Due to the high density, nodes are severely
constrained in their mobility and injecting more nodes into the
scenario does barely increase the opportunities for establishing
new contacts. The same tendency can be observed in Fig. 4(b)
and the graph demonstrates that changing the shape of the
arrival processes result in minor differences in the mean value
of the contact rate.

We have found that the empirical distribution of the inter-
contact times is only slightly affected by the different arrival
processes. The inter-contact times are approximated by a
gamma distribution for all arrival processes and the empirical
inter-contact means and gamma parameters are listed in table
I. Furthermore, Fig. 4(c) shows the histogram of the empirical
inter-contact time distribution for a Poisson arrival rate of
λ = 0.15 s along with the fitted gamma probability density
(the gamma densities and histograms for Erlang and Hyper-
exponential are omitted since they cannot be separated from
the Poisson case).

Similar to the contact duration, the mean contact rate and
the inter contact time distribution show high insensitivity with
respect to changes both in the walking speed distribution and
the arrival process. We find that the inter-contact distribution
is well approximated by the gamma distribution while the log-
normal fit for the contact durations should only be considered
a rough estimate.

B. Subway scenario results

As previously mentioned, mobility in the subway scenario
is different from the Östermalm scenario in that nodes do
not constantly move but can pause at the store and the train

Poisson Erlang Hyper-exponential
Mean (s) 3.2 2.8 3.0

Gamma params. a = 0.66 a = 0.54 a = 0.66
a (shape) and b (scale) b = 4.78 b = 5.24 b = 4.62

TABLE I
PARAMETERS FOR THE EMPIRICAL INTER-CONTACT TIME FROM THE

ÖSTERMALM SCENARIO WITH POISSON ARRIVALS AND λ = 0.15 s−1 .

platforms. Nodes arrive from the entrances and from arriving
trains that follow a given schedule in Legion Studio, which we
cannot modify. Therefore we do not consider different arrival
processes for this scenario but focus on the one given by the
scenario. We have also found that the empirical distributions
for both contact duration and contact rate are insensitive to the
speed distribution (detailed results are omitted due to space
constraints).

To compare the empirical distributions from the subway and
Östermalm scenarios it seems reasonable to select data from an
arrival rate for the Östermalm scenario that gives comparable
average node density ρ. We have that ρ = N/A where N is the
mean number of nodes in the scenario and A is the size of the
active area. N can be obtained from Little’s law as N = λtotT
where T is the mean sojourn time of nodes in the scenario
and λtot is the mean total arrival rate. We can use T̂ , the
measured mean sojourn time from our simulations, to obtain
N according to Little’s law and therefore the node density. We
have found that the mean node density in the subway scenario
is approximately 0.09 nodes/m2 and a per-entry arrival rate
of λ = 0.15 s−1 gives approximately the same node density
in the Östermalm scenario. Therefore we compare Östermalm
statistics for λ = 0.15 s−1 with the subway scenario.

Fig. 5(a) shows the histogram of contact durations. The
mean observed contact duration is 18.1 s and we find that
a log-normal distribution with parameters μ = 2.3 and
σ = 1.1 gives the best fit among the five standard probability
distributions previously mentioned. The histogram indicates
that the contact duration distribution exhibits multimodality
as we see a small peak at around 1 s, another one at about 8
s and a third peak at approximately 20 s. Compared to the
contact duration in the Östermalm scenario (Fig. 2(c)) the
histogram for the subway scenario is more spread out with a
less intense peak due to nodes moving in opposite directions
(at about 8 s) and a thicker tail most likely due to waiting
and/or queuing effects. This is further reflected in the mean
contact durations: 12.3 s for Östermalm and 18.1 s for the
subway. The multimodality of the distribution suggests that
the contact duration cannot be accurately modelled by a single
standard distribution but should rather be approximated with
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Fig. 5. 5(a): Histogram of empirical contact duration for the subway scenario and a fitted log-normal pdf. 5(b): Histogram of inter-contact time for subway
scenario and a fitted gamma pdf. 5(c): Empirical contact duration tail distribution compared with a Bluetooth radio model.

a mixture of distributions. At present we however leave this
modelling work for the future.

The histogram for the inter-contact times is shown in
Fig. 5(b). The mean inter-contact time is 1.1 s, compared to
a mean of around 3.0 s for the Östermalm scenario as seen in
table I. As in the Östermalm scenario, a gamma distribution is
found to give the best but with different parameters (a = 0.2
(shape) and b = 5.6 (scale)). It is noticeable that for both
scenarios, the inter-contact times can be reasonably well fitted
by a standard gamma distribution while the empirical contact
durations are more complex and are therefore not as well fitted
by approximations with the standard distributions we use for
reference.

C. Comparison with a Bluetooth radio model

As discussed in Section II, a number of experiments have
recently been conducted to explore the connectivity of mobile
devices carried by humans. Most of these experiments are
conducted by distributing Bluetooth devices to a group of
users. The devices periodically scan their neighbourhood for
other devices and the contact statistics are logged.

Bluetooth uses a frequency hopping spread spectrum
scheme and due to this, scanning for neighbours is an op-
eration that consumes significant power and prevents normal
data flow. A Bluetooth node is discoverable when it is in the
inquiry state and when it performs a neighbour scan it enters
the inquiry scan state in which it is itself not discoverable by
other scanning nodes. For these reasons neighbour scanning
is usually only performed periodically (sometimes with a
randomized period to avoid synchronization between nodes).
In contrast, our simulation model assumes a radio that is
always on and detects all nodes within communication range.
To compare with measurement traces and to understand how
Bluetooth affects the node connectivity of our model we have
therefore simulated the neighbour discovery of Bluetooth and
calibrated it based on parameters used in measurement studies.
We simulate the Bluetooth node discovery as follows: Each
node alternates between a inquiry scan state and an inquiry
state. During inquiry scan, the node discovers its current direct
neighbours and neighbours that are also in the inquiry scan
state are not discovered. The identities of all nodes seen during

the inquiry scan are stored and those nodes that are also
neighbours in the next inquiry scan are classified as contacts
and the contact duration is updated accordingly. A contact with
a neighbour is completed if the neighbour is not seen in two
consecutive scans; this definition of the contact duration is
consistent with the measurements previously mentioned [22].

In Fig. 5(c) we plot the empirical tail distribution of the
contact durations for the subway scenario with our previous
radio model and compare with results using a Bluetooth radio.
The duration of the inquiry scan is 10 s and the time interval
between inquiry scans is 60 s and 120 s respectively, the latter
being representative for the setup in measurement studies.
The time between scans is further randomized by adding or
subtracting (with equal probability) 0 to 12 seconds uniformly
selected at random.

The effect of superimposing the Bluetooth neighbour dis-
covery on our simple radio model is significant. In the original
subway scenario we measured 534592 contacts in total. Using
Bluetooth the total number of contacts is reduced to 2932 for a
sleep period of 60±12 s and only 69 contacts when the sleep
period is 120 ± 12 s. This indicates clearly that Bluetooth
is very inefficient at exploiting the short contacts that arise
when people are on the move. For opportunistic networking,
it must instead rely on longer contacts such as when people
are stationary at work, sitting on a bus or in a lecture hall.

Most studies on experimental Bluetooth traces have focused
on analyzing the inter-meeting time of nodes but [22] and
[26] also studied the contact duration and inter-contact time
as we do in this work. A comparison with these works shows
some significant difference in results. The contact durations
seen in our Bluetooth simulations are considerably shorter
than those in the conference environments studied in the
experiments and our results do not confirm with the power-
law decay experienced there (see figure 4 in [26] and figure
3 in [22]). The main reason is that the scenario in our
simulations is quite different from the relatively low-mobility
conference environments where nodes may spend long times
in proximity. In the subway station, nodes are highly mobile
and only briefly pause, such as when waiting for a train and
standing in the coffee shop. Also, as previously mentioned,



our simulations focus on operational-level mobility and do
therefore not capture effects of diurnal regularities and social
patterns in node movements.

V. CONCLUSIONS

In this work we have studied the effect of mobility on
node connectivity in two pedestrian scenarios; a city section
and a subway station. We have statistically analyzed the
empirical distributions for the connectivity metrics and how
sensitive they are to changes in mobility input parameters,
such as cultural profile of nodes, walking speed distribution
and arrival processes. For each scenario we find that the em-
pirical distributions of the connectivity metrics are relatively
insensitive to changes in input parameters, showing only a
modest change in mean values and retaining their basic shape.
This is positive since if the statistics were highly sensitive
to modest changes in input parameters, capturing them by a
model would be hard and it would be difficult to identify valid
parameters for the model. Comparing connectivity metrics
across scenarios however shows more difference as can be
seen when comparing figures 4(c) and 5(a). This suggests that
when modelling mobility, accurately capturing the scenario
and its structure is more important than a detailed estimation
of input mobility parameters.

Recent experiments using Bluetooth devices to log contact
statistics of humans have suggested that both contact dura-
tions and inter-contact times (often referred to as inter-any-
contact times in those works) are approximated by power-
law distributions [26]. This contradicts our results; in the
scenarios we consider the inter-contact times are well ap-
proximated by gamma distributions and the contact durations
are approximated by log-normal distributions (although the
log-normal approximation for the contact duration does not
fully capture the shape of the empirical distribution). There
are at least three reasons for this discrepancy. First, we study
different scenarios with higher mobility than in the conference-
like environments often considered in experiments. Second,
our current simulation models do not consider strategic-level
mobility and therefore effects due to diurnal regularities and
social effects are not captured. Third, the neighbour discovery
of Bluetooth returns a very coarse sample of the underlying
contact process, as we show in Fig. 5(c). By simulating the
Bluetooth radio model we have shown that the number of
discovered contacts is reduced by several orders of magnitude
and that Bluetooth essentially filters out most of the short
contact opportunities and much of the effects of operational
level mobility that we consider in this work. It is possible
that this crude sampling results in the power-law behaviour
observed in measurements. A low power radio with a faster
neighbour discovery and shorter contact setup times than
Bluetooth is desired to unleash the potential of opportunistic
networking.
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