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Abstract

This thesis deals with performance limits and transmission techniques for
a wireless communication link where at least the transmitter is equipped
with an antenna array and moreover has access to possibly imperfect
channel state information.

An antenna array on the transmit side provides the system with an
extra spatial dimension that can be utilized for coding both in the spatial
as well as the temporal domain. The recent development of such space-
time codes shows that there are ways of exploiting multiple transmit
antennas while completely avoiding traditional beamforming techniques’
need of accurate channel state information. In practice however, the
transmitter usually has access to some information about the current
state of the channel. The available channel side information can then
be used to improve the performance beyond what is possible using only
conventional space-time codes. This, together with the need for reliable
and fast communication, provides motivation for the work herein which
shows how previous space-time coding concepts can be extended to take
advantage of even non-perfect channel knowledge at the transmitter.

Performance limits are investigated using tools from information the-
ory. An expression for the channel capacity for the wireless link un-
der consideration is presented. One important result is that adjusting
the output of a conventional space-time encoder by means of a transmit
weighting matrix that only depends on the channel side information con-
stitutes a capacity achieving transmitter structure. Computational pro-
cedures for evaluating the capacity expression are considered and used to
obtain numerical results illustrating the gains due to channel knowledge.

The other parts of the thesis are devoted to devising practical methods
for exploiting channel knowledge in conjunction with space-time coding.
A new performance criterion is developed that takes the quality of the
channel side information into account. Motivated by the optimality of
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separate space-time coding and transmit weighting, the performance cri-
terion is used for determining a suitable transmit weighting matrix that
adapts a predetermined orthogonal space-time block code (OSTBC) to
the available channel side information. The result is a low-complexity
weighted OSTBC transmission scheme providing a seamless combination
of the normally complementary strengths offered by conventional beam-
forming and OSTBC.

Scenarios in which the channel side information takes the form of
quantized channel estimates obtained from a feedback link are also con-
sidered. The channel feedback is assumed to suffer from quantization
errors, feedback delay and bit-errors introduced by a noisy feedback chan-
nel. Methods to design the quantizer in the feedback link so as to mitigate
all these errors are investigated. By introducing heuristic modifications
of our previously developed transmission technique, it is shown how ro-
bustness against all three types of channel feedback impairments may be
achieved.

To avoid the use of heuristics in case of quantized channel side infor-
mation, yet another new performance criterion is developed specifically
for the problem at hand. Based on the performance criterion, a procedure
for utilizing the available side information in the design of unstructured
space-time block codes is proposed. These codes offer maximal design
freedom at the expense of an increased decoding complexity. Properties
of the resulting codes are investigated both analytically and experimen-
tally. The codes outperform corresponding OSTBC schemes even when
no channel knowledge is available at the transmitter.

In addition to unstructured codes, closely related techniques based
on the same performance criterion are used for designing some linear
dispersive space-time block codes as well as designing suitable transmit
weighting matrices for weighted OSTBC. An interesting observation that
deserves further study is that the design procedure for linear dispersive
codes in case of no channel knowledge at the transmitter appears to au-
tomatically produce orthogonal space-time block codes, if the parameters
under consideration allow it.
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Chapter 1

Introduction

The use of wireless communication has literally exploded during recent
years. Not long ago was a mobile phone seen as a luxury item and status
symbol affordable by only a few. Nowadays, wireless communication is
taken for granted and a mobile phone has become a natural accessory for
many. Driven by the demand for land-mobile communication, wireless
networks have been deployed around the world. So far, voice communica-
tion has been the major application. Current second generation networks
such as the widespread GSM system [RWO95] have been designed with
this primarily in mind. In the future, it is envisioned that data services
providing, for example, Internet access will be another popular appli-
cation. If the predictions come true, it is likely that there will be a
strong demand for data rates dramatically higher than the rather limited
communication speeds provided by present second generation equipment.
Infrastructure for WCDMA [HT02] and other third generation networks
has therefore recently started to be deployed with the hope of offering
significantly higher data rates than what has been previously possible.

In wireless networks for land-mobile communication, the geographical
area over which service is offered is usually divided into cells. Each cell
contains a base station which handles the communication with the mobile
user terminals assigned to that cell. Thus, a single base station handles
several communication links at the same time. Data is transmitted in
both directions, from the base station to the user terminal and vice versa.
This is called duplex communication. The communication link from the
base station to the terminal is referred to as the downlink while the uplink
corresponds to the reverse direction.
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In order for a wireless network to accommodate many users and pro-
vide high data rates within the typically limited radio spectrum avail-
able, it is important that the system is spectrally efficient. In essence,
the system should provide as high data rates as possible using the least
amount of bandwidth with a minimum of errors in the communication.
The imperfections of the wireless communication channel, not to men-
tion constraints on cost and size of equipment, make achieving this a
challenging task.

A promising method for increasing the spectral efficiency of the sys-
tem is to use multiple antennas, also known as antenna arrays, for the
transmission and reception of the radio signals. This adds a spatial di-
mension to the system which can be exploited for reducing many of the
problems associated with wireless communication. Techniques for utiliz-
ing an antenna array on the receiving side have been known for many
years [Jak94] and a wealth of efficient methods exist in the literature.

In current, and conceivably also in future, networks for land-mobile
communication, requirements on the size and cost of user terminals make
antenna arrays with many elements impractical on the user side. At
the base station, however, such arrays are much easier to motivate, this
since the constraints on size are not as strict and the cost is shared
by all the users that the base station handles. Hence, antenna array
reception techniques are likely to improve the performance of the uplink
more than what is possible in the downlink. The resulting imbalance
in performance is particularly problematic in view of the asymmetric
traffic pattern typical of many future data service applications. Internet
browsing and streaming multimedia are just two examples of applications
where higher data rates are needed in the downlink than in the uplink.

To reduce the performance gap between the uplink and downlink,
it is necessary to exploit the spatial dimension also in the downlink by
means of a transmit antenna array. Methods for successfully utilizing an
antenna array for transmission purposes have traditionally relied on accu-
rate channel state information. Since such information is harder to obtain
at the transmitter than at the receiver, an antenna array at the trans-
mitter has been viewed as comparatively more difficult to utilize than
an array placed at the receiver. Recent advances in the area of multiple
antenna transmission without the use of channel state information help
in overcoming this difficulty. In particular, the development of efficient
space-time codes [GFBK99, TSC98] that utilize both the spatial and the
temporal dimensions for coding the message to be communicated shows
that there is hope of achieving high data rate communication also in the
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downlink, even if no channel knowledge is available. In case both the
transmitter as well as the receiver are equipped with multiple antennas,
properly designed space-time codes offer, in both directions, dramati-
cally higher data rates than when only a single antenna array is used
[Tel95, FG98].

Conventional space-time codes are designed under the assumption of
no channel knowledge at the transmitter. Although this is motivated by
the difficulties in obtaining accurate information about the channel at
the transmitter, partial or imperfect channel information is often avail-
able. Assuming the quality of the channel knowledge is properly taken
into account, such channel information can be used to improve the per-
formance beyond what is possible with conventional space-time coding
or other more traditional techniques.

The need for reliable and fast communication combined with the po-
tential inherent even in non-perfect channel knowledge at the transmit-
ter motivates the work presented herein. The work in this thesis aims
at investigating performance limits and developing efficient transmission
schemes and space-time codes for a certain wireless digital communica-
tion link where at least the transmitter is equipped with an antenna array
and has access to possibly imperfect channel information. The presenta-
tion primarily focuses on applications in land-mobile wireless networks.
Other possible applications of the work include scenarios that may arise
in wireless local area networks and wireless local loops.

1.1 Wireless Communication

Before proceeding with the development, let us review some basic con-
cepts related to wireless digital communication. The focus here is on an
individual single-input-single-output (SISO) link in a wireless network for
land-mobile communication where the transmitter and the receiver each
are equipped with a single antenna. However, many of the issues dis-
cussed in this section are relevant also for digital communication systems
in general, wireless or not.

The actions of a wireless communication system can roughly be sum-
marized as follows [Pro95]. Bits representing the message to be com-
municated are first coded into a sequence of symbols. These information
bearing symbols are modulated into a time-continuous waveform which is
upconverted to carrier frequency and transmitted over the wireless chan-
nel. At the receiver, the information carrying signal is picked up by the
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antenna, downconverted to baseband and demodulated into a sequence
of samples which are decoded into bits. If everything has gone well, the
communication is error-free and the obtained bits hence coincide with
the transmitted ones

1.1.1 Distinctive Properties of the Wireless Channel

Unfortunately, the wireless propagation medium is far from ideal. Addi-
tive thermal noise disturbs the information carrying signals. Interference
from other wireless users may also plague the transmission. If the noise
and interference are sufficiently strong compared to the information car-
rying signal, it becomes difficult for the receiver to correctly detect the
transmitted message. Hence, the signal-to-noise-ratio (SNR) and the
signal-to-interference-plus-noise-ratio (SINR) are two relevant parame-
ters. These power ratios are important since they give an indication of
the performance of the system and are often relatively easy to measure.

Wireless systems are especially prone to errors in the communication
since the signal attenuation incurred by the channel may be very large.
This problem is made worse by the fact that the transmitted radio signal
interacts with objects in the physical environment [BD91, Bur96]. As a
result, the signal usually propagates along several different paths before
it arrives at the receiver. The phenomenon is termed multipath and is
illustrated in Figure 1.1, where only two propagation paths are indicated.
Each propagation path affects the signal differently which means that the
received signal is a superposition of different, possibly delayed, versions
of the original signal. These multipath components add constructively
or destructively, depending on the surrounding terrain and the positions
of the transmitter and the receiver. The signal level at the receiver may
therefore fluctuate wildly over time due to changes in the environment
and movement of the transmitter/receiver. In the worst case, such chan-
nel fading makes the attenuation so large that the receiver is unable to
obtain a useable signal.

If the delay spread [Pro95, p. 763] of the multipath is small relative to
the inverse bandwidth of the transmitted signal, the individual multipath
components are not resolvable and the effective communication channel is
therefore essentially frequency-nonselective or flat fading. Consequently,
the different frequency components of the information bearing signal un-
dergo the same attenuation and phase shift when propagating through
the channel. The channel1, including the up- and downconversion in fre-

1In this work, the notion of a “channel” is used in a rather sloppy manner in the
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Transmitter

Receiver

Figure 1.1: The radio signal arrives at the receiver along several different
paths, so-called multipath propagation.

quency as well as transmit and receive filtering, may then be modeled
by a filter with only one complex-valued tap, or coefficient. A com-
mon assumption is that the single channel coefficient that determines the
attenuation and phase shift fades according to a complex Gaussian2 ran-
dom process [Pro95, p. 761]. Such fading is also known as flat Rayleigh
fading, since the magnitude of the channel coefficient is Rayleigh dis-
tributed. High data rate communication usually requires such a large
bandwidth that at least some of the multipath is resolvable. The result
is a frequency-selective fading channel that can be modeled by a finite
impulse response filter with several complex-valued taps.

This way of absorbing the up- and downconversion into an effective
channel is common practice in the field of communication theory and
leads to a so-called complex baseband equivalent model of the system
[ZM92, Pro95]. When using such a model, both the transmitted and re-
ceived signal, as well as the channel itself, are potentially complex-valued.
Also the additive noise may be complex-valued and is often modeled as

sense that it may or may not include additive noise (and interference). Hopefully,
the exact meaning will be clear from context. The present case is an example of
when the noise is excluded. Consequently, the term “channel” here solely refers to the
mentioned filter. In the following, noise will be considered to be part of the “channel”
primarily in connection with information theoretic discussions so as to comply with
common conventions within that field.

2The theory of complex Gaussian distributions and random processes is described
in e.g. [Kay93].
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a wide sense stationary complex Gaussian random process. Much of the
processing of signals in the system can therefore be thought of as being
carried out in the complex number field. Moreover, since sampling is
typically part of the demodulation at the receiver, sampled versions of
the signals in the complex baseband equivalent model are usually consid-
ered when analyzing the system. The subsequent presentation generally
makes use of such sampled complex baseband representations of signals
and channels, unless explicitly stated otherwise.

1.1.2 Fighting Channel Fading

The presence of channel fading is one of the major difficulties associated
with wireless communication. An often used strategy for dealing with
the fading problem is to employ so-called diversity techniques. The basic
idea behind diversity methods is to provide the receiver with several ver-
sions of the same information bearing signal where the various versions
have been affected by different, preferably independently fading, chan-
nels. Hopefully, at least one of the received signals has experienced a
channel with little attenuation, thereby increasing the chance that the
message can be correctly detected at the receiver. It can be shown that
the probability of an error in the communication generally decreases with
an increasing number of signal replicas (assuming that the signal repli-
cas have undergone reasonably independent fading). Two examples of
common diversity techniques for single antenna systems are listed below.

• Time diversity : The same information is transmitted on different
time slots where the time slots are sufficiently separated in time
so that the fading has changed the channel significantly from one
slot to another. Independently fading channels is ensured by letting
the time separation of successive slots be large compared with the
coherence time [Pro95, p. 765] of the channel.

• Frequency diversity : In the case of a frequency-selective fading
channel, diversity can be obtained by transmitting the same in-
formation on different carrier frequencies. As long as the carrier
separation is large compared with the coherence bandwidth [Pro95,
p. 764] of the channel, the signals experience roughly independent
fading. A more direct but less obvious diversity approach is to
transmit on a single carrier but with a bandwidth large enough for
some of the multipath components to be resolvable at the receiver.
The resulting distortion of the information carrying signal can be
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handled by appropriate processing at the receiver. In any case, the
frequency-selectivity of the channel serves to protect against fading
and should hence not only be seen as a problem.

1.1.3 Reliable Communication by Means of Coding

To limit the detrimental consequences of noise, interference and fading,
the data can be coded prior to the transmission so that the information
carrying signals intentionally contain redundant information. The redun-
dancies introduced by the channel code help the receiver to detect the
transmitted message without errors, albeit at the cost of a reduced data
rate if the communication bandwidth is fixed. Channel coding is a very
active area of research, see for example [FU98] for an overview of a part of
this field. Indeed, any mapping from the data to be communicated to the
information carrying signal can be thought of as a sort of channel cod-
ing. If this very wide definition of coding is adopted, all communication
setups utilize some sort of coding.

In the above time diversity technique, redundant information is intro-
duced by repeatedly transmitting the same signal. This can be thought
of as a simple form of channel code that lowers the probability of a de-
tection error. The reduction in data rate resulting from the use of such a
repetition code is unfortunately substantial. Many other channel codes,
with perhaps a more suitable data rate versus error probability tradeoff,
exist in the literature.

1.1.4 Channel Capacity

No matter how sophisticated channel codes or signal processing tech-
niques the system has at its disposal, the channel itself sets a fundamen-
tal limit on the speed of reliable communication within a certain fixed
bandwidth and power. Pioneered by Shannon in his famous work in
[Sha48], the field of information theory provides an important such per-
formance limit called channel capacity. The channel capacity is a measure
that quantifies the highest data rate that a communication channel3 can
maintain while keeping the transfer of information essentially error-free.
Loosely speaking, as long as the data rate is below the channel capacity,
there exist channel codes that lead to a vanishingly small error probabil-
ity if the processing time is allowed to tend to infinity. For codes with

3The term “channel” now refers to a model describing the relation between trans-
mitted and received signals, i.e., noise is included if present.
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data rates higher than the channel capacity, this is not possible. A more
precise definition of channel capacity is given in [Gal68, CT91].

It is important to keep in mind that channel capacity is an asymptotic
measure in the sense that the coding of the message is over an infinite time
period and the decoding is based on the received signal during this entire
time period. This approximates a situation where the receiver waits until
the end of the transmission before starting to decode the message. There
are hence no constraints on the processing delay, which is a drawback
from a practical point of view since processing delay is a critical parameter
in many applications. Another drawback is that no restrictions on the
computational complexity of the encoder and the decoder are imposed.
Consequently, coding schemes that achieve the data rate promised by the
channel capacity are typically notoriously computationally demanding
and are therefore unsuitable for implementation in practice. Nevertheless,
the properties of these capacity achieving codes often provide guidance
on how good, more practically oriented, codes or transmission schemes
should be structured.

The concept of channel capacity is also useful for comparing the po-
tential performance of different communication setups. In the case of
wireless communication it can be used to study the impact of the prob-
lems discussed previously. This information theoretic tool provides an
ultimate limit on the speed of communication for a certain model of the
channel. The only way to increase the potential data rate is to, in some
sense, improve the actual channel. One way to accomplish that is dis-
cussed in the following section.

1.2 Antenna Arrays

The use of antenna arrays is seen as a promising approach for coping with
many of the problems associated with wireless communication [PP97].
An array of multiple antennas may be placed at the receiver, the trans-
mitter, or at both sides of the communication link. The antennas in the
antenna array are placed at different physical positions in space. Alter-
natively, the polarization may vary among the antennas. In any case, an
antenna array gives the system access to an extra spatial dimension that
can be utilized in conjunction with its temporal counterpart for increas-
ing the performance beyond what is possible with pure single antenna
transmission and reception. With proper such spatio-temporal process-
ing, antenna arrays can mitigate noise and interference as well as provide
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protection against fading.

1.2.1 Exploiting a Receive Antenna Array

The classic use of antenna arrays is on the receiver side. The resulting
single-input-multi-output (SIMO) channel provides the receiver with sev-
eral versions of the transmitted signal. Each signal version passes through
a corresponding SISO channel, typically modeled as a finite impulse re-
sponse filter, and is thereafter disturbed by additive noise before before
being available for receiver processing. A schematic model of the whole
setup is illustrated in Figure 1.2.
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Figure 1.2: Model of a SIMO link corresponding to a system with one
transmit antenna and N receive antennas.

The signals at the receiver can be combined in a way so as to suppress
noise and increase the SNR. This array gain is however not the only ben-
efit. If the antennas are spaced sufficiently far apart for the fading of the
individual channels to be reasonably uncorrelated, the antenna outputs
may be used for obtaining spatial diversity. Well-known such techniques
that provide maximum possible spatial diversity include antenna selec-
tion and maximum ratio combining [Jak94]. In the former method, the
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antenna output with the strongest signal is selected while in the latter
both diversity as well as array gain is obtained by adjusting the phase
and amplitude of each signal so that the antenna outputs add coherently
and maximize the SNR. Maximum ratio combining is designed for a flat
fading scenario and can be seen as implementing a simple spatial filter
that is matched to the SIMO channel’s coefficients. After the combining,
a one-dimensional signal is input to the detector. Thus, an equivalent
SISO channel is created with properties better than those of the indi-
vidual SISO channels. In a frequency-selective scenario, the coefficients
of a more general spatio-temporal filter structure can be optimized to
increase the SNR while equalizing the distortion caused by the channel
[BS91].

If the radio signal arrives at the receiver from a distinct direction,
the corresponding propagating wavefront will reach the constituent an-
tennas in the array at different points of time in a predictable manner.
Assuming that the inverse of the signal bandwidth is sufficiently large
compared with the time it takes for the wavefront to pass all antennas,
the resulting time differences can be modeled as phase shifts. Based on
the effects of these time differences, or phase shifts, the direction of arrival
(DOA) of the incoming signal [KV96] can be estimated. Such directional
information may be used for designing spatial filters that amplify signals
with a certain DOA and suppress signals impinging from other directions
[AMVW91]. This is useful for suppressing interference since interfering
signals often arrive from another direction than the signal of interest.

In scenarios where there are no distinct directions of arrival, such
as when the signals emanate from diffuse scattering on objects in the
environment, it becomes difficult to separate the signal of interest from
the interference based on physical DOA parameters. However, even if
this is the case, the spatial and/or temporal signatures of the various
signals usually still differ significantly. This can be exploited for inter-
ference suppression without directly relying on physical parameters. In
[Asz95, BJ95, May97, JAO00], the spatial correlation of the interference
is utilized in the metric of a maximum likelihood sequence estimator
[Pro95] to suppress interference while at the same time dealing with the
distortion of a frequency-selective channel. By taking the joint spatio-
temporal correlation of the interferers into account, the ability to sup-
press interference with similar approaches can be improved even further
[ME86, AO98, BMC99]. Interference can also be suppressed using spatio-
temporal filtering techniques [CGS94].
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1.2.2 Exploiting a Transmit Antenna Array

Placing an antenna array at the transmitter and using a single receive an-
tenna creates a multi-input-single-output (MISO) channel. This is clearly
the dual of the previous SIMO case. Multiple signals are now transmitted,
instead of received. Each transmitted signal can be thought of propagat-
ing through a separate SISO channel and the outputs of all the SISO
channels and noise are added to form the received signal, as illustrated
in Figure 1.3.
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Figure 1.3: A model of a MISO link corresponding to a system equipped
with M transmit antennas and one receive antenna. The received signal
is obtained as a superposition of all the transmitted signals plus noise.

Because the signals are combined before they are available for receiver
processing, schemes for exploiting the spatial domain must be placed on
the transmit side. Compared with when the receiver is equipped with
an array, it may seem considerably more difficult to achieve performance
gains since the many emitted signals are no longer separated and, in fact,
interfere with each other at the receiver. Whether this is a real problem
or not has traditionally been believed to depend on the degree of channel
knowledge at the transmitter.

If the transmitter knows the parameters describing the channel accu-
rately, it can, at least in principle, easily compensate for the influence
of the channel on the signals so that the signals combine coherently at
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the receiver, thus avoiding interference. Hence, assuming the transmitter
has accurate channel knowledge, transmit antenna arrays are relatively
straightforward to exploit.

However, in the absence of channel state information, the transmit-
ter has no way of knowing how the channel has affected the relative
phases and time delays of the signals when they combine at the receiver.
Channel knowledge at the transmitter is typically more difficult to obtain
than at the receiver. Because of these two factors, exploiting the poten-
tial inherent in transmit antenna arrays has been viewed as difficult and
has consequently received rather limited interest. A classic solution that
avoids the use of channel information is to transmit the same signal on
all antennas but with different carriers so that the signals do not over-
lap in frequency [Jak94, p. 512]. The signals can then be separated at
the receiver by means of bandpass filtering and thereafter be combined
to obtain transmit diversity. Unfortunately, this comes at the price of
significant bandwidth expansion. It is only recently that more efficient
techniques coping with no channel knowledge have been developed.

Channel Knowledge at the Transmitter

When there is significant channel knowledge at the transmitter, some of
the methods applicable when the array is placed at the receiver have di-
rect counterparts on the transmit side. For example, the equivalent of
maximum ratio combining on the transmit side is transmit beamforming
[MM80]. In beamforming, scaled and phase shifted versions of the same
information carrying signal is transmitted from the different antennas in
such a manner that they add constructively at the receiver with the aim
of maximizing the SNR. Beamforming in its simplest form corresponds
to a purely spatial filter with the same coefficients as in maximum ratio
combining, i.e., the filter is matched to the channel coefficients. This
converts the original MISO channel into an artificial SISO channel. As-
suming a flat fading scenario, the properties of the SISO channel are such
that both the diversity and the array gain are of the same order as what
maximum ratio combining with the same number of antennas provides.
In other words, beamforming achieves all the spatial diversity the system
has to offer. More general spatio-temporal filtering on the transmit side
is also possible [Koh98].

Beamforming changes the antenna pattern so that the radiated en-
ergy is mostly confined to a narrow beam pointing in a certain direction.
There is leakage of energy in other directions as well but it is small when
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Figure 1.4: Beamforming uses the antenna array to focus the radiated
energy in the direction of the receiver.

there are many antennas in the array. If there are no dominant multi-
path scatterers other than in the immediate vicinity of the receiver, the
main beam is directed towards the receiver, as illustrated in Figure 1.4.
Physical information about the angular position of the receiver may in
this case be used for directly determining appropriate, albeit not optimal,
weights of the spatial filter.

In a multiple-access scenario, steering the beam towards the intended
receiver has the additional benefit of reducing the impact of the transmis-
sion on other user’s communication, thus lowering the interference level
in the system. This also opens up the possibility for increasing the num-
ber of users that can be served in the same frequency band and time slot
by spatially separating the different communication links. Several tech-
niques for performing spatial division multiple-access based on directional
information and channel statistics have been proposed in the literature
[SBEM90, ZO95, XL95, AHD+99, KTT+99]. The basic philosophy be-
hind these schemes is to create a peak in the antenna radiation pattern in
the direction of the intended receiver and essentially place nulls in the di-
rections of the other users. Similar methods not directly based on physical
channel parameters have also been developed [GP94b, RDJP95, Zet99].

No Channel Knowledge at the Transmitter

When there is no channel knowledge at the transmitter, coherent com-
bining by means of beamforming is not possible. The transmitter is
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effectively blind since it cannot predict how the channel will affect the
transmission. Despite this fact, an antenna array may provide spatial
diversity of the same order as when there is perfect channel knowledge
or when the array is placed at the receiver.

Early attempts at exploiting multiple antennas for blind transmit-
ters are focused on achieving spatial diversity. A common strategy is
to convert the MISO channel into a synthetic SISO channel upon which
standard scalar error-correcting codes can be used. Many ways to ac-
complish that have been proposed in the literature.

In [HAN92, Wee93, KF97], phase shifted versions of the same infor-
mation carrying signal are multiplexed to the different antenna elements.
By making the phase shifts time-varying, a possibly static MISO channel
is transformed into a fast fading SISO channel. The artificially created
time-varying channel is used together with conventional time diversity
methods such as coding combined with interleaving [Pro95, p. 468]. Thus,
spatial diversity is transformed into time diversity.

Another way of producing similar time-variations is to transmit on
only one antenna at a time and let the antennas take turn to transmit.
The effective SISO channel coefficient thus alternates among the coeffi-
cients in the MISO channel. Such a time division approach was proposed
in [SW93], where a simple repetition code was used to exploit the result-
ing temporal variations of the channel. Although the method provides
diversity, it comes at the expense of reduced data rate due to the repe-
tition code. A more bandwidth efficient technique called delay diversity
was therefore also considered in the same paper.

Several other papers deal with delay diversity [Wit91, Wit93, Mog93,
Win94, Win98]. The technique was originally proposed in [Wit91] and of-
fers diversity by multiplexing time-delayed versions of the same informa-
tion carrying signal onto the different antennas. The time delay increases
linearly from no delay at the first antenna to some maximum delay at
the last antenna. Usually, the time delay differs with one symbol period
between two consecutive antennas. The result is a tapped delay line SISO
channel or, in other words, a frequency-selective channel. Decoding the
received signal through the use of a maximum likelihood sequence esti-
mator captures the frequency diversity of the synthetic SISO system. A
benefit of this strategy is that it does not waste waste bandwidth as in the
time division repetition code based approach in [Win98]. Other standard
frequency diversity methods are also applicable if bandwidth expansion
is tolerated.

In the above blind diversity schemes, a coded stream of information
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bearing scalar symbols is spread over the antennas using various mul-
tiplexing methods. The multiplexing techniques can all be seen as im-
plementing special cases of a SIMO, possibly time-varying, linear spatio-
temporal transmit filter. The resulting synthetic SISO link is represented
by the compound channel from the input of the filter to the output of
the single receive antenna. These ways of multiplexing are also com-
monly referred to as linear precoding. Clearly, delay diversity is a special
case of linear precoding with a simple time-invariant spatio-temporal fil-
ter whose constituent single tap SISO filters implement the delays. The
time division method corresponds to a strictly spatial time-varying filter
with the only non-zero coefficient placed at the currently transmitting an-
tenna. Similarly, the frequency shifting approach corresponds to a purely
spatial filter with time-varying complex exponentials as coefficients.

Since also beamforming is equivalent to a spatial filter with complex-
valued taps, frequency shifting implements a form of time-varying beam-
forming where the direction of the beam thus varies with time and only
by chance points towards the intended receiver. Consequently, the in-
stantaneous SNR, and hence the overall performance, is typically much
lower than the maximum provided by conventional beamforming.

Information theoretic performance limits of all the mentioned blind
linear precoding schemes have been investigated in [NTW99] and com-
pared with the performance of optimal non-linear vector coding. In
addition, a random time-varying beamformer was proposed as a low-
complexity method for exploiting some of the capacity of the system.
The schemes mentioned so far all represent rather rudimentary and spe-
cialized examples of spatio-temporal filtering. A broader class of linear
precoding techniques has been considered in [WT97].

It should be noted that encoding the data into a stream of scalar
symbols and thereafter applying any of the previously mentioned linear
precoding schemes is typically not optimal in a mutual information sense
when there is no channel knowledge at the transmitter [NTW99]. Al-
though such transmit structures permit simple decoding, they are not
general enough to achieve the maximum possible data rate that the sys-
tem can offer. Since the MISO channel takes a vector-valued input, the
channel encoder needs to be designed specifically for vector (as opposed
to scalar) symbols as output in order not to limit the potential data rate.
Thus, for maximum performance, specifically developed vector codes need
to be used that spread the information both in time and space.

Vector codes in transmit antenna array applications are more popu-
larly known as space-time codes and have recently received considerable
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attention because of the high data rates and reliable communication they
may provide. Most of the literature on the design of space-time codes
focuses on a flat fading scenario in which the receiver is assumed to know
the channel state parameters perfectly. The same code can usually be
used regardless of the number of antennas at the receiver. The benefits
of deploying antenna arrays at both ends of the communication link will
be further discussed in the following section.

A systematic approach to designing space-time codes was pioneered
in [GFK96, GFBK99] where a design criterion was derived and used for
verifying the performance of some simple space-time codes. Essentially
the same design criterion was later derived in [TSC98] and shown to hold
for a number of different channel models. In the latter work, the now
popular notion of space-time coding was introduced. Motivated by the
design criterion, some examples of trellis codes realizing the full spatial
diversity potential of the system were proposed. In addition to diversity,
the proposed space-time trellis codes give coding gain. The coding gain
increases with the number of states in the trellis, at the expense of higher
decoding complexity. These codes were basically handcrafted. Automatic
design procedures for space-time trellis codes have been developed in e.g.
[BBH00, Blu02] and used for obtaining more efficient codes than the ones
found in [TSC98].

An extremely simple yet novel space-time block code for two trans-
mit antennas was given in [Ala98]. The code is commonly known as the
Alamouti code after its inventor and has the appealing property that the
two antenna signals are orthogonal in time (as well as in space) without
the bandwidth expansion normally associated with orthogonal signaling.
The code is orthogonal in other ways too. Due to the orthogonal prop-
erties of the code, the signals are easily separated at the receiver and
maximum possible spatial diversity gain is achieved. An additional and
important advantage of this orthogonal space-time block (OSTB) code is
that optimal low-complexity decoding is possible. Corresponding codes
for up to eight transmit antennas was later given in [TJC99], where also
further theory was developed.

Other examples of OSTB codes are given in e.g. [GS01, SX03]. As
pointed out already in [TJC99], an OSTB code is a special case of a so-
called linear dispersive space-time block code. That is, the code is linear in
terms of some constituent information carrying symbols. The individual
codewords can hence be obtained as a linear combination of these sym-
bols where each symbol is weighted by a corresponding weighting matrix.
By a clever choice of weighting matrices, OSTB codes arise. However,
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other weights are also certainly possible. In [HH02b], the weighting ma-
trices were designed to maximize a channel capacity based performance
criterion. The resulting linear dispersive codes provide high reliable data
rates if concatenated with suitable outer codes. Thanks to the linear
structure, it is possible to apply near optimal decoding techniques that
are more computationally efficient than the worst case of a full search
[VH02, JMO03].

The space-time coding references mentioned so far all assume per-
fect channel state information at the receiver. Non-coherent detec-
tion scenarios corresponding to situations in which there is no chan-
nel knowledge at the receiver have also been considered in several pa-
pers. In [TAP98], it was shown that OSTB codes can be decoded with-
out any channel knowledge at the price of some reduction in perfor-
mance. Also, the classic concept of differential coding [Pro95] for non-
coherent detection has been extended to the problem at hand, see e.g.
[HS00, Hug00, TJ00, HH02a, GS02].

Another strategy for exploiting multiple transmit antennas is to use
conventional scalar codes together with spatial interleaving. The idea
is basically to introduce spatial redundancy by spreading the output
of a scalar encoder “evenly” over the different antennas. Transmis-
sion schemes in this category include the well-known BLAST archi-
tecture [Fos96], turbo [SD01] and trellis based techniques [RJ99]. In
the latter work, orthogonal frequency division multiplexing (OFDM)
[WE71, Cim85, Bin90] is used to handle a frequency-selective channel
by dividing the bandwidth into narrow subbands creating a set of par-
allel flat fading channels. This is a well-known technique for dealing
with frequency-selective channels and has also been used together with
classical space-time trellis codes in [ATNS98]. By utilizing time reversal
techniques, the concept of OSTB codes can be extended for this scenario
as well [LP00]. Space-time block codes for frequency-selective channels
have also been designed specifically for non-coherent receivers [GS03].

1.2.3 The Potential of Dual Antenna Arrays

Obviously, both sides of the communication link may be equipped with
antenna arrays. The resulting multi-input-multi-output (MIMO) channel
represents a natural extension of the previously described MISO case.
Such dual antenna array systems offer more degrees of spatial freedom for
the spatio-temporal processing to exploit. In sufficiently rich multipath
scattering environments, these extra degrees of freedom lead to a channel
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capacity substantially higher than when only a single antenna array is
used [Tel95, FG98, RC98, RJ99], regardless of whether the transmitter
knows the channel parameters or not.

The use of dual antenna arrays in rich scattering environments gives
rise to a multiplicative effect that makes the channel capacity increase
essentially a constant integer factor faster with respect to the SNR than
comparable SISO, MISO or SIMO systems [FG98, RJ99]. The numerical
value of the factor is given by the minimum of the number of antennas
at the transmitter and receiver, respectively. Intuitively speaking, the
MIMO channel broadens the channel in the sense that many parallel
“data pipes” are available for the communication. The number of data
pipes corresponds to the multiplicative factor mentioned above. This
explains the improvement in capacity compared with systems that do
not use dual antenna arrays.

The encouraging capacity results exhibited by MIMO systems suggest
that reliable and high data rate communication may be accomplished in
ways that do not incur significant bandwidth expansion. Transmission
schemes for multiple transmit antennas generally work with dual antenna
array systems as well without modification, but with better performance.
In fact, many of the space-time codes described above are designed with
an arbitrary number of receive antennas in mind. Some transmission
schemes can however be greatly improved if they are specifically adapted
to the MIMO channel. For example, if the channel knowledge at the
transmitter is perfect, conventional beamforming unnecessarily limits the
possible data rates. Instead a related multi-dimensional type of beam-
forming as in [RC98] is necessary in order not to lose capacity.

Investigations regarding MIMO channel capacity have been conducted
for several different scenarios. The classic MIMO capacity formula for flat
fading channels with no channel knowledge at the transmitter and perfect
channel knowledge at the receiver was presented in [Tel95]. Therein, the
capacity gains possible in a Rayleigh fading scenario were illustrated and
analytical results provided. The potential for high data rates was further
demonstrated in [FG98] using the concept of outage capacity. The case
of perfect channel knowledge at the transmitter under the assumption of
constant channel parameters was briefly considered in [Tel95] where it
was pointed out that traditional water-filling [CT91, p. 253] techniques
may be employed. Works on frequency-selective channels treating the
cases of perfect and no channel knowledge at the transmitter have been
reported in [RC98] and [RJ99], respectively. The MIMO channel capacity
when both the transmitter as well as the receiver completely lack channel
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state information (corresponding to a non-coherent detection scenario)
was derived in [MH99] under the assumption of a flat fading scenario.

Most works on MIMO capacity and space-time coding primarily con-
siders channel models that correspond to direct generalizations of stan-
dard SISO [BD91, Bur96] and MISO/SIMO channel models [ECS+98].
More advanced and perhaps more realistic channel models specifically
developed for MIMO systems are found in e.g. [SFGK00, GBGP02,
KSP+02, WJ02].

1.3 Obtaining Channel State Information

As indicated by the previous discussion about antenna arrays, many tech-
niques both on the transmit and receive side rely on channel state infor-
mation. Due to the random and time-varying characteristic of the wire-
less propagation medium, the parameters constituting the channel state
information need to be continuously estimated.

Channel estimation may be performed by exciting the system with
suitably chosen signals and studying the resulting output to deduce the
parameters in the channel model. The model of the channel may be for-
mulated in terms of physical parameters such as DOA, propagation path
delays and gains [ECS+98] or in a more abstract form where for example
coefficients of finite impulse response filters constitute the channel state.

The most common way to estimate the channel is through the use of
training based methods where signals known to the receiver excite the
channel. Standard methods in estimation theory [Kay93] may then be
utilized for determining the channel parameters. When there are multiple
antennas on the transmit side, the choice of training sequences on the
different antennas becomes particularly critical in order to obtain good
channel estimates [GFBK99].

Another approach is to use channel estimation methods which do not
rely on knowing the transmitted signals. Such blind techniques identify
the channel solely based on received signals by utilizing the rich structure
typical of communication signals and channel models. A survey of some
recent blind methods is given in [TP98].

Regardless of whether blind or training based methods are used, the
resulting channel estimates are directly available for receiver processing.
Obviously, the estimates will not be perfect. Both noise and mismatch
between the assumed model and the actual system introduce errors in
the channel state information.
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There are several ways in which channel estimates obtained at the
receiver can be used also for transmission purposes. When the system
employs duplex communication, the same device is both a transmitter
and a receiver depending on the communication direction. Channel esti-
mates based on reverse link data, as obtained in receive mode, can then
be utilized also in the forward link, i.e., in the transmit mode. The two
links in duplex communication are however usually separated either in
time or frequency and this may severely degrade the quality of the chan-
nel information in the transmit mode compared with the receive mode.

In time division duplex (TDD) systems, the forward and reverse links
are active on different non-overlapping time slots. Both communication
directions use the same carrier frequency. As a result, assuming the du-
plex time is short compared to the coherence time of the channel, the
forward and reverse radio channels are the same. Due to this reciprocity,
a channel estimate obtained in receive mode can be directly used in trans-
mit mode, after taking into account that the transmit and receive filters
may be different. On the other hand, if the duplex time is not short
enough, the channel may have changed considerable compared with the
state it was in when the channel estimate was obtained in the receive
mode. In other words, the channel estimate is outdated, making the
channel state information available in the transmit mode much worse
than what the receive mode has access to. This discrepancy may to some
extent be lessened by utilizing the temporal correlation of the channel for
estimating the current channel based on the outdated channel informa-
tion [DHSH00].

The same strategy of utilizing a channel estimate obtained in the
reverse link for forward link processing is applicable also in frequency
division duplex (FDD) systems, under certain conditions. Different car-
rier frequencies are now used in the two communication directions. If
the frequency separation is sufficiently small compared with the coher-
ence bandwidth of the channel, the forward and reverse link channels are
essentially the same and just as for the above TDD case, the same chan-
nel estimate can be used directly in both the transmit and the receive
mode if the differences in transmit and receive filters are compensated
for. Frequency correlation properties of the channel may now be used
for improving the estimation accuracy in case the frequency separation
is not sufficiently small.

An alternative and perhaps better approach when the frequency sep-
aration in FDD is too large is to estimate the state of the forward channel
based on physical parameters such as DOA that may be assumed to be
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Figure 1.5: The receiver informs the transmitter about the channel via
a dedicated feedback link.

invariant to the carrier frequency. Another completely different strategy
which is suitable for FDD systems is to equip the system with a dedicated
wireless feedback link that conveys estimates of channel parameters from
the receiver to the transmitter [GP94a, HP98]. The setup is illustrated
in Figure 1.5.

There are however problems also with a feedback approach. Obvi-
ously, it takes time to transport the channel estimates over the feedback
link. In the mean time, the time-varying channel may have changed so
much that the feedback output has become outdated. To avoid such dif-
ficulties, the feedback delay must be small in comparison with the coher-
ence time of the channel. In typical land-mobile applications, this means
that the channel information at the transmitter needs to be updated at
a high rate.

The requirement of a high update rate and the need for a spectrally
efficient system in which not too much bandwidth is wasted on the feed-
back link unfortunately represent two conflicting goals. One way to ob-
tain a reasonable comprise between these two goals is to limit the data
rate necessary to maintain a high update rate by quantizing the chan-
nel parameters heavily before they are fed back to the transmit side. A
drawback with this solution is of course that quantization errors now
plague the channel information at the transmitter. Note also that the
communication over the feedback link potentially suffers from bit-errors
due to the non-perfect nature of the wireless feedback channel. To make
matters worse, the requirement on short feedback delay typically pre-
vents the use of advanced channel coding in the feedback link. The error
rate can consequently be quite high, adding another significant source
of errors. Thus, estimation noise at the receiver, feedback delay, coarse
quantization and bit-errors introduced by the feedback channel are all
likely to contribute in degrading the quality of the channel information
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at the transmitter. Despite these shortcomings, providing channel feed-
back is often worthwhile as evidenced by the use of a feedback link in the
closed-loop transmit diversity mode of the WCDMA system [3GP02b].

1.4 Imperfect Channel Knowledge

Most transmission methods and performance analyses for multiple trans-
mit antennas are developed under either of the two extreme assumptions
of perfect channel knowledge or no channel knowledge at the transmitter.
Classical beamforming by means of a spatial filter matched to the chan-
nel falls in the former category. So does the transmission method and
capacity analysis for MIMO systems in [RC98]. Basically the entire field
of space-time coding belongs to the latter category where channel knowl-
edge at the transmitter is totally excluded from the development. The
well-known MIMO channel capacity works in [Tel95, FG98] also focus on
the same extreme case.

However, as should be clear from the previous section, it is often possi-
ble to obtain channel information at the transmitter. The problem is that
it is typically far from being perfect. Thus, in practice, neither of the two
extreme views are correct. This issue has to some extent been addressed
in [Wit95] where beamforming weights are determined in such a manner
so as to reduce the devastating impact of defective channel information.
In another work [HP98], a method for determining beamforming weights
based on heavily quantized channel feedback is proposed.

Information theoretic investigations of how the quality of the available
channel information influences the properties of optimal signaling show
that, if the quality is sufficiently low, conventional beamforming is not
optimal in a mutual information sense [NLTW98]. A later and related
work gives an analytical expression on the threshold where beamforming
is no longer optimal in terms of channel capacity [VM01].

The reason why beamforming performs badly in situations of low
channel knowledge quality is because of the one-dimensional nature of
the resulting transmission – the emitted energy is focused in only one
direction determined by defective channel information. When the quality
of the channel information is low, such a single beam transmission scheme
often emits energy in the wrong direction. In the extreme case of no
channel knowledge, it should be clear that a better strategy is to spread
the energy uniformly in all directions. This is what conventional space-
time codes aim for.
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One way to take channel knowledge into account is to use a trans-
mit weighting matrix for adapting the output of a fixed conventional
space-time encoder. The transmit weighting is determined solely from
the available channel information while the output of the fixed space-time
encoder depends only on the data to be communicated. In contrast to
beamforming, such a transmission structure allows energy to be emitted
in several directions at the same time, which is necessary if the channel
state information is poor. Concentrating all the emitted energy in a single
direction is also possible if the circumstances should require it. Separate
space-time coding and transmit weighting in this manner represents an
appealing and flexible transmission structure. The structure is even more
interesting in view of the fact that under certain conditions it is optimal
in the sense of preserving the capacity of the MIMO system [SJ03].

By using OSTB codes in the fixed space-time encoder, simple and
efficient transmit weighting schemes were developed in [JO99, JSO00,
JSO02a]. These transmission methods/structures will in the present work
be referred to as weighted OSTBC, where OSTBC stands for orthogo-
nal space-time block coding. The same weighted OSTBC transmission
schemes have later been proposed and investigated in [ZG02a, ZG02b]
for a special case of the setup considered in [JO99, JSO00, JSO02a].
Weighted OSTBC may also be extended to handle quantized channel
information obtained from a non-ideal feedback link [JS00, JS01]. An
analysis on the diversity order potentially provided by separate OSTB
coding and transmit weighting in case of quantized feedback is found in
[LGSW02].

Another way of utilizing available channel knowledge is to completely
avoid the use of conventional space-time codes and instead consider the
design of entirely new space-time codes that are allowed to depend on the
channel information. Such an approach has been explored in [JSO02b]
for the design of unstructured space-time block codes which exploit quan-
tized channel feedback. Compared to the above transmit weighting meth-
ods, the unstructured nature of the code gives more degrees of freedom
in determining appropriate signals to transmit. Consequently, the per-
formance increases but at the expense of substantially higher decoding
complexity.
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1.5 Outline and Contributions

This thesis investigates performance limits and develops transmission
methods and code designs for a flat fading MIMO wireless communication
link where the transmitter has access to possibly imperfect channel side
information while the receiver knows the channel perfectly. An outline of
the remaining chapters in the thesis is presented below, where also some
of the contributions are mentioned.

Chapter 2

In this chapter, an expression for the channel capacity of the system under
study is presented and subsequently analyzed. The capacity expression
applies to a scenario in which the channel and the channel side informa-
tion may be modeled as jointly stationary and ergodic random processes,
subject to certain additional assumptions. A block fading scenario where
these processes are piecewise constant in time is shown to also be handled
by the same capacity expression. The corresponding block fading system
model forms the basis of the models used in later chapters.

There are several contributions in the chapter in addition to present-
ing an expression for the channel capacity. It is pointed out that the
capacity expression, originally derived for a scenario where power con-
trol is allowed, reduces to previously used expected mutual information
based performance measures, if power control is prohibited. This is im-
portant since it establishes the validity of these widely used performance
measures. Another important result is that separate space-time cod-
ing and transmit weighting is a capacity achieving transmitter structure.
Weighted OSTBC is a simple special case of this structure and shown to
be optimal in the case of two transmit antennas and one receive antenna.
The latter result provides motivation for the low-complexity weighted
OSTBC transmission scheme proposed in later chapters. The capacity
expression turns out to often be difficult to evaluate. Procedures for
numerically computing the capacity are therefore considered and a the-
ory concerned with symmetrical properties of quantized channel feedback
is introduced. Numerical examples illustrate the capacity gains due to
channel side information at the transmitter in a spatially uncorrelated
Rayleigh fading scenario.

Parts of this material have been published as

M. Skoglund and G. Jöngren. On the capacity of a multiple-antenna
communication link with channel side information. IEEE Journal
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on Selected Areas in Communications, 21(3):395–405, April 2003.

This paper contains, among other things, the proof of the capacity for-
mula, which the development in the chapter is based on. Even though
the proof is important we have chosen to omit it in the development to
follow and instead focus on the consequences of the capacity formula.

Chapter 3

In this chapter, the system model used for the remainder of the the-
sis is introduced. Like in parts of the previous chapter, a block fading
scenario is considered where the channel and the channel side informa-
tion are modeled as constant during a block of samples and then vary
from one block to another. An important difference compared with our
earlier information theoretic investigations is that the channel coding is
henceforth assumed to be performed for one fading block at a time, i.e.,
the transmitted codewords do not extend over possibly different channel
realizations.

In addition to a system model, three different classes of space-time
block codes that can take channel side information into account are de-
scribed for later reference. These three classes, mentioned in order of
increasingly restrictive structure, correspond to unstructured codes, lin-
ear dispersive codes and weighted OSTBC. Whereas unstructured and
linear dispersive codes are previously known code types, weighted OS-
TBC was originally proposed in the works that form the basis of this
thesis. Hence, the weighted OSTBC structure represents an important
contribution.

Each code is represented by a set of codeword matrices. The three
code classes differ in the kind of structural constraints that are imposed
on the matrices. The structure of weighted OSTBC is so restrictive that
it is perhaps better labeled as a transmission structure rather than a
code structure. Both notions will be used interchangeably wherever ap-
propriate. However, thinking in terms of a code makes weighted OSTBC,
together with the other structures, fit naturally within a common frame-
work of channel side information dependent space-time block codes. The
framework serves to emphasize that the code design (or transmission)
procedures developed in subsequent chapters are easily modified to han-
dle the construction of any of these code classes.
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Chapter 4

This chapter deals with code design in the presence of possibly imperfect
channel side information. The non-ideal nature of the latter is modeled
by assuming that the channel conditioned on the side information is com-
plex Gaussian [Kay93, p. 507] distributed. A major contribution is the
development of a new performance criterion for space-time codes that
takes channel knowledge at the transmitter into account. The perfor-
mance criterion is based on an upper bound on the pairwise codeword
error probability conditioned on the available side information.

Another major contribution is the use and analysis of the performance
criterion for code design. An outline of code design procedures for all of
the three code classes is given. Particular attention is thereafter directed
to our proposed weighted OSTBC structure and how to reduce the com-
putational complexity when designing the transmit weighting matrix. It
turns out that the resulting transmission scheme can be seen as a seamless
combination of conventional OSTB coding and beamforming, where the
quality of the channel side information determines whether the transmit-
ted output is more like that of the former or latter method. Numerical
results for a spatially uncorrelated Rayleigh fading scenario illustrate that
significant gains compared with both beamforming and OSTBC are pos-
sible. In particular, the scheme provides robustness against impairments
in the channel side information in contrast to conventional beamforming
which suffers severely from such errors.

The parts about the pairwise error probability and weighted OSTBC
have been published as

G. Jöngren, M. Skoglund, and B. Ottersten. Combining beamform-
ing and orthogonal space-time block coding. IEEE Transactions on
Information Theory, 48(3):611–627, March 2002.

and have also appeared in

G. Jöngren and B. Ottersten. Combining transmit antenna weights
and orthogonal space-time block codes by utilizing side informa-
tion. In Proc. 33th Asilomar Conference on Signals, Systems and
Computers, October 1999.

G. Jöngren, M. Skoglund, and B. Ottersten. Combining transmit
beamforming and orthogonal space-time block codes by utilizing
side information. In Proc. First IEEE Sensor Array and Multi-
channel Signal Processing Workshop, March 2000.
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Chapter 5

In this chapter, the use of weighted OSTBC based on quantized channel
side information is considered. The channel side information is obtained
from the receiver via a dedicated feedback link. Quantization errors, feed-
back delay and feedback channel bit-errors are all assumed to plague the
side information. Techniques related to the field of channel optimized
vector quantization (COVQ) [FV91] are used for determining how the
channel information can be quantized into a small number of bits while
taking the error sources into account. The bits are conveyed to the trans-
mitter where they are decoded into an estimate of the current channel
realization.

Two different ways of measuring the error between the true channel
and the channel estimate are used in the design of the quantizer. In
the first approach, the error is defined based on the differences between
the true and estimated channel coefficients, similarly to as in standard
minimum mean-square error (MMSE) estimation. Such an error measure
is easy to analyze but requires a rather large number of bits to perform
well. This motivates the second more efficient approach of separately
measuring relative phase and amplitude errors.

The two types of feedback links can be used with any of the three
code classes or with other transmission schemes. The presentation in the
chapter is however entirely focused on the use of weighted OSTBC. The
transmit weight design procedure described in the preceding chapter is
directly applicable if the first feedback link type is used. For the case of
the second feedback link type, the design procedure needs to be modi-
fied. A heuristic method for doing this is presented. Simulation results
show that the resulting transmission scheme compares favorably with
both beamforming as well as conventional OSTB coding. In particular,
robustness against quantization errors, feedback delay and bit-errors is
achieved.

Parts of this chapter have been published in

G. Jöngren and M. Skoglund. Utilizing quantized feedback infor-
mation in orthogonal space-time block coding. In Proceedings IEEE
Global Telecommunications Conference, November 2000.

G. Jöngren and M. Skoglund. Improving orthogonal space-time
block codes by utilizing quantized feedback information. In Pro-
ceedings International Symposium on Information Theory, June
2001.
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and the whole chapter, with some minor modifications, has been submit-
ted as

G. Jöngren and M. Skoglund. Quantized feedback information in
orthogonal space-time block coding. Submitted to IEEE Transac-
tions on Information Theory.

Chapter 6

This chapter presents another approach to tackle the problem of designing
space-time codes that take advantage of quantized channel side informa-
tion. Instead of relying on heuristic modifications of a design procedure
originally derived for non-quantized side information, a new performance
criterion specifically tailored to quantized feedback is derived. The ob-
tained performance criterion turns out to be quite similar in structure
to the previous criterion. Hence, it can be used together with the code
design procedures described in earlier chapters.

To illustrate the use of the new performance criterion, the design
of unstructured codes, linear dispersive codes and weighted OSTBC is
considered, with the primary focus on the first type of code. Attention is
now limited to a scenario in which the feedback link does not suffer from
bit-errors and where the channel information is quantized using a specific
feedback scheme known as partial phase combining [HP98]. However, the
design methods we propose are easily applicable to other types of feedback
schemes and can be generalized in a straightforward manner to deal with
the effects of feedback channel bit-errors.

Properties that optimal unstructured codes must possess are derived
and tables of code design results are provided. In particular, an example
of an unstructured four codeword code that outperforms, even without
any channel knowledge, the well-known Alamouti OSTB code is provided.

Some linear dispersive codes are also constructed. An interesting ob-
servation is that the resulting codes are essentially equivalent to OSTB
codes, in the case of no channel knowledge. In addition, a design proce-
dure for weighted OSTBC is implemented.

The concept of symmetric feedback again turns out to be useful for
reducing computational complexity. Simulation results show that the
constructed codes outperform both OSTB coding and beamforming even
in the extreme cases of no or perfect channel knowledge.

Contributions in the chapter include the development of the perfor-
mance criterion, the code design methods and the subsequent analysis.
Some parts of this material have been published in
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G. Jöngren, M. Skoglund, and B. Ottersten. Utilizing partial chan-
nel information in the design of space-time block codes. In Proc. 5th
International Symposium on Wireless Personal Multimedia Com-
munications, October 2002.

while the parts pertaining to unstructured codes have been submitted as

G. Jöngren, M. Skoglund, and B. Ottersten. Design of channel
estimate dependent space-time block codes. Submitted to IEEE
Transactions on Communications.

1.6 Future Work

The work in this thesis leave several issues open for future research. Both
the information theoretic analysis and the code design methods can be
extended in a number of ways. Some extensions are relatively straight-
forward while other require substantial effort.

The information theoretic investigations in Chapter 2 are based on a
single capacity expression that is more versatile than what the present
study may indicate. It is for example possible to broaden the scope of the
work to include more realistic fading scenarios and/or study the effects
of channel side information impairments other than quantization errors.
Both numerical and analytical results would be useful in such studies
for providing further insight into the problem. Feedback delay may be
modeled as in [NLTW98] and the impact on performance examined. Bit-
errors introduced by a noisy feedback channel is another area that is
interesting to investigate. The gains provided by the use of power control
are also worthwhile to examine in more detail. A potential problem
with these extensions is however that they typically further complicate
numerical evaluation of the capacity expression. Thus there is a need
for more efficient optimization procedures than those presented herein.
Another area to explore is the use of the capacity expression as a criterion
for the design of codes. Similar techniques as in [HH02b] can then be used
for obtaining encoder structures that maximize the capacity expression.

The work concerning methods for code design leaves plenty of top-
ics for future research. Perhaps the most obvious extension is to de-
velop design methods specifically for a frequency-selective channel. One
way to handle this essentially within the present framework is to use
OFDM for converting a frequency-selective channel into a set of paral-
lel flat fading MIMO channels. The methods developed herein can then
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be applied separately for each MIMO channel. However, for maximum
performance, techniques for jointly dealing with all the parallel channels
need to be developed. An alternative approach which avoids OFDM is
to use single-carrier transmission and instead more directly deal with a
non-flat channel in both the performance criterion as well as the design
procedures, similarly to as in [GS03].

The code design methods all rely on a power constraint that corre-
sponds to a scenario without power control. It is however possible to
include power control into the design procedure by relaxing this con-
straint, albeit at the expense of increased computational complexity. In
scenarios with quantized side information, the design is performed off-line
and the additional complexity may be tolerable. Power control can even
be combined with variable rate coding so that the data rate is adapted
to the channel conditions via the available channel side information.

In this thesis, the code design is conducted separately from the design
of the feedback link. However, since they both depend on each other,
the code and the feedback link should be designed jointly for maximum
performance. An outline on how to perform such a joint design is given in
our work in [JSO02b]. Numerical procedures remain to be implemented
and the properties of the resulting codes and feedback links need to be
further investigated.

Another area which receives limited attention in this thesis is that of
multiple-access and how to mitigate the total interference in a wireless
network. In the literature, there are methods for performing global opti-
mization of beamforming weights so that the coupling between different
communication links is kept as small as possible while meeting certain
quality of service constraints [RFLT98, BO02]. Similar techniques may
be possible to apply for transmitter adaption based on the more general
weighted OSTBC structure. By modeling the interference from other
users as Gaussian with some spatial color, the performance criteria de-
veloped in the present work can easily be extended to take also this kind
of disturbance into account. It is however still an open question if it is
possible to develop sufficiently efficient numerical procedures for jointly
determining the transmit beamforming weights of all users in the system.

Finally, the methods need to be evaluated under more realistic condi-
tions. Channel estimation errors also at the receiver should for example
be considered. The impact of a continuously time-varying channel (as
opposed to the present block fading assumption) should also be exam-
ined. Preliminary investigations indicate that the methods can be made
to cope quite well with such common deviations from the idealized system
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model considered herein. Nevertheless, much further work is required to
fully investigate all aspects of this issue.





Chapter 2

Capacity Results

This chapter considers a MIMO wireless communication system with pos-
sibly imperfect channel side information at the transmitter and investi-
gates performance limits from an information theoretic perspective. The
channel and the channel side information are modeled as jointly station-
ary and ergodic random processes. A formula for the channel capacity,
valid under certain additional assumptions, is given and used for gaining
useful insights about the problem by applying it to different scenarios.
The proof of the capacity formula is not included herein, but can be found
in our work in [SJ03].

It turns out that separate space-time coding and transmit weighting
is an optimal capacity achieving transmitter structure. In the case of two
transmit antennas and one receive antenna, an OSTB encoder followed
by a transmit weighting is also shown to achieve capacity. This provides
motivation for the weighted OSTBC transmission scheme developed in
later chapters. Attention is in particular devoted to a scenario in which
the side information consists of quantized channel information obtained
from the receiver via a feedback link. This setup is closely related to the
closed-loop transmit diversity mode in the WCDMA system, making the
corresponding capacity results interesting from a practical point of view.
Numerical examples for a spatially uncorrelated flat Rayleigh fading sit-
uation illustrate that the use of channel knowledge at the transmitter
results in considerable gains compared with when channel knowledge is
not utilized.
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2.1 Introduction

Information theoretic studies show the high data rates that wireless
MIMO systems may offer [Tel95, FG98, RC98, RJ99]. The recent de-
velopment of space-time codes [GFBK99, TSC98, TJC99] provides the
means for exploiting the potential of the MIMO channel in practice.

In the literature, different capacity measures have been used depend-
ing on the scenario under consideration. The classical MIMO capacity
formula for a scenario in which the channel fades in an ergodic manner is
given in [Tel95]. With a slow block-wise channel fading scenario in mind,
the concept of outage capacity is used in [FG98] to illustrate the extraor-
dinarily high data rates that are possible when both the transmitter and
the receiver are equipped with antenna arrays. Both these works rely on
the assumption of perfect channel state information at the receiver while
the transmitter does not know the channel. In contrast, a non-coherent
detection scenario is considered in [MH99], where the capacity is derived
under the assumption that neither the transmitter nor the receiver know
the channel. The case of perfect channel knowledge at both the transmit-
ter and the receiver has also been treated. Assuming a constant channel,
the corresponding capacity is investigated in [RC98]. In [BCT01], the
focus is instead on block-wise channel fading and outage capacity as a
performance measure.

The works mentioned so far all take on the extreme view that the
transmitter either knows the channel perfectly or not at all. However, as
discussed in Section 1.3, channel side information at the transmitter, if
available, is typically far from being perfect in practice. Even if the side
information about the channel is not perfect, it may still help in increasing
the performance of the system. This provides motivation for the work
presented in this chapter that introduces and analyzes a capacity formula
that is applicable also to the more realistic scenario of a transmitter
having access to imperfect channel state information.

Most of the presentation is devoted to the case when the output power
is allowed to fluctuate with the channel side information, corresponding
to a system with power control. However, scenarios without power control
are also treated to some extent. The capacity formula is based on the
assumption of an ergodic flat fading scenario in which the channel side
information at the transmitter may be non-perfect while the receiver
knows both the channel as well as the channel side information available
at the transmitter. The assumptions about the receiver cover situations
when the receiver can estimate the channel parameters accurately and
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uses a feedback link, with a corresponding ideal feedback channel that
does not introduce bit-errors, to convey heavily quantized versions of the
channel parameters to the transmitter. When the receiver’s knowledge is
more restrictive, our capacity results represents an upper bound on the
achievable performance. Although the focus is on flat fading scenarios, a
frequency-selective channel may be handled within the present framework
by using multicarrier techniques such as OFDM [WE71, Cim85, Bin90]
to convert the channel into a set of parallel flat fading channels.

Previous information theoretic studies concerned with communica-
tion links with possibly imperfect channel side information and multiple
transmit antennas are surprisingly scarce.

In [NLTW98], a system with one receive antenna in a Rayleigh fading
scenario is considered. The channel side information at the transmitter
and the channel are assumed to be jointly Gaussian distributed. Mutual
information averaged over the ensemble of channel and side information
realizations is used as performance measure. It is assumed that this mea-
sure gives the maximum rate of reliable communication but it is not clear
whether it actually corresponds to the capacity of some channel. This is
in contrast to the present work which establishes an expression for the
true channel capacity under the assumption of a more general fading sce-
nario. As discussed later in this chapter, when the scenario is specialized
into the one used in [NLTW98], our capacity expression reduces to the
same expected mutual information based performance measure as in that
paper. Consequently, the performance measure in [NLTW98] constitutes
a channel capacity and is hence well motivated.

Another work dealing with wireless MISO systems and channel side
information is presented in [VM00]. In this work, so-called mean or
covariance feedback is considered, referring to the fact that the second
order statistics of the channel now play the role of the side information
at the transmitter. With an underlying assumption of Gaussian channel
fading, this in turn determines the stationary marginal distribution of
the channel fading. Based on the classical MIMO capacity expression
in [Tel95], optimal transmission strategies are derived. The use of the
classical MIMO capacity expression implies a scenario in which the side
information is static and the channel is time-varying in an ergodic fashion.
In other words, the transmitted signals should experience all possible
channel realizations while the side information remains the same. This
may be a reasonable assumption in scenarios were the side information
is updated very slowly compared with the coherence time of the channel
fading. However, it is not an accurate model for the important case when
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a feedback link is used for real-time tracking of channel variations. Our
work, on the other hand, includes both scenarios as special cases since
the side information is allowed to be time-varying.

The capacity of a communication link with possibly imperfect channel
side information has been studied in other previous works as well but then
with the focus on SISO systems. For example, in [CS99], the capacity of a
SISO link was derived for the case when there is channel side information
at the transmitter while the receiver knows a quantity corresponding to
the instantaneous SNR. The channel gain was assumed to be positive and
assumed to fade in an ergodic fashion. A class of general discrete systems
was also investigated. In [DN02], a related multiple-access scenario was
considered. Other examples of works dealing with SISO links and channel
side information, perfect as well as non-perfect, include [Sha58, Sal92,
GV97, Vis99].

The main contribution of the present work is the development and
study of an expression for the capacity of a MIMO system in which the
transmitter has access to channel side information. A result of partic-
ular importance is the conclusion that separate space-time coding and
transmit weighting is optimal in the sense that it is a capacity achieving
encoder structure. In this structure, the transmit weighting depends only
on the side information while the space-time encoder uses a fixed code-
book which is independent of the side information. It is also shown that
for the case of two transmit and one receiver antenna, such a capacity
achieving structure can be implemented using an OSTB code, giving rise
to the previously mentioned weighted OSTBC transmission structure.
This optimality in a capacity sense provides motivation for the weighted
OSTBC transmission scheme proposed in later chapters. Numerical eval-
uation of the capacity formula is in the general case non-trivial since it
involves solving a difficult optimization problem. Therefore, optimiza-
tion procedures are discussed and a theory about so-called symmetric
feedback is developed. By utilizing the symmetric feedback theory, com-
puting the capacity becomes feasible in some cases when quantized side
information is available. Quantized side information typically arises in
situations where a feedback link is used for providing channel information
to the transmitter. Assuming spatially uncorrelated flat Rayleigh fading
and one receive antenna, numerical results on the capacity are presented.
Motivation for the setup under consideration is provided by the similarity
with the closed-loop transmit diversity mode of the WCDMA system.

The chapter is organized as follows. The system model is described
in Section 2.2. An expression for the capacity of the described system
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is given in Section 2.3, where also the structure of a capacity achiev-
ing encoder is discussed. Furthermore, extensions to block-wise channel
fading scenarios are also presented. In Section 2.4, the extreme cases
of no and perfect channel knowledge at the transmitter are considered
and the capacity expression is shown to then reduce to previously known
expressions. An alternative capacity achieving structure is presented in
Section 2.5, where it is proved that weighted OSTBC is optimal for the
case of two transmit antennas and one receive antenna. Computation
of the capacity is treated in Section 2.6, where the symmetric feedback
concept is used to significantly simplify the problem. Finally, numerical
results on the capacity are given in Section 2.7.

2.2 System Model

Consider the symbol sampled and complex baseband equivalent model of
a wireless narrow-band MIMO communication system depicted in Fig-
ure 2.1. There are M transmit antennas, N receive antennas and n
denotes the integer-valued sample index. The frequency-nonselective
fading MIMO channel at discrete time instant n is represented by the
N×M matrix H(n) with complex-valued elements Hkl(n), k = 1, · · · , N ,
l = 1, · · · ,M , where Hkl(n) represents the channel between the lth trans-
mit and the kth receive antenna.
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Figure 2.1: System model.

Channel side information is available at the transmitter. The side
information comes in the form of a time-varying vector ζ(n) which is
statistically related to H(n) in the sense that {ζ(n)} and {H(n)} are
assumed to be jointly stationary and ergodic random processes. A space-
time encoder maps the message to be transmitted and the side informa-
tion into M parallel streams of channel symbols by choosing a codeword
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to transmit out of a set of codewords in a codebook. The codebook cor-
responds to the channel code. The channel symbols at time instant n are
represented by the output vector

c(n) ,
[
c1(n) c2(n) · · · cM (n)

]T
, (2.1)

which is assumed to satisfy the power constraint

E[‖c(n)‖2] = P , (2.2)

where ‖·‖ denotes the usual vector or spectral matrix norm [HJ96, p. 295]
and E[·] is the expectation operator. Here, (·)T represents the transpose
operator, , denotes “equality per definition” and cl(n) is a potentially
complex-valued channel symbol transmitted on the lth antenna at time
instant n.

Adaptation of the transmission to variations in the channel conditions
is facilitated by the assumption of an encoder output that is allowed to
depend on past and present side information. In other words, c(n) is
a function of {ζ(k)}n

k=−∞ (causal side information), in addition to its
dependence on the message to be communicated. The resulting informa-
tion carrying signals are transmitted over the wireless channel, picked up
by the receiver’s antenna array and thereafter filtered and symbol sam-
pled to produce the received signals. The complex baseband equivalent
received signals are represented by the vector

x(n) ,
[
x1(n) x2(n) · · · xN (n)

]T
, (2.3)

where xk(n) is the output from the kth antenna at time n. Decoding
at the receiver is performed under the assumption that both the channel
as well as the side information are known at the receiver, as indicated
in the figure. Channel state information at the receiver may in practice
be obtained by estimating the channel based on, for example, a training
sequence. The side information is in some cases implicitly known at the
receiver while in other cases it also needs to be estimated. An example
of the former case is when the side information ζ(n) is a deterministic
function of the channel H(n), such as in a system where H(n) is quan-
tized at the receiver and then conveyed to the transmitter via a feedback
link that does not introduce bit-errors.

The signal output from each receive antenna is a weighted superposi-
tion of the transmitted signals, corrupted by additive noise. Hence, the
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output from the kth receive antenna can be written as

xk(n) =
M∑

l=1

Hkl(n)cl(n) + ek(n) , (2.4)

where ek(n) represents the additive noise. By combining (2.1), (2.3), and
(2.4), the received signal vector can be written as

x(n) = H(n)c(n) + e(n) , (2.5)

where the noise term

e(n) ,
[
e1(n) e2(n) · · · eN (n)

]T

is assumed to be generated from a zero-mean, temporally white, complex
Gaussian1 random process {e(n)}. The processes {e(n)}, {(H(n), ζ(n))}
and the message to be transmitted are all assumed to be mutually inde-
pendent. The spatial color of the noise is given by the covariance matrix
E[e(n)e(n)∗] , Ree, where (·)∗ denotes the complex conjugate transpose
operator. Spatially white noise is usually a good model for thermal noise
while colored noise can be used to model interference from other users in
a cellular network.

2.2.1 An Additional Assumption

For the above system, an upper bound on the data rate possible for essen-
tially error-free communication (as the processing block length tends to
infinity) is derived in our work in [SJ03]. However, as pointed out therein,
to proceed and obtain a compact capacity expression, which shows that
the upper bound is in fact attainable, makes it necessary to impose an
additional constraint regarding the statistical relation between the side
information and the channel. Similarly to as in the related SISO work
in [CS99], the required constraint is the assumption that {ζ(k)}n−1

k=−∞,

ζ(n), H(n) form a Markov chain {ζ(k)}n−1
k=−∞ – ζ(n) – H(n). In other

words,

p
(
{ζ(k)}n−1

k=−∞|ζ(n),H(n)
)

= p
(
{ζ(k)}n−1

k=−∞|ζ(n)
)
, (2.6)

1If desired, the complex Gaussian assumptions found throughout this work (and
indeed the whole thesis) may all be generalized to the corresponding Gaussian as-
sumptions, without resulting in nothing but straightforward modifications of the de-
velopment.
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where p(·) denotes a probability mass/density function (PMF or PDF,
respectively). The above condition means that H(n) gives no further
knowledge about the past side information {ζ(k)}n−1

k=−∞ when ζ(n) is
known.

2.2.2 Scenarios Satisfying the Assumptions

It should be clear that the major part of the system model described
above is reasonable in many scenarios. However, the additional assump-
tion in (2.6) seems rather arcane and does in fact significantly limit the
field of application. Despite this, there are a number of scenarios encoun-
tered in practice in which the entire system model is applicable. Below,
examples of such scenarios are given.

No Channel Knowledge

The extreme case of no channel knowledge at the transmitter can be
modeled by assuming that {ζ(n)} and {H(n)} are mutually independent.
Clearly, (2.6) is satisfied and hence the present work includes this common
scenario as a special case.

Perfect Channel Knowledge

For the other extreme of perfect channel knowledge, the side information
is equal to the channel, or more precisely, ζ(n) = γ(H(n)), where γ(·)
defines an arbitrary one to one mapping. Again, it is clear that (2.6) is
satisfied and that perfect channel knowledge may be handled.

Memoryless Channel Fading

A third example of when (2.6) holds is in scenarios in which the channel
process {H(n)} can be modeled as memoryless and ζ(n) is a stochastic
or deterministic function of the current channel matrix H(n). To see
that this means that the additional assumption is satisfied, observe that
{ζ(k)}n−1

k=−∞ is independent of both H(n) and ζ(n). It follows that

p
(
{ζ(k)}n−1

k=−∞|ζ(n),H(n)
)

= p
(
{ζ(k)}n−1

k=−∞

)

= p
(
{ζ(k)}n−1

k=−∞|ζ(n)
)

and the condition in (2.6) is thus fulfilled.
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In practice, a memoryless channel may model scenarios where the
fading is fast or where fast fading has been artificially created through
the use of long interleaving or frequency hopping. Side information often
consists of channel estimates obtained either in the reverse link of a TDD
system or from the receiver via a feedback link when a FDD system is
used. Obviously, the side information for both these cases is a function of
the channel and, as long as several channel estimates are not combined to
form the side information, a function of only one current or past channel.

Feedback delay may be modeled within the present context by as-
suming that H(n) and ζ(n) are correlated and jointly Gaussian. If in
addition {H(n)} and {ζ(n)} are memoryless, ζ(n) is a stochastic func-
tion of H(n) and the condition in (2.6) is hence satisfied. Such a model
formed the basis of the information theoretic performance investigations
in [NLTW98].

Another commonly encountered feedback situation covered by the
system model is when the channel feedback is quantized and potentially
suffers from bit-errors introduced by deficiencies in the feedback channel.
In Section 2.6.2 we will spend a great deal of effort on showing how
to compute the capacity in the case of quantized feedback and an ideal
feedback channel. Such feedback scenarios will also be extensively studied
from a code design point of view in later chapters of this thesis.

2.3 Capacity of a MIMO System with Side
Information

A limit on the maximum data rate possible for essentially error-free com-
munication is given by the information theoretic channel capacity. As-
suming all the previous system assumptions are true, the capacity C for
the considered MIMO system is, expressed in bits per channel use, given
by

C = max
W (·)

E[‖W (ζ)‖2
F]=P

E[log2 det(IN + R−1
ee HW (ζ)W (ζ)∗H∗)] , (2.7)

where W (·) is a deterministic time-invariant M ×M matrix-valued func-
tion with elements in the complex number field and where the time
index n has been dropped to emphasize that the expectation is with
respect to the stationary marginal distribution of the random process
{(H(n), ζ(n))}. Here, log2(·) denotes the base 2 logarithm.
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The proof of (2.7) is found in our work in [SJ03] when the noise
is spatially white, i.e., Ree is a scaled identity matrix. However, it is
straightforward to extend the proof to also include the above case of
spatially colored noise.

An alternative representation of (2.7) is obtained by re-parameterizing
the problem and instead maximizing with respect to Z(ζ) ,

W (ζ)W (ζ)∗, thus obtaining the capacity as

C = max
Z(·)

Z(·)=Z(·)∗�0

E[tr(Z(ζ))]=P

E[log2 det(IN + R−1
ee HZ(ζ)H∗)] , (2.8)

where A � B means that A − B is a positive semi definite matrix and
where the trace operator tr(·) and the relation ‖A‖2

F = tr(AA∗) have
been used to rewrite the power constraint as

E[‖W (ζ)‖2
F] = E[tr(W (ζ)W (ζ)∗)]

= E[tr(Z(ζ))] = P .

Moreover, ζ has been dropped in the constraint Z(·) = Z(·)∗ � 0 to
emphasize that the constraint applies for all ζ. Obvious variations of
this notation will be used in the following.

As will be apparent from the development in later sections, the first
capacity expression is useful for providing intuition about the structure of
the system while the second expression is convenient to use in analytical
derivations. Both will be used interchangeably in the following. An
important property of (2.8) is that it represents a convex optimization
problem, making the task of solving it easier, as will be further discussed
in Section 2.6. To see that the problem is convex, utilize the determinant
relation (C.5), found in Appendix C, for writing

log2 det(IN + R−1
ee HZ(ζ)H∗)

= log2 det(IN + R−1/2
ee HZ(ζ)H∗(R−1/2

ee )∗) , (2.9)

where R1/2
ee is a (possibly Hermitian) matrix square-root of Ree such

that Ree = R1/2
ee (R1/2

ee )∗. Since log det(·) is a concave function over the
set of positive semi definite matrices [BV99, VB96], the argument of the
determinant in (2.9) is positive semi definite and linear in Z(ζ), and
E[·] is a linear operator, it follows that the criterion function in (2.8) is
concave over all functions Z(·) satisfying the constraints. The linearity
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of E[·] moreover means that the power constraint is convex. Finally, it
is easily verified that also the constraint Z(·) = Z(·)∗ � 0 is convex
[BV99, VB96]. Thus, it can be concluded that the entire optimization
problem is convex2.

Note that in the present work the focus is on a scenario in which
the output power is allowed to vary with the realizations of the side
information, as evident from the constraint on the average output power
in (2.2). This means that power control is part of the scenario. However,
power control is not always desirable in practice because of the resulting
increased demands on the linearity of transmission amplifiers. Scenarios
with no power control would instead be better modeled by the constraint

E[‖c(n)‖2|{ζ(k)}n
k=−∞] = P , (2.10)

where the expectation is taken with respect to the message to be com-
municated. The reason why (2.10) is more appropriate in non-power-
controlled scenarios is because it implies that the average output power
does not depend on the side information available at the transmitter3.
In other words, the side information can no longer control the average
output power.

The proof leading to the present capacity expressions needs only minor
modifications to handle the power constraint in (2.10). The resulting
channel capacity turns out to still be given by (2.7), or (2.8), if the
constraint on the average power is replaced with ‖W (ζ)‖2

F = tr(Z(ζ)) =
P , ∀ζ. Clearly, this is more restrictive than E[‖W (ζ)‖2

F] = E[tr(Z(ζ))] =
P and the capacity for the non-power-controlled scenario can therefore
not be higher than the corresponding capacity when power control is
allowed. In a typical case, the capacity is lower.

For the case of one receive antenna and the above scenario which pro-
hibits power control, our capacity formula reduces to the expected mutual
information based performance measure in [NLTW98]. As pointed out
in Section 2.2.2, the statistical relation between the channel and the side
information assumed in that paper corresponds to a special case of the

2A minimization problem is convex if the criterion function and all the constraints
are convex. Similarly, a maximization problem is convex if the criterion function is
concave and all the constrains are convex. The notion of a convex problem in the
latter case refers to the fact that the maximization problem is easily turned into
an equivalent minimization problem by negating the criterion function, making the
originally concave criterion function convex.

3Note that the constraint in (2.10) does not fix the instantaneous power of the
transmitted signals. Hence, the instantaneous power may still vary in time and with
the realizations of the message to be communicated.
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present system model. Thus, we come to the important conclusion that
the measure in [NLTW98] does in fact correspond to the channel capacity
for the scenario considered therein.

2.3.1 Structure of a Capacity Achieving Transmitter

Although the capacity expressions give an upper limit on the speed of
communication, they do not say how to reach the limit in a practical
system. However, as pointed out in our work in [SJ03], from the proof
of the capacity formula it is possible to draw some conclusions about
the structure of a capacity achieving transmitter. More specifically, our
development therein makes it clear that capacity can be achieved using
a space-time encoder constrained to have the structure

c(n) = Wc̄(n) , (2.11)

where the dependence on the side information is only through W ,

W (ζ(n)) and where c̄(n) is produced based on a fixed codebook and
depends only on the message to be transmitted and not on the side infor-
mation. The matrix-valued function W (·) corresponds to the maximizing
argument of (2.7) and the codebook can be drawn from a zero-mean com-
plex Gaussian distribution with independent and identically distributed
(IID) unit variance components.

PSfrag replacements
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Encoder Receiver

H(n)
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Figure 2.2: Structure of a capacity achieving transmitter.

From (2.11) it is realized that the channel side information depen-
dent space-time encoder can be divided into two separate parts without
capacity loss. As illustrated in Figure 2.2, the message to be transmit-
ted may first be mapped into channel vectors c̄(n) by means of an outer
space-time encoder that does not take the side information into account.
Since the corresponding codebook is independent of the side information,
it makes sense to have a codebook that strives to distribute the power
isotropically in space. This is ensured by the symmetrical nature of the
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previously mentioned IID Gaussian distribution from which the code-
book may be drawn. After space-time coding, the output c̄(n) is multi-
plied/weighted by W in order to adapt the transmission to the channel
knowledge available at the transmitter. The weighting performed by W

modifies the isotropic power distribution created by the outer space-time
encoder so that some “transmit-directions”4 are allocated more power
than others. Since typically several directions are involved, the weighting
may be viewed as implementing multi-dimensional beamforming, as op-
posed to conventional beamforming which transmits only along a single
direction. Such multidimensional beamforming is closely related to the
standard technique of allocating power along the right singular eigenvec-
tors of the channel by means of water-filling based on the correspond-
ing singular values [Tel95]. We will get back to the similarities with
water-filling in Section 2.4.2, where the perfect channel knowledge case
is considered.

The described capacity-achieving encoder structure implies that sep-
arate space-time coding and transmit weighting is optimal in the sense of
preserving channel capacity. In essence, the weighting is used to “color”
the spatially white output of the outer space-time encoder, whose code-
book is designed without regard to the side information. A related sep-
aration result for a SISO real-valued channel with fading and additive
white Gaussian noise was derived in [CS99]. It is interesting to note that
both these separation results are in many ways similar to the classical
theorem in information theory stating that separate source and channel
coding is optimal [CT91, p. 215].

Note that, in the case of no channel knowledge at the transmitter, a
space-time encoder with a codebook drawn from an IID Gaussian distri-
bution achieves capacity [Tel95]. Further note that the same codebook
also achieves capacity in the above optimal structure when there is chan-
nel side information. This is appealing from a system design point of view
since it suggests that the same conventional space-time code designed for
a no channel knowledge scenario is suitable also when channel side in-
formation is available, if the code is weighted appropriately. Indeed, the
space-time encoder may even be based on classical codes designed for a
SISO additive white Gaussian noise channel, since also in this case does
an IID Gaussian generated codebook achieve capacity [CT91]. However,

4Strictly speaking, the notion of directions here refers to directions in an M dimen-
sional vector space, rather than to physical directions. However, such non-physical
directions may in some cases be mapped into their physical counterparts in a straight-
forward manner.
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keep in mind that these are information theoretic based arguments that
rely on the usual assumption of an infinite time horizon. Hence, caution
should be observed so as to not draw too far-reaching conclusions about
the optimality of different code types. In practice, when the processing
block length is limited, the performance may vary considerably depending
on which type of code is used.

2.3.2 Capacity in a Block Fading Scenario

In practice, it is common to design wireless systems so that the channel
parameters can be seen as constant during a block of samples and only
change from one block to another. An important advantage of such an
approach is that it becomes easier to obtain accurate channel estimates
since only a single channel realization needs to be estimated per block,
thereby making it possible to improve the accuracy by averaging the noise
over an entire block of samples. Block fading scenarios are also common
in the wireless MIMO literature, see for example [FG98, TSC98].

Naturally, the popularity of the scenario makes it interesting to com-
pute the corresponding channel capacity. Recall that the capacity formu-
las in (2.7) and (2.8) are derived under the assumption that {H(n)} and
{ζ(n)} are jointly stationary and ergodic processes. Clearly, the channel
process in a block fading situation is, except in degenerate cases, not
stationary as assumed in the system model. It is hence not immediately
clear whether the capacity formulas are valid in the present situation of
a block fading scenario. In this section we will however show that they
are in fact applicable also to such scenarios.

Consider a block fading scenario in which the received signal vector
xbf(n) can be written as

xbf(n) = Hbf(n)cbf(n) + ebf(n) , (2.12)

corresponding to (2.5) in the previous symbol sampled system model but
with an additional index ’bf’ to indicate a block fading model. The as-
sumptions in Section 2.2 are taken to hold for the above signals, except
for the requirement regarding the stationarity and ergodicity of the chan-
nel and side information processes. These processes are instead assumed
to be piecewise constant so as to model a block fading scenario. Hence,
the channel is described by

Hbf(n) , H(k), kL ≤ n ≤ kL + L − 1 ,



2.3 Capacity of a MIMO System with Side Information 47

where L denotes the block length and H(k) represents the channel during
the kth block. Similarly, for the side information,

ζbf(n) , ζ(k), kL ≤ n ≤ kL + L − 1 ,

where ζ(k) represents the side information in the kth block. It is here
assumed that {H(k)} and {ζ(k)} are jointly stationary and ergodic ran-
dom processes. By stacking xbf(n) for n = kL, · · · , kL + L − 1 into a
vector x(k), it follows from (2.12) that the received data corresponding
to the kth block can be written as

x(k) = H(k)c(k) + e(k) ,

where

x(k) ,
[
xT

bf(kL) xT
bf(kL + 1) · · · xT

bf(kL + L − 1)
]T

c(k) ,
[
cT
bf(kL) cT

bf(kL + 1) · · · cT
bf(kL + L − 1)

]T

e(k) ,
[
eT

bf(kL) eT
bf(kL + 1) · · · eT

bf(kL + L − 1)
]T

H(k) , IL ⊗ H(k) ,

with ⊗ denoting the Kronecker product. Recall that cbf(n) is a function
of past and present side information. Consequently, the output vector
c(k) in the above block model is a function of {ζ(l)}k

l=−∞. Furthermore,
since the equivalent channel H(k) in the block model is related to H(k)
via a one to one mapping, {H(k)} and {ζ(k)} are jointly stationary and
ergodic. The whiteness of the underlying symbol sampled noise process
{ebf(n)} means that also {e(k)} is white with an accompanying spatial
covariance matrix given by Ree , E[e(k)e(k)∗] = IL ⊗ Ree, where Ree

denotes the corresponding covariance matrix of ebf(n).

If k is considered to be the sample index, we see that the above block
model corresponds directly to the symbol sampled model of Section 2.2,
with H(k) now playing the role of the channel. From the above, it is
clear that all the conditions needed for our capacity formulas to hold
are satisfied. Hence, applying (2.8) to the block model shows that the
capacity Cbm, expressed in bits per block, is given by

Cbm = max
Z(·)

Z(·)=Z(·)∗�0

E[tr(Z(ζ))]=Pbm

E[log2 det(ILN + R
−1
ee HZ(ζ)H∗)]
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= max
Z(·)

Z(·)=Z(·)∗�0

E[tr(Z(ζ))]=Pbm

E[log2 det(ILN + (IL ⊗ R−1
ee )(IL ⊗ H)Z(ζ)(IL ⊗ H∗))] ,

(2.13)

where the maximization is now over all ML × ML matrix-valued func-
tions Z(·) and where Pbm denotes the average output power taken over
the entire block. Keep in mind that maximization may alternatively
be performed in terms of W(·), where W(ζ)W(ζ)∗ , Z(ζ). In Ap-
pendix 2.A it is proved that an optimal Z(ζ) can be taken to be block
diagonal in the sense that

Z(ζ) = IL ⊗ Z(ζ) ,

for some M ×M matrix-valued function Z(·), without loss of optimality.
Obviously, since W(ζ)W(ζ)∗ = Z(ζ), the corresponding weighting may
similarly be chosen as W(ζ) = IL ⊗ W (ζ), for some M × M matrix-
valued function W (·). By utilizing the block diagonal property, the power
constraint can be rewritten as

E[tr(Z(ζ))] = LE[tr(Z(ζ))] = Pbm ,

while, using the Kronecker relation (C.3) in Appendix C, the determinant
in the criterion function may be expressed as

det(ILN + (IL ⊗ R−1
ee )(IL ⊗ H)(IL ⊗ Z(ζ))(IL ⊗ H∗))

= det(ILN + IL ⊗ (R−1
ee HZ(ζ)H∗))

= det(IL ⊗ (IN + R−1
ee HZ(ζ)H∗))

=
(
det(IN + R−1

ee HZ(ζ)H∗)
)L

.

Inserting the above into the expression for Cbm gives

Cbm = max
Z(·)

Z(·)=Z(·)∗�0

L E[tr(Z(ζ))]=Pbm

LE[log2 det(IN + R−1
ee HZ(ζ)H∗)] . (2.14)

In order to compare (2.14) with the original capacity formula in (2.8),
the block based units of measure currently used first need to be converted
into their sample based counterparts. Since Cbm is measured in bits per
block, it should be divided by L to correspond to bits per symbol sampled
channel use. Similarly, introduce P , Pbm/L so as to formulate the power
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constraint in terms of the power corresponding to a single sample rather
than an entire block of samples. The resulting capacity Cbf in the block
fading scenario, measured in bits per symbol sampled channel use, can
then be expressed as

Cbf , Cbm/L = max
Z(·)

Z(·)=Z(·)∗�0

E[tr(Z(ζ))]=P

E[log2 det(IN + R−1
ee HZ(ζ)H∗)] .

Clearly, this is the same as (2.8) and it can be concluded that the original
capacity formulas are applicable also to a block fading scenario.

Regarding an optimal encoder structure, observe that from Sec-
tion 2.3.1 it follows that

c(k) = W(ζ(k))c̄(k) , (2.15)

with

c̄(k) ,
[
c̄T
bf(kL) c̄T

bf(kL + 1) · · · c̄T
bf(kL + L − 1)

]T
,

corresponding to c̄(·) in (2.11), is a capacity achieving structure. Hence,
separate space-time coding and transmit weighting on a block basis is
optimal. Due to the block diagonal structure of an optimal W(·), the
expression in (2.15) can be reformulated to obtain

cbf(n) = W (ζ(k))c̄bf(n), kL ≤ n ≤ kL + L − 1

= W (ζbf(n))c̄bf(n) , (2.16)

representing the symbol sampled encoder output for time index n. We
therefore come to the important conclusion that separate space-time cod-
ing and transmit weighting is optimal also for the symbol sampled block
fading model in (2.12). It is interesting to note that the transmit weight-
ing is piecewise constant in time in a similar manner as the channel and
the side information. In other words, the transmit weighting is constant
for the entire duration of a block and is only updated at the start of a
new block. Compared with the optimal structure for a non-block fading
scenario, the transmit weighting hence varies more slowly – from block
to block instead of from sample to sample.

2.4 Specializing the Capacity Formula

To better understand the our capacity formula, it is instructive to con-
sider the extreme cases of no and perfect channel knowledge at the trans-
mitter. It will in the following be shown that in the former case the
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classical MIMO capacity expression is obtained while in the latter case
the capacity is given by the well-known water-filling type of power allo-
cation.

2.4.1 No Channel Knowledge

Consider first a scenario in which the transmitter has no knowledge about
the channel. As previously mentioned, this may be modeled by assuming
that the side information process {ζ(n)} is statistically independent of
{H(n)}.

From the discussion immediately after (2.9), it is realized that
log2 det(IN + R−1

ee X) is concave over the set of positive semi definite
matrices X. This permits the use of Jensen’s inequality [CT91, p. 25] to
obtain an upper bound on the expectation in (2.8), i.e.,

E[log2 det(IN + R−1
ee HZ(ζ)H∗)]

= EH

[
Eζ [log2 det(IN + R−1

ee HZ(ζ)H∗)|H]
]

≤ EH

[
log2 det(IN + R−1

ee Eζ [HZ(ζ)H∗|H])
]

= EH

[
log2 det(IN + R−1

ee H Eζ [Z(ζ)|H]H∗)
]

= EH

[
log2 det(IN + R−1

ee H Eζ [Z(ζ)]H∗)
]
, (2.17)

which holds with equality if Z(·) is a constant function and where the
last equality is due to {ζ(n)} and {H(n)} being mutually independent.
The power constraint in (2.8) can be rewritten as

E[tr(Z(ζ))] = tr(Eζ [Z(ζ)]) = P . (2.18)

By combining (2.17), (2.18) and (2.8), an upper bound on the capacity
follows as

C ≤ max
Z(·)

Z(·)=Z(·)∗�0

tr(Eζ [Z(ζ)])=P

EH

[
log2 det(IN + R−1

ee H Eζ [Z(ζ)]H∗)
]

(2.19)

≤ max
Z

Z=Z∗�0
tr(Z)=P

EH

[
log2 det(IN + R−1

ee HZH∗)
]
. (2.20)

However, the above inequalities can be replaced with equalities. To see
this, note that the upper bound in (2.17) is attainable if Z(·) is a constant
function. Hence, the inequality in (2.19) holds with equality. Let the
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M×M matrix Z represent the value of the constant function, i.e., Z(ζ) =
Z. Since then Eζ [Z(ζ)] = Z, it is seen that (2.19) reduces to (2.20)
which means that also the second inequality holds with equality. Thus,
the capacity in the no channel knowledge case is given by

C = max
Z

Z=Z∗�0
tr(Z)=P

EH [log2 det(IN + R−1
ee HZH∗)] . (2.21)

Consider the present no channel knowledge case and further specialize
by in addition assume spatially uncorrelated Rayleigh fading, meaning
that the elements of H are zero-mean IID complex Gaussian random
variables. Moreover, assume that the noise is spatially white so that
Ree = σ2IN , where σ2 denotes the noise variance. The expression in
(2.21) then corresponds to the same optimization problem as in [Tel95],
where the optimal solution was shown to be Z = P/MIN . Since Z(ζ) =
W (ζ)W (ζ)∗, the corresponding optimal transmit weighting W in (2.11)
can be taken as a constant scaled unitary matrix. This choice of W makes
sense for the present case of no channel knowledge since a unitary W ,
together with a zero-mean IID Gaussian generated codebook, distributes
the power isotropically in space and hence does not favor one direction
over another. After inserting the optimum Z = P/MIN in (2.21) the
classical MIMO capacity formula [Tel95]

C = EH [log2 det(IN +
P

Mσ2
HH∗)] (2.22)

is obtained as a special case of our more general capacity expression.

2.4.2 Perfect Channel Knowledge

The second case we consider is the other extreme of perfect channel
knowledge at the transmitter. This is modeled by assuming that the
side information equals the channel, or more precisely, that there is a one
to one deterministic mapping between the channel H(n) and the side in-
formation ζ(n). In the following, let γ(·) represent such a deterministic
mapping and hence assume that ζ(n) = γ(H(n)).

For the problem at hand, the capacity formula in (2.8) can be rewrit-
ten as

C = max
Z(·)

Z(·)=Z(·)∗�0

E[tr(Z(γ(H)))]=P

EH [log2 det(IN + R−1
ee HZ(γ(H))H∗)] . (2.23)
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To see how perfect channel knowledge affects the capacity, utilize the
determinant relation (C.5) in Appendix C for writing the determinant in
(2.23) as

det(IN + R−1
ee HZ(γ(H))H∗) = det(IM + H∗R−1

ee HZ(γ(H)))

= det(IM + UΛU∗Z(γ(H)))

= det(IM + ΛU∗Z(γ(H))U) , (2.24)

where UΛU∗ denotes the eigenvalue decomposition (EVD) of H∗R−1
ee H.

In the EVD, U is an M ×M unitary matrix containing the eigenvectors
and Λ is an M × M diagonal matrix with ordered elements λ1 ≥ λ2 ≥
· · · ≥ λr ≥ λr+1 = · · · = λM = 0 corresponding to the eigenvalues. Here,
r , min{M,N} denotes the maximum rank of H∗R−1

ee H. Since U is
unitary, the power constraint in (2.23) may be written as

E[tr(Z(γ(H)))] = E[tr(UU ∗Z(γ(H)))]

= E[tr(U∗Z(γ(H))U)] = P . (2.25)

Due to the one to one mapping γ(·), Z(γ(H)) is an arbitrary determin-
istic function of the channel. From this and (2.24), (2.25), it follows that
the capacity formula may be written in terms of the positive semi defi-
nite matrix-valued deterministic function Z̃(H) , U∗Z(γ(H))U . The
resulting capacity formula is

C = max
Z̃(·)

Z̃(·)=Z̃(·)∗�0

EH [tr(Z̃(H))]=P

EH [log2 det(IN + Λ(H)Z̃(H))] , (2.26)

where, with a slight abuse of notation, the eigenvalues’ functional de-
pendence on the channel has been made explicit. Applying Hadamard’s
inequality [HJ96, p. 477] to the determinant shows that Z̃(H) can be
taken to be diagonal without loss of optimality. A detailed proof is found
in Appendix 2.B. Hence, let

Z̃(H) = diag(Z̃11(H), Z̃22(H), · · · , Z̃MM (H)) , (2.27)

where diag(x1, x2, · · · ) denotes a diagonal matrix with elements x1, x2, · · ·
on the main diagonal, and combine this with (2.26) to obtain

C = max
{Z̃kk(·)}r

k=1

Z̃kk(·)≥0, k=1,··· ,r

E[
∑r

k=1 Z̃kk(H)]=P

EH

[
r∑

k=1

log2(1 + λk(H)Z̃kk(H))

]

. (2.28)
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Here, the M − r last Z̃kk(H) have been set to zero without loss of opti-
mality since they do not affect the criterion function. Let

f({Z̃kk(H)}r
k=1) ,

r∑

k=1

log2(1 + λk(H)Z̃kk(H))

and note that the criterion function E[f({Z̃kk(H)}r
k=1)] is concave, since

log2(1 + x) is concave and the expectation operator is linear. Necessary
and sufficient conditions on {Z̃kk(·)}r

k=1 to maximize E[f({Z̃kk(H)}r
k=1)]

can then be expressed in terms of the derivatives

∂f({Z̃kk(H)}r
k=1)

∂Z̃kk

= µ̃, all k and H such that Z̃kk(H) > 0

∂f({Z̃kk(H)}r
k=1)

∂Z̃kk

≤ µ̃, all k and H such that Z̃kk(H) = 0 ,

where µ̃ is a Lagrange multiplier. This can be shown by extending the
proof of Theorem 4.4.1 in [Gal68, p. 87] to cover the present case of
optimization with respect to functions instead of a finite number of pa-
rameters. By differentiating f(·) it is seen that {Z̃kk(·)}r

k=1 solves the
maximization problem if (and only if) they satisfy the conditions

λk(H)

1 + λk(H)Z̃kk(H)
= µ, all k and H such that Z̃kk(H) > 0 (2.29)

λk(H)

1 + λk(H)Z̃kk(H)
≤ µ, all k and H such that Z̃kk(H) = 0 . (2.30)

Here, µ , log(2)µ̃ has been introduced for notational convenience. These
conditions reduce to the condition stated in [CS99] for the SISO channel
case when r = 1. To obtain a solution, solve for Z̃kk(H) in (2.29) and
(2.30), leading to the equivalent conditions

Z̃kk(H) = 1/µ − 1/λk(H), all k and H such that Z̃kk(H) > 0

Z̃kk(H) ≥ 1/µ − 1/λk(H), all k and H such that Z̃kk(H) = 0 .

It is now easily verified that

Z̃kk(H) = max{1/µ − 1/λk(H), 0}, k = 1, · · · , r , (2.31)

with 1/λk(H) replaced by ∞ if λk(H) = 0, satisfies both conditions and
hence represents the optimal solution to the convex problem in (2.28).
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The Lagrange multiplier µ may be determined from the power constraint
by solving the equation

r∑

k=1

E[max{1/µ − 1/λk(H), 0}] = P . (2.32)

Once µ is determined, a simplified capacity formula is finally obtained by
utilizing the expression for Z̃kk(H) to arrive at

C =

r∑

k=1

EH [log2(1 + λk(H)Z̃kk(H))] . (2.33)

Interpretations and Comparisons

Because of the relations Z̃(H) = U∗Z(γ(H))U , Z(ζ) = W (ζ)W (ζ)∗

and the diagonal nature of Z̃(H), it follows from the above that the
transmit weighting may be chosen as

W = U diag(Z̃
1/2
11 , · · · , Z̃1/2

rr , 0, · · · , 0)

=

r∑

k=1

ukZ̃
1/2
kk , (2.34)

where the dependence on the channel and the side information has been
suppressed and where uk denotes the kth column of U . In view of the
capacity achieving encoder structure in Section 2.3.1, we see that the
transmission is along up to r different orthogonal directions, correspond-
ing to the eigenvectors of H∗R−1

ee H, with the output power distributed
according to (2.31). In the special case of spatially white noise, Ree is a
scaled identity matrix and the eigenvectors of H∗R−1

ee H also correspond
to the right singular eigenvectors in the singular value decomposition
(SVD) of H [HJ96, p. 414].

Another special case is that of N = 1 receive antenna. The channel
H then becomes a row vector and hence H∗R−1

ee H = H∗H/σ2 is a rank
r = 1 matrix, where σ2 denotes the noise variance. Consequently, only its
first eigenvalue λ1(H) is non-zero and, since (H∗H)H∗ = H∗(HH∗) =
‖H‖2H∗, that eigenvalue is given by

λ1(H) = ‖H‖2/σ2 =

M∑

l=1

|Hkl|2/σ2 , (2.35)



2.4 Specializing the Capacity Formula 55

with u1 = H∗/‖H∗‖ = H∗/‖H‖ representing the corresponding (right
singular) eigenvector. The remaining eigenvalues λk(H), k = 2, · · · ,M
are all seen to be zero, implying that Z̃kk(H) = 0, k = 2, · · · ,M . Con-
sequently, the capacity expression in (2.33) now reduces to

C = EH [log2(1 +
‖H‖2

σ2
Z̃11(H))] , (2.36)

where
Z̃11(H) = max{1/µ − σ2/‖H‖2, 0} , (2.37)

with µ determined from the simplified power constraint

E[max{1/µ − σ2/‖H‖2, 0}] = P . (2.38)

From the above and (2.34) it directly follows that the transmit weight-
ing W is of rank one with all power transmitted in a single direction
u1 = H∗/‖H‖. This corresponds to beamforming in the direction of the
channel, thus establishing the optimality of such beamforming.

The power distribution given by (2.31) is in general of the traditional
water-filling type [CT91]. This means that, for each channel realiza-
tion, more power is allocated on strong eigen-directions, i.e., directions
where λk(H) is large, and less on weak ones. Obviously, both the power
distribution and the corresponding transmit-directions vary over the en-
semble of channel realizations. Achieving capacity by distributing the
power along some eigen-directions through the use of water-filling is a
classical result, see for example [Tel95, RC98]. However, most previous
such MIMO capacity results rely on the assumption that the channel is
constant and non-random. One notable exception to this is the work in
[BCT01] which briefly discusses ergodic capacity and states, with refer-
ence to [Tel95], water-filling expressions corresponding to (2.31) - (2.33).
However, the given motivation for the water-filling expressions is some-
what misleading since [Tel95] deals with an entirely different, constant
channel, scenario. The development in the present section can therefore
be seen as providing a more rigorous proof for that water-filling result.

The capacity for a constant channel scenario may be obtained as a
special case of the development herein, since a constant channel is clearly
included in the system model of the present work. Toward this end, let
Z , Z(γ(H)) and observe that the expectation in (2.23) disappears.
The resulting constant channel capacity Cc(H) is therefore given by

Cc(H) = max
Z

Z=Z∗�0
tr(Z)=P

log2 det(IN + R−1
ee HZH∗) , (2.39)
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which, after utilizing (2.31) - (2.33), obviously reduces to

Cc(H) =
r∑

k=1

log2(1 + λkZ̃kk) , (2.40)

where Z̃kk , Z̃kk(H) is obtained from the water-filling solution (2.31)
and µ is determined from the power constraint

r∑

k=1

max{1/µ − 1/λk, 0} = P . (2.41)

Since the expectation operator has vanished, it is easy to devise an algo-
rithm that solves for µ. Hence, computing the capacity is straightforward.

Using Constant Channel Capacity in Fading Scenarios

It is interesting to further compare a random versus a constant channel
and the connection to scenarios with and without power control. For this
purpose, consider, as in Section 2.3.2, a block fading scenario in which
the channel is constant for a block of samples but fades from one block
to another in a random fashion. The expression for the constant channel
capacity Cc(H) in (2.39) then corresponds to a random variable. If we
assume that the blocks are long enough for each realization of Cc(H)
to be an accurate reflection of the maximum possible data rate in that
block, it makes sense to measure the performance in terms of the average
capacity, mathematically defined as

C̄c , EH [Cc(H)] = EH

[

max
Z

Z=Z∗�0
tr(Z)=P

log2 det(IN + R−1
ee HZH∗)

]

. (2.42)

It is here implicitly assumed that the average output power (over the
ensemble of messages to be communicated) remains constant regard-
less of the channel realization, i.e., a scenario without power control is
considered. The average capacity as a performance measure was used,
for example, in [BFAOHY02] to investigate the performance limits of
MIMO systems. An appealing feature of the average capacity is that it is
straightforward to compute by means of Monte-Carlo integration using
conventional water-filling techniques for evaluating (2.40) and (2.41) for
each channel realization.
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From the above development, it is not yet clear whether averaging the
constant channel capacity as in (2.42) gives the capacity for the present
block fading scenario. To see that the capacity is indeed obtained, note
first that the true channel capacity, assuming the original output power
constraint (2.2) and assuming that the channel realizations in the block
fading model are generated from a stationary and ergodic process, is given
by (2.23). In fact, (2.23) gives the channel capacity regardless of the block
length, as proved in Section 2.3.2. Further note that the channel capacity
in the corresponding non-power-controlled scenario is possibly lower and
is given by (2.23) if the expectation in the power constraint is dropped.
In other words,

Cpc = max
Z(·)

Z(·)=Z(·)∗�0

EH [tr(Z(γ(H)))]=P

EH [log2 det(IN + R−1
ee HZ(γ(H))H∗)]

≥ max
Z(·)

Z(·)=Z(·)∗�0

tr(Z(·))=P

EH [log2 det(IN + R−1
ee HZ(γ(H))H∗)]

= Cnpc , (2.43)

where Cpc and Cnpc denote the capacity for the scenarios with and with-
out power control, respectively. For the latter, there is no coupling be-
tween Z(γ(H))’s corresponding to different outcomes of H. Hence, the
maximization operator may be moved inside the expectation. After let-
ting Z , Z(γ(H)), the result can be written on the form

Cnpc = EH

[

max
Z

Z=Z∗�0
tr(Z)=P

log2 det(IN + R−1
ee HZH∗)

]

. (2.44)

Comparing this with (2.42) shows that Cnpc = C̄c and hence it is con-
cluded that the average capacity indeed equals the true capacity in the
case of a non-power-controlled scenario.

Note that, even if power control is considered, the corresponding non-
power-controlled scenario is useful since it can be utilized for obtaining an
easily computable lower bound on the channel capacity of interest. This
is important as the expectations in (2.32) are typically difficult to acquire
in closed-form, making it challenging to solve for the needed Lagrange
multiplier. Numerical computation of the channel capacity when power
control is used is in general a non-trivial problem and is therefore further
explored later in the chapter.
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2.5 Optimality of Weighted OSTBC

The design of space-time codes [GFBK99, TSC98, TJC99] is an active
area of research and numerous codes have been proposed for realizing
some of the high data rates promised by previous MIMO capacity results
as reported in e.g. [Tel95, FG98]. Traditionally, the design methods have
in general relied on the assumption that the transmitter does not know
the channel. Such conventional space-time codes are therefore unable to
exploit channel knowledge at the transmitter, if available, for improving
the performance.

However, the capacity result in Section 2.3.1 concerning the optimal-
ity of separate space-time coding and transmit weighting suggests that
even for scenarios in which channel information is available, the use of
the existing vast body of conventional space-time codes is reasonable if
the output of the space-time encoder is weighted based on the channel
information at the transmitter prior to the transmission. With this ap-
proach, some space-time codes are in practice easier to use than others.
For block fading scenarios, a particularly appealing choice is the class
of OSTB codes, leading to the previously mentioned weighted OSTBC
transmission structure. Ways to determine the transmit weighting with
the goal of minimizing the error probability will be considered in detail in
later chapters. In this section, the focus is on the information theoretic
aspects of weighted OSTBC. It will be shown that weighted OSTBC is
optimal from a capacity perspective in the special case of two transmit
antennas and one receive antenna.
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Consider the block fading scenario in Section 2.3.2 for M = 2 transmit
antennas and N = 1 receive antenna. The structure of weighted OSTBC
is closely related to the capacity achieving block based structure in (2.16).
The setup is illustrated in Figure 2.3. A sequence of symbols {s(n)},
representing the data to be transmitted, is mapped into codewords of
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length L = 2 by an OSTB encoder using the Alamouti code [Ala98].
Based on the channel side information ζbf(n), the encoder output c̄bf(n)
is weighted using W (ζbf(n)) producing the vector

cbf(n) = W (ζbf(n))c̄bf(n) , (2.45)

where the weighting function W (·) may be chosen arbitrarily subject to
a power constraint that will be introduced later. Clearly, this is similar to
the capacity achieving encoder structure in (2.16), except that c̄bf(n) is
now constrained to be the output of an OSTB encoder, thus potentially
limiting the possible data rates of the system.

The information carrying signals are transmitted over the wireless
channel resulting in the received signal

xbf(n) = Hbf(n)W (ζbf(n))c̄bf(n) + ebf(n) , (2.46)

where the variance of the noise term ebf(n) is σ2 and some of the boldface
in the notation has been removed to reflect the fact that xbf(n) and ebf(n)
are scalars because of the one receive antenna assumption. Now, collect
the received signal corresponding to the kth block into a row vector

[
xbf(2k) xbf(2k + 1)

]
,

and combine (2.45) and (2.46) to obtain

[
xbf(2k) xbf(2k + 1)

]
= H(k)C(k) + E(k)

= H(k)W (ζ(k))C̄(k) + E(k) ,

where

C(k) ,
[
cbf(2k) cbf(2k + 1)

]
= W (ζ(k))C̄(k)

C̄(k) ,
[
c̄bf(2k) c̄bf(2k + 1)

]

E(k) ,
[
ebf(2k) ebf(2k + 1)

]
,

with the 2 × 2 matrix C̄(k) representing the codeword output from the
OSTB encoder in the kth block. Here, ζbf(n) = ζ(k), kL ≤ n ≤ kL +
L− 1, as before. The Alamouti code takes two consecutive symbols s(n)
and constructs the output according to

C̄(k) =

[
s(2k) s∗(2k + 1)

s(2k + 1) −s∗(2k)

]

. (2.47)
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Assume that the total output power over the entire block is Pbm, i.e.,
E[‖C(k)‖2

F] = E[‖cbf(2k)‖2 + ‖cbf(2k + 1)‖2] = Pbm, and that the corre-
sponding symbols are normalized such that E[|s(2k)|2 + |s(2k +1)|2] = 2.
Combining these two assumptions and utilizing the orthogonality prop-
erty C̄(k)C̄(k)∗ = (|s(2k)|2 + |s(2k +1)|2)IM of the Alamouti code gives

E[‖C(k)‖2
F] = E[‖W (ζ(k))C̄(k)‖2

F]

= E
[
tr
(
W (ζ(k))C̄(k)C̄(k)∗W (ζ(k))∗

)]

= E
[
tr
(
W (ζ(k))W (ζ(k))∗

)
(|s(2k)|2 + |s(2k + 1)|2)

]

= E
[
tr
(
W (ζ(k))W (ζ(k))∗

)]
E
[
|s(2k)|2 + |s(2k + 1)|2

]

= E
[
tr
(
W (ζ(k))W (ζ(k))∗

)]
2 = Pbm , (2.48)

which is seen to correspond to a constraint on the weighting function.
An alternative representation of the setup more suitable for capacity

calculations is to, similarly to e.g. in [HH02b], take the complex conjugate
of xbf(2k + 1) and instead consider the received vector

x(k) ,
[
xbf(2k) x∗

bf(2k + 1)
]T

= H(k)s(k) + e(k) , (2.49)

where

H(k) ,

[
H̄11(k) H̄12(k)
−H̄∗

12(k) H̄∗
11(k)

]

, H̄kl(k) , [H(k)W (ζ(k))]kl

s(k) ,
[
s(2k) s(2k + 1)

]T
, e(k) ,

[
e(2k) e∗(2k + 1)

]T

and where [A]kl denotes element (k, l) of the matrix A. The complex
conjugate has been introduced purely for mathematical convenience in
later expressions and does not affect the channel capacity since x(k) is a
deterministic invertible function of the original received signal. Further-
more, note that the weighting W (ζ(k)) has now been absorbed into an
equivalent channel matrix H(k).

To prove the optimality of weighted OSTBC, we will work on a block
basis and show that the capacity of the above setup with the constrained
encoder, assuming the weighting function has been chosen appropriately,
is equal to the capacity for the general block fading setup in Section 2.3.2.
The capacity for the latter is given by (2.14), which in this case reduces
to

Cbm = max
Z(·)

Z(ζ)=Z(ζ)∗�0

2 E[tr(Z(ζ))]=Pbm

2E[log2(1 + σ−2HZ(ζ)H∗)] . (2.50)
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Some additional notation needs to be introduced in order to compare
this with the capacity achieved if the encoder is restricted to weighted
OSTBC. Let Cwo denote the capacity when the encoder is constrained
to the weighted OSTBC structure in (2.45) and let Cwo(W (·)) represent
the capacity for a fixed weighting function W (·). Since the encoders
corresponding to Cbm, Cwo and Cwo(W (·)) are increasingly restrictive, it
is clear that Cbm ≥ Cwo ≥ Cwo(W (·)). All these capacities are based on
a channel model with (cbf(2k), cbf(2k+1)) as input and (xbf(2k), xbf(2k+
1),H(k), ζ(k)) as output.

A potential lower bound on Cwo(W (·)) is obtained by constraining
the setup even further and, with reference to (2.49), investigating the
capacity of a related fictitious channel model taking s(k) as input and
(x(k),H(k)) as output, with the power constraint E[|s(2k)|2 + |s(2k +
1)|2] = E[‖s(k)‖2] = 2. Assume that the weighting function W (·) is fixed
and let Cfch(W (·)) denote the capacity of the fictitious channel model.
The reason why Cfch(W (·)) may constitute a lower bound on Cwo(W (·))
is because the original output (x(k),H(k), ζ(k)) has here been replaced
with (x(k),H(k)), which is more restrictive since it is a function of the
former.

In this new channel model both the weighting W (ζ(k)) and the OSTB
encoder are viewed as part of the channel and s(k) is seen as the output
of a fictitious transmitter that does not rely on any side information. In
other words, ζ(k) has been absorbed into the channel model creating a
system that seemingly is without side information at the transmitter.

To compute the capacity for the fictitious channel model, observe that
H(k) now plays the role of the channel matrix and is a deterministic
function of both the original channel matrix H(k) as well as the side
information ζ(k). Hence, {H(k)} is a stationary and ergodic random
process. It is easily verified that {e(k)} is a zero-mean complex Gaussian
random process with a covariance matrix Ree = σ2I2. From this it
follows that the fictitious channel model corresponds to a MIMO system
in which the receiver knows the channel matrix H(k) perfectly while there
is no channel knowledge at the transmitter. Consequently, the capacity
formula in (2.21) for the no channel knowledge case is applicable and
results in

Cfch(W (·)) = max
Z

Z=Z∗�0
tr(Z)=2

EH[log2 det(I2 + σ−2
HZH

∗)] . (2.51)

Note that HH
∗ = (|H̄11|2 + |H̄12|2)I2. Dropping the maximization in
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(2.51) and inserting Z = I2 then gives a lower bound on the capacity as

Cfch(W (·)) ≥ EH[log2 det(I2 + σ−2
HH

∗)]

= EH[log2 det(I2 + σ−2(|H̄11|2 + |H̄12|2)I2)]

= EH,ζ [log2 det(I2 + σ−2‖HW (ζ)‖2
FI2)]

= 2EH,ζ [log2 det(1 + σ−2‖HW (ζ)‖2
F)]

= 2EH,ζ [log2 det(1 + σ−2HW (ζ)W (ζ)∗H∗)] .

By maximizing this lower bound over all weighting functions W (·)
that satisfy the constraint in (2.48), and utilizing the fact that Cwo ≥
Cwo(W (·)) ≥ Cfch(W (·)), it is realized that the capacity for a weighted
OSTBC constrained encoder is lower bounded as

Cwo ≥ max
W (·)

2 E[tr(W (ζ)W ∗(ζ))]=Pbm

2EH,ζ [log2 det(1 + σ−2HW (ζ)W (ζ)∗H∗)]

= Cbm ,

where the equality is due to the fact that the above optimization problem
corresponds to (2.50). However, since Cwo cannot be larger than Cbm, it
follows that the inequality holds with equality, i.e., Cwo = Cbm.

Thus, we conclude that the weighted OSTBC structure in the case of
two transmit antennas and one receive antenna is optimal in the sense
that it can achieve the (unconstrained encoder) channel capacity. Unfor-
tunately, this result does not hold for other antenna configurations. In
such cases, the use of weighted OSTBC will incur a non-negligible capac-
ity loss that will be particularly severe if the number of elements in the
transmit antenna array is such that an OSTB code with real-valued sym-
bols must be used, see [TJC99] for examples of the latter type of codes.
An idea of the magnitude of the loss can be inferred from [HH02b], which
provides a capacity study of OSTB codes in the special case of no channel
knowledge at the transmitter.

2.6 Numerical Computation of Capacity

Unfortunately, computing the channel capacity by solving the accom-
panying optimization problem is in general a non-trivial task. This is
primarily because the capacity formula relies on expectations which typ-
ically are not available in closed-form. A possible remedy is to perform a
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Monte-Carlo simulation of the system and replace the expectations with
their corresponding sample estimates. The present section explores such
strategies in more detail when the channel knowledge is perfect as well
as when it is quantized.

2.6.1 Perfect Channel Knowledge

Consider the case of perfect channel knowledge at the transmitter and
the resulting capacity expressions in (2.31) - (2.33). In this case, the
problem simplifies considerably since the maximization has already been
performed analytically leaving only µ to be determined from the power
constraint in (2.32). Solving (2.32) is however complicated for fading
scenarios in which a closed-form expression of E[max{1/µ−1/λk(H), 0}]
is unavailable. A Monte-Carlo approach is certainly possible but com-
putationally demanding since the number of samples required to obtain
good estimates of E[max{1/µ− 1/λk(H), 0}], k = 1, 2 · · · , r, means that
an equation containing an enormous number of terms has to be solved
numerically. However, after determining µ and hence Z̃kk(H), the ca-
pacity expression in (2.33) is readily computed based on Monte-Carlo
integration.

As will be shown next, determining µ is relatively straightforward in
the case of one receive antenna and a channel matrix H with elements
{Hkl} drawn from a zero-mean IID complex Gaussian distribution. The
latter corresponds to a spatially uncorrelated Rayleigh fading scenario.
As previously mentioned, the capacity for a single receive antenna is
determined by (2.36) - (2.38). The constant µ needs to be computed
by solving the power constraint equation in (2.38). Let σ2 and σ2

h de-
note the noise variance and the variance of Hkl, respectively. Note that,
because the Hkl’s are zero-mean IID complex Gaussian, 2‖H‖2/σ2

h is
a chi-squared variable with 2M degrees of freedom [Kay98, p. 24]. The
corresponding PDF is sufficiently simple so as to permit closed-form eval-
uation of E[max{1/µ− σ2/‖H‖2, 0}], giving rise to the power constraint
equation

exp(−αµ)

µ

M−1∑

k=0

(αµ)k

k!
− α

exp(−αµ)

M − 1

M−2∑

k=0

(αµ)k

k!
= P , (2.52)

where α , σ2/σ2
h. The proof is presented in Appendix 2.C. Standard

methods for numerical solution of equations can now be used to solve for
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µ in (2.52) and hence avoid the most difficult part of the Monte-Carlo
simulation approach.

2.6.2 Memoryless Quantized Deterministic Feedback

In FDD type of systems, quantized channel information is usually con-
veyed from the receiver to the transmitter via a dedicated feedback link.
This is for example the case in the closed-loop transmit diversity mode of
the WCDMA system [3GP02b]. Consider Figure 2.4 in which a similar
feedback scenario is illustrated. Assume that the channel process {H(n)}
is memoryless and that the feedback quantizer/encoder is described by
a deterministic function ε(·) which maps the channel realization H(n)
into a Q-valued integer i(n) ∈ {0, 1, · · · , Q−1}. The output of the quan-
tizer is conveyed over an ideal non-distorting feedback channel to the
transmitter for which i(n) constitutes the available side information, i.e.,
ζ(n) = i(n).
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The encoder function ε(·) defines a partition {Sk : k ∈ {0, 1, · · · , Q −
1}} of C

N×M such that H(n) ∈ Sk ⇒ ζ(n) = i(n) = ε(H(n)) = k.
Here, C denotes the complex number field and Sk represents the kth
encoder region corresponding to a quantizer output value of k. Define
the probability that the quantizer outputs a value k as pk , Pr[H ∈
Sk] = Pr[ε(H) = k] and let Zk , Z(k) = W (k)W (k)∗, where we have
dropped the time index. By conditioning on the outputs of the quantizer,
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the capacity formula in (2.8) can be rewritten to arrive at

C = max
{Zk}

Q−1
k=0

Zk=Z∗
k�0,∀k

∑Q−1
k=0 pk tr Zk=P

Q−1
∑

k=0

pk E[log2 det(IN + R−1
ee HZkH∗)|H ∈ Sk] .

(2.53)

Similarly to (2.8), the above optimization problem is convex and hence
all local optima are also globally optimal, making it considerably easier
to find a global optimum. Constrained convex optimization problems are
often efficiently solved using interior point methods [NN94]. The use of
such methods to obtain a numerical value on the capacity will therefore
be considered next.

Background on Interior Point Methods

The philosophy behind interior point methods is to convert a constrained
optimization problem into an unconstrained problem, which can be easily
solved using standard numerical optimization techniques like the New-
ton method. Obtaining an unconstrained problem is accomplished by
incorporating the constraints by means of barrier functions.

To illustrate, assume a criterion function f(x) is to be maximized
with respect to x, subject to some constraints described by fk(x) ≤ 0,
k = 1, 2, · · · . Let x̄ denote the optimal solution and introduce the barrier
function f̃k(x) corresponding to the kth constraint. An unconstrained
optimization problem is obtained by instead solving

max
x

(

tf(x) +
∑

k

f̃k(x)

)

, (2.54)

producing the solution x̄(t). Here, t > 0 is a parameter which is used to
obtain a tradeoff between the original criterion function and the barrier
functions. Ideally, the barrier functions should not affect the criterion
function in (2.54) for values of x that satisfy the constraints and, con-
versely, should prevent violations of the constraints. In other words, ideal
barrier functions are given by

f̃k(x) =

{

0, fk(x) ≤ 0

−∞, fk(x) > 0 ,
(2.55)
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meaning that the solution x̄(t) of the unconstrained problem is also the
desired solution x̄ of the original problem, i.e., x̄(t) = x̄ regardless of the
choice of t.

However, in practice it is attractive to work with smooth differentiable
functions. Hence, the property in (2.55) is approximated using a function
which is non-zero, smooth and differentiable when fk(x) ≤ 0 and which
tends to −∞ as x approaches the boundary described by fk(x) = 0.
When x is close to a boundary, we say that the corresponding barrier
function operates close to its singular domain. The optimal solution
x̄(t) now becomes a function of t since the barrier functions are non-zero
within the allowed set of x. By intuition, it is realized that x̄(t) should
be close to the optimum x̄ if t is large so that the influence from the non-
zero barrier functions is negligible. To speed up the convergence, (2.55) is
however better solved using successively larger values t = tl, l = 1, 2, · · · ,
with x̄(tl) serving as the starting point in the numerical solution of (2.54)
in iteration l + 1. Under certain weak assumptions, it can be shown that
x̄(tl) converges to the optimum x̄ of the original problem [BV99].

Utilizing Interior Point Methods for Computing the Capacity

At least in principle, it seems straightforward to compute the capacity
by solving (2.53) using interior point methods. As shown in [BV99], semi
definite constraints like {Zk � 0} may be taken into account by the use
of Q barrier functions

f̃(Zk) = log det(Zk), k = 0, · · · , Q − 1 .

Since the remaining power constraint is linear in the optimization pa-
rameters, it is possible to re-parameterize the problem so as to directly
satisfy the constraint. Both the expectations as well as the PMF pk of
the quantizer output can be replaced by appropriate sample estimates
taken from a Monte-Carlo simulation.

However, there are drawbacks with an interior point approach based
on Monte-Carlo simulation. While the pk’s are constant and can hence
be computed once and for all prior to the optimization, the conditional
expectations need to be re-estimated every time the criterion function or
any of its derivatives are needed. The huge number of resulting terms in
the criterion function means that obtaining a solution is a computation-
ally demanding process. Moreover, the maximization in (2.53) is to be
performed jointly5 over all the Zk’s, which means that M2Q real-valued

5For the non-power-controlled scenario, the power constraint in (2.53) is replaced
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parameters needs to be optimized (Zk contains M2 real-valued parame-
ters since it is a Hermitian matrix). This may be a large number, even
for moderate transmit antenna array sizes and fairly coarse quantization,
thus further slowing down the convergence of the numerical procedure.
If in addition the optimal solution is close to beamforming, in the sense
that many or all of the optimal Zk’s are close to rank one, many of the
constraints {Zk � 0} are tight and the corresponding barrier functions
operate close to their singular domains. This creates severe numerical
difficulties, making it even more difficult to reach convergence and hence
solving the optimization problem within a reasonable time frame. Scenar-
ios in which the receiver only has one antenna are particularly vulnerable
to the latter kind of problem. However, there are in some cases remedies,
as will be discussed in the following section.

2.6.3 Symmetric Feedback

To avoid numerical difficulties in computing the capacity, there is a need
for reducing the problem size and in particular reducing the number of
tight constraints. In this section we will consider the previous memoryless
quantized deterministic feedback scenario and introduce the notion of
symmetric feedback. It will be shown that in case of symmetric feedback,
the optimization problem simplifies considerably. The rather theoretical
concept of symmetric feedback will moreover be applied to a scenario of
practical interest.

Definition of Symmetric Feedback

It often makes sense to design the quantizer so that the encoder regions
{Sk} exhibit certain rotational symmetries. Such rotational symmetries
form the basis of our definition of symmetric feedback. Toward this end,

let S(q)
s = {Sk : k ∈ I(q)

s } be a subset of the encoder regions {Sk}Q−1
k=0

with the corresponding index set I(q)
s hence representing a subset of

{0, 1, · · · , Q − 1}. Renumber the index set using the function κ(q)(k),

defined such that I(q)
s = {κ(q)(k)}|I

(q)
s |−1

k=0 , where |I(q)
s | denotes the num-

ber of elements in I(q)
s . Let there be Q′ different S(q)

s such that {S(q)
s }Q′−1

q=0

by Q constraints, each containing only one Zk. The optimization problem therefore
decouples and each term in the criterion function can be separately maximized. This
considerably simplifies the optimization problem and in fact makes the process of
determining the capacity rather painless.
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partitions the elements of {Sk}Q−1
k=0 into Q′ subsets.

Recall that a unitary matrix may correspond to a rotation. Guided
by this and the above, we say that the feedback is symmetric with respect

to the encoder regions in S(q)
s if the following two conditions are true:

1. For any k such that κ(q)(k) ∈ I(q)
s there exists a unitary matrix

Q
(q)
k such that H ∈ Sκ(q)(0) ⇔ HQ

(q)
k ∈ Sκ(q)(k).

2. The PDF pH(H) of the channel satisfies the relation pH(H) =
pH(HU) for all unitary M × M matrices U .

In other words, any encoder region Sκ(q)(k) in S(q)
s can be obtained from

Sκ(q)(0) via a “rotation” described by Q
(q)
k and the distribution of the

channel fading is invariant to all unitary linear transformations U .

If the two conditions are true for the entire set of encoder regions,

i.e., only Q′ = 1 subset S(0)
s = {Sk}Q−1

k=0 is needed, we have a symmetric
feedback scenario. To stress that it may be necessary to introduce sev-

eral subsets S(q)
s , the scenario is termed partially symmetric if Q′ < Q,

meaning that there is at least one subset S(q)
s with more than one ele-

ment satisfying the conditions. Note that the first condition is automat-

ically satisfied for the degenerate case of a single element subset S (q)
s .

Hence there exists at least one partition {S(q)
s }Q′−1

q=0 (choose S(q)
s = Sq,

q = 0, · · · , Q − 1) such that the first condition is true for all S (q)
s . It is

therefore always possible to reformulate the capacity formula using the
terminology of the present section, as will be shown next.

Exploiting Symmetric Feedback for Reducing Problem Size

For a partially symmetric feedback scenario, the size of the optimization
problem in (2.53) can be decreased. Loosely speaking, the symmetries
implied by the two conditions translate into corresponding symmetries in
the criterion function and the power constraint, from which it follows that
both the number of optimization parameters and the number of terms
can be reduced. To be more specific, it is shown in Appendix 2.D.1 that

if the feedback is symmetric with respect to some subset S (q)
s , then the

corresponding encoder output probabilities are all equal, i.e.,

pκ(q)(0) = pκ(q)(1) = · · · = p
κ(q)(|I

(q)
s |−1)

, (2.56)
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and

E[log2 det(IN + R−1
ee HXH∗)|i = κ(q)(k)]

= E[log2 det(IN + R−1
ee HQ

(q)
k X(Q

(q)
k )∗H∗)|i = κ(q)(0)] , (2.57)

for some non-random matrix X. By grouping terms that corre-

spond to the same subset S(q)
s together, utilizing (2.56) and (2.57), re-

parameterizing the problem using Z̃
(q)

k , Q
(q)
k Zκ(q)(k)(Q

(q)
k )∗ and finally

noticing that all Z̃
(q)

k corresponding to a certain subset can be taken to be

equal, or more precisely, Z̃
(q)

k = Z̃
(q)

, ∀k, it is shown in Appendix 2.D.2
that the capacity formula in (2.53) reduces to

C = max
{Z̃

(q)
}Q′−1

q=0

Z̃
(q)

=(Z̃
(q)

)∗�0,∀q
∑Q′−1

q=0 p
κ(q)(0)

|I(q)
s | tr(Z̃

(q)
)=P

Q′−1
∑

q=0

pκ(q)(0)|I(q)
s |f (q)

(
Z̃

(q))
, (2.58)

where

f (q)(X) , E[log2 det(IN + R−1
ee HXH∗)|i = κ(q)(0)] .

Compared with (2.53), the optimization problem in (2.58) is simpler
if the scenario is at least partially symmetric since the maximization

is then only over the Q′ < Q different Z̃
(q)

’s. The solution in terms
of the original parameters {Zk} is obtained by solving for Zκ(q)(k) in

Z̃
(q)

= Z̃
(q)

k = Q
(q)
k Zκ(q)(k)(Q

(q)
k )∗, giving Zκ(q)(k) = (Q

(q)
k )∗Z̃

(q)
Q

(q)
k ,

where Z̃
(q)

now is assumed to be part of an optimal solution of (2.58).
Since Zk = W (k)W (k)∗, optimal transmit weights are given by

W (κ(q)(k)) = (Q
(q)
k )∗W (q) , (2.59)

where W (q) is such that W (q)(W (q))∗ = Z̃
(q)

. In other words, the
symmetry of the quantization regions leads to a corresponding symmetry
of the transmit weights and only one weight W (q) per subset needs to be
optimized.

Example 2.6.1 (A symmetric feedback scenario)
To exemplify the symmetric feedback results, consider the previously de-
scribed memoryless quantized feedback scenario with a receiver that has



70 2 Capacity Results

only N = 1 receive antenna. Furthermore, assume spatially uncorrelated
Rayleigh fading, meaning that the elements of

H(n) =
[
H11(n) H12(n) · · ·H1M (n)

]

are drawn independently according to a zero-mean complex Gaussian
distribution. Consider a quantizer that employs a form of uniform phase
quantization to map the channel H(n) into a b-bit integer i(n). There are
hence Q = 2b different quantization regions. Such a quantization strategy
is reasonable in view of the fact that the phases of the channel coefficients
are uniformly distributed [Pro95, p. 767]. It is common practice to divide
the channel by the first channel coefficient [NLTW98] and instead uni-
formly quantize the phase of the elements in H(n)/H11(n). This is the
case both in the so-called partial phase combining scheme in [HP98] as
well as in the closed-loop mode of the WCDMA system [3GP02b]. It is
therefore interesting to study similar such quantization schemes and we
hence assume the feedback encoder in our example quantizes according
to

i(n) = ε(H(n)) = arg min
k∈{0,1,··· ,2b−1}

‖H(n)T/H11(n) − εk‖2 , (2.60)

with the codebook vectors {εk}2b−1
k=0 given by

εk =
[

1 ejφi0(k) · · · ejφiM−2(k)

]T

, (2.61)

where j ,
√
−1 and φil(k) = 2πil(k)/2b̄. Here, b̄ = b/(M −

1) represents the number of bits per complex-valued dimension and
il(k) ∈ {0, 1, · · · , 2b̄ − 1} is implicitly defined through the relation

k =
∑M−2

l=0 il(k)2b̄l. The latter relation means that i0(k) represents the
decimal number corresponding to the b̄ least significant bits of a natural
binary representation of k. Similarly, i1(k) corresponds to the next b̄ bits
and so on up to iM−2(k) which corresponds to the b̄ most significant bits.
It is hence seen that (2.60) and (2.61) together implement b̄ bit uniform
scalar quantization of the phases of H1l(n)/H11(n), l = 2, · · · ,M .

For the problem at hand, experiments show that the optimal solution
of (2.53) often corresponds to beamforming, even for a modest num-
ber of bits b. This may be of no surprise considering the optimality of
beamforming established for the perfect channel knowledge case in Sec-
tion 2.4.2. A related result is also found in [NLTW98] where based on a
similar quantization scheme it is proved that beamforming is optimal for
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the case of two transmit antennas and a non-power-controlled scenario.
Unfortunately, the optimality of beamforming means that the optimal
Zk’s are essentially rank one creating numerical difficulties as previously
explained. These difficulties can however in this case be overcome by uti-
lizing the theory about symmetric feedback. To see this, first note that
the codebook vectors can all be expressed in terms of the first codebook
vector as εk = Qkε0, where

Qk , diag(1, ejφi0(k) , ejφi1(k) , · · · , ejφiM−2(k)) (2.62)

is a diagonal unitary matrix that rotates ε0 to the desired position. It
is reasonable to expect that these rotational symmetries carry over both
to the encoder regions as well as to the conditional expectations in the
criterion function, the latter because of the symmetry inherent in the
IID complex Gaussian fading distribution. In Appendix 2.D.3 it is shown
that this is indeed the case by proving that the feedback is symmetric
with respect to all encoder regions {Sk}Q−1

k=0 , with the diagonal Qk’s
representing the unitary matrices mentioned in the symmetric feedback

conditions. Hence, the two feedback conditions are satisfied for S (0)
s =

{Sk}Q−1
k=0 with Q

(0)
k = Qk, where the renumbering function κ(0)(k) is

taken as κ(0)(k) = k. Consequently, there is only Q′ = 1 subset and the

number of elements in the corresponding index set I (0)
s is Q = 2b. This

constitutes a symmetric feedback scenario and (2.58) can thus be used to
obtain the capacity as

C = max
Z̃

(0)

Z̃
(0)

=(Z̃
(0)

)∗�0

p0Q tr(Z̃
(0)

)=P

p0QE[log2 det(IN + R−1
ee HZ̃

(0)
H∗)|i = 0]

= max
Z̃

(0)

Z̃
(0)

=(Z̃
(0)

)∗�0

tr(Z̃
(0)

)=P

E[log2(1 + σ−2HZ̃
(0)

H∗)|i = 0] , (2.63)

where σ2 denotes the noise variance and where p0Q = 1, or more precisely
pk = 1/Q, follows from (2.56) and the fact that

∑Q−1
k=0 pk = 1.

Clearly, the task of solving (2.63) is much easier than solving the origi-
nal problem in (2.53). For example, the number of real-valued parameters
in the optimization problem has been reduced from M 2Q to only M2,
the criterion function consists of only one conditional expectation and

only one barrier function corresponding to Z̃
(0)

0 � 0 needs to be used.
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Note that since all transmit weighting matrices are now related
through unitary transformations as in (2.59), the output power does not
vary with the outcome of the side information ζ(n) = i(n). Because of
the quantization scheme and the channel fading, power control is not used
even though it is allowed by the power constraint. Thus, (2.63) gives the
capacity for the non-power-controlled scenario as well.

2.7 Numerical Examples

In this section, results from numerical evaluations of some of the capacity
expressions are presented with the main goal of illustrating the gains due
to channel information at the transmitter. The high data rates offered
by MIMO systems are also illustrated as a bi-product of the compar-
isons to follow. The results provide motivation for the development in
later chapters of transmission schemes that take channel information into
account.

Quantized channel information as well as the extreme cases of no
and perfect channel knowledge are considered. Numerical values are ob-
tained using the Monte-Carlo based computation methods described in
Section 2.6. All of the following examples are concerned with a Rayleigh
fading scenario in which the channel process {H(n)} is memoryless with
the elements of H(n) drawn from a zero-mean IID complex Gaussian
distribution with the common variance σ2

h = 1. The noise is spatially
white with variance σ2 and the output power is P = 1. Furthermore,
SNR is defined as

SNR ,
Pσ2

h

σ2
,

corresponding to the power ratio E[‖H(n)c(n)‖2
F]/E[‖e(n)‖2] when the

transmitter does not know the channel. Additional assumptions are given
for each specific example below.

2.7.1 Perfect versus No Channel Knowledge

To give an idea of the maximum gains to expect from the use of channel
information, the two extreme cases of no and perfect channel knowledge
will be compared for various antenna configurations. A scenario without
power control is considered for the sake of simplifying the capacity com-
putation in the latter case. Recall from Section 2.4 that no channel knowl-
edge is modeled by assuming that the side information process {ζ(n)} is
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statistically independent of the channel matrix process {H(n)}, resulting
in the classical capacity formula in (2.22). Perfect channel knowledge, on
the other hand, is modeled by the assumption that the side information
is equal to the channel or more precisely that ζ(n) = γ(H(n)), where
γ(·) defines a one to one mapping. In the present case of no power con-
trol, the capacity is given by (2.44) which also corresponds to the average
capacity. Keep in mind that this constitutes a lower bound on the ca-
pacity when power control is allowed. Hence, the gains due to channel
knowledge may for a power-controlled scenario be even larger than what
will be shown next.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70
Perfect channel knowledge: N=8
No channel knowledge: N=8
Perfect channel knowledge: N=1
No channel knowledge: N=1

PSfrag replacements

SNR [dB]

C
a
p
a
ci

ty
[b

it
s

/
ch

a
n
n
el

u
se

]

Figure 2.5: Comparing the no channel knowledge capacity in (2.22) with
the perfect channel knowledge capacity in (2.44) as a function of SNR.
A Rayleigh fading non-power-controlled scenario with M = 8 transmit
antennas, σ2

h = 1 and P = 1 is assumed.

In Figure 2.5, the capacity as a function of the SNR is depicted.
The number of transmit antennas is eight and the number of receive
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Figure 2.6: Comparing the no channel knowledge capacity in (2.22)
with the perfect channel knowledge capacity in (2.44) as a function of
the number of transmit antennas M . The SNR is set at 10 dB and a
Rayleigh fading non-power-controlled scenario with σ2

h = 1 and P = 1 is
assumed.

antennas is either one or eight. In the former case, the difference in
performance between the no and perfect channel knowledge cases is seen
to be substantial. This is to be expected since the rank of the channel
is one and hence for each channel realization, only the power along the
first eigen-direction, corresponding to the single non-zero eigenvalue, will
reach the receiver. A significant fraction of the transmitted power will
therefore always be wasted using the isotropic power distribution of the no
channel knowledge transmitter. In contrast, the water-filling procedure
used by the perfect channel knowledge transmitter ensures that all power
is allocated to this single eigen-direction, as is clear from (2.34) - (2.38),
and therefore wastes no power on directions which do not contribute to
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the received signal.
The eight receive antenna curves demonstrate the high data rates

offered by a MIMO structure with an equal number of transmit and
receive antennas. Typically, all eigen-directions now contribute, more
or less, to the received signal. It is therefore not surprising that the
non-informed transmitter with its spatially isotropic power distribution
performs almost as well as the water-filling transmitter. The performance
gap is no longer constant and is even seen to vanish at high SNR values.
Such a decreasing performance gap is reasonable in view of the water-
filling power distribution which becomes more uniform, or more spatially
isotropic, as the SNR is increased. The utility of channel knowledge
is hence larger when the SNR is low than when it is high. This is a
rather general phenomenon that will also be observed in later chapters in
connection with performance evaluation of codes designed to take channel
knowledge into account.

The impact of different antenna configurations on the performance
is further illustrated in Figure 2.6. The SNR is now fixed at 10 dB
and the number of transmit and receive antennas is varied. Again, it is
seen that the gains due to channel knowledge are more pronounced when
the difference between the number of transmit and receive antennas is
large. By connecting the data points corresponding to an equal number
of antennas at both sides, it is also possible to discern the linear increase
in capacity with respect to M = N that is typical of MIMO systems and
which was reported in e.g. [FG98].

2.7.2 Quantized Channel Information

As previously mentioned, quantized channel information obtained from
the receiver via a feedback link is frequently encountered in practice. Ob-
viously, such partial channel knowledge is better than none at all while,
on the other hand, the performance cannot be expected to be as good
as when the channel is known perfectly. This tradeoff is to some extent
investigated below for the memoryless deterministic quantized feedback
scenario described in Section 2.6.2, assuming a scenario with power con-
trol. Hence, each channel realization is independently quantized into a
Q-valued integer i(n) by a deterministic feedback encoder function ε(·).
The encoder output constitutes the side information, i.e., ζ(n) = i(n).
To facilitate an easy computation of the capacity, the study is limited to
one receive antenna and quantization schemes that exhibit a high degree
of symmetry, permitting the use of the theory of symmetric feedback. In
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practice, the assumption of one receive antenna is not as restrictive as it
may first seem since the terminals in many wireless systems are typically
not equipped with more than one antenna. The study therefore covers
the important case of communication in the downlink from for example
a base station with several antennas to a single antenna terminal. In
particular, the setup is closely related to the one in the closed-loop mode
of the WCDMA system [3GP02b].
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Figure 2.7: Capacity as a function of SNR for different levels of quanti-
zation. A Rayleigh fading power-controlled scenario with M = 2 transmit
antennas, N = 1 receive antenna, σ2

h = 1 and P = 1 is assumed.

Consider a system with M = 2 transmit antennas and N = 1
receive antenna system that employs uniform phase quantization of
H(n)/H11(n) = H12(n)/H11(n) as defined by (2.60) and (2.61). The
feedback scenario is symmetric and the capacity is therefore given by
(2.63). In Figure 2.7, numerical results on the capacity as a function of
the SNR are depicted for no channel knowledge, b = 1 and b = 2 bit quan-
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tization. In addition, the expression for the power constraint in (2.52)
was used to provide numerical values on the capacity when the chan-
nel is known perfectly. One bit quantization is seen to give a significant
improvement over the no channel knowledge case. Adding another bit
gives only a modest improvement which however takes the performance
quite close to the limiting perfect channel knowledge case. To come even
closer to this limit, also the amplitude needs to be quantized. Consider
therefore a second type of quantization scheme in which the encoder is
still given by (2.60) but with the encoder codebook

εk =







[

1 0.8ejπk/4
]T

, k = 0, · · · , 7
[

1 1.6ejπ(k−8)/4
]T

, k = 8, · · · , 15 ,

which means that the relative phase is quantized using three bits while a
fourth bit is used to quantize the relative amplitude. It is easily verified
that the feedback is now symmetric with respect to {Sk}7

k=0 or {Sk}15
k=8,

respectively. Computing the capacity is hence feasible since (2.58) shows
that only two different matrices need to be optimized. The resulting
b = 4 curve in Figure 2.7 is seen to almost coincide with the performance
of the perfect channel knowledge transmitter.

Finally, phase-only quantization as described above is further investi-
gated in Figure 2.8 illustrating how the performance is affected by increas-
ing the number of transmit antennas M while keeping the quantization
level at b̄ = b/(M − 1) = 2 bits per complex dimension. Again, the no
and perfect knowledge cases serve as benchmarks. Increasing M above
two basically does not improve the performance when there is no channel
information. On the other hand, when using the phase quantization, the
capacity increases substantially with the number of transmit antennas.
This agrees well with the previous results displayed in Figure 2.6. We
conclude that it is possible to come quite close to the limiting perfect
channel knowledge curves using only phase quantization.

2.8 Conclusions

This work considered a MIMO wireless communication link in which the
transmitter has access to possibly imperfect channel side information. A
formula for the channel capacity was presented and subsequently ana-
lyzed for a number of different cases.
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Figure 2.8: Capacity as a function of SNR for different levels of phase
quantization and number of transmit antennas. A Rayleigh fading power-
controlled scenario with N = 1 receive antenna, σ2

h = 1 and P = 1 is
assumed.

One important result is that separate space-time coding and transmit
weighting is an optimal transmission structure. In the case of a system
with two transmit antennas and one receive antenna, it was shown that
such a structure may utilize the well-known Alamouti space-time code
without loss of optimality.

Although the focus was on a power-controlled scenario, it was also
pointed out that the presented capacity expression is easy to modify to
encompass also the case of a power constraint preventing the use of power
control. An interesting side effect of this is that previously used average
capacity or expected mutual information based performance measures
indeed correspond to true channel capacities.

Methods for evaluating the often numerically challenging capacity ex-
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pression were developed. In particular, a theory concerned with symmet-
rical properties of typical channel feedback schemes was introduced and
used for simplifying numerical computation of the capacity. Numerical
results on the channel capacity demonstrated the importance of exploit-
ing channel side information.
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Appendix 2.A Proving Optimality of Block

Diagonal Structure

In this appendix, it is proved that Z(ζ) in the capacity formula (2.13)
may be taken to be block diagonal without loss of optimality.

The proof proceeds as follows. Partition Z(ζ) into L2 blocks accord-
ing to

Z(ζ) =






Z11(ζ) · · · Z1L(ζ)
...

...
ZL1(ζ) · · · ZLL(ζ)




 ,

where each block is represented by the M ×M sub-matrix Zkl(ζ). Based
on the above partition of Z(ζ), it is possible to write

(IL ⊗ R−1/2
ee H)Z(ζ)(IL ⊗ H∗(R−1/2

ee )∗)

=






R−1/2
ee HZ11(ζ)H∗(R−1/2

ee )∗ · · · R−1/2
ee HZ1L(ζ)H∗(R−1/2

ee )∗

...
...

R−1/2
ee HZL1(ζ)H∗(R−1/2

ee )∗ · · · R−1/2
ee HZLL(ζ)H∗(R−1/2

ee )∗




 .

Consider the determinant in (2.13) and use the relation (C.5) in Ap-
pendix C and Fisher’s inequality [HJ96, p. 478] to obtain the upper bound

det(ILN + (IL ⊗ R−1
ee )(IL ⊗ H)Z(ζ)(IL ⊗ H∗))

= det(ILN + (IL ⊗ R−1/2
ee H)Z(ζ)(IL ⊗ H∗(R−1/2

ee )∗))

≤
L∏

k=1

det(IN + R−1/2
ee HZkk(ζ)H∗(R−1/2

ee )∗) , (2.64)

which holds with equality if all sub-matrices Zkl(ζ) that are not on the
main diagonal are zero. Utilize (2.64) and the fact that log2 det(·) is a
concave function to write

E[det(ILN + (IL ⊗ R−1
ee )(IL ⊗ H)Z(ζ)(IL ⊗ H∗))]

≤ E
[ L∑

k=1

log2 det(IN + R−1/2
ee HZkk(ζ)H∗(R−1/2

ee )∗)
]

≤ LE
[

log2 det(IN + R−1/2
ee H

∑L
k=1 Zkk(ζ)

L
H∗(R−1/2

ee )∗)
]

, (2.65)
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where last step follows from the definition of a concave function. The
second inequality holds with equality if the Zkk(ζ)’s are all equal. Fur-
thermore, note that the power constraint in (2.13) can be written as

E[tr(Z(ζ))] = E
[

tr
( L∑

k=1

Zkk(ζ)
)]

= Pbm . (2.66)

From (2.65) and (2.66) it is now seen that an upper bound on the capacity
in (2.13) is given by

C ≤ max
{Zkk(·)}

Zkk(·)=Zkk(·)∗�0, ∀k

E
[

tr
(
∑L

k=1 Zkk(ζ)
)]

=Pbm

LE[log2 det(IN + R−1/2
ee H

∑

k Zkk(ζ)

L
H∗(R−1/2

ee )∗)]

= max
Z(·)

Z(·)=Z(·)∗�0

L E[tr(Z(ζ))]=Pbm

LE[log2 det(IN + R−1/2
ee HZ(ζ)H∗(R−1/2

ee )∗)] ,

(2.67)

where (2.67) follows from reformulating the optimization problem in
terms of the parametrization Z(ζ) ,

∑

k Zkk(ζ)/L. However, the above
inequality holds with equality since (2.67) may be obtained directly from
the capacity formula in (2.13) if Z(ζ) is constrained as Z(ζ) = IL⊗Z(ζ).
Hence, (2.67) gives the capacity and we have shown that Z(ζ) may be
taken to be block diagonal without loss of optimality, as asserted.

Appendix 2.B Proving Optimality of Diag-

onal Structure

In this appendix, the optimality of the diagonal structure in (2.27) will
be proved. Although somewhat shortened, the development proceeds
in a similar manner as for the proof concerned with the block diagonal
structure in Appendix 2.A.

Let [A]kl denote the element on the kth row and lth column of the ma-
trix A and use this to define Z̃kk(H) , [Z̃(H)]kk. Applying Hadamard’s
inequality [HJ96, p. 477] to the determinant gives

det(IN + Λ(H)Z̃(H)) ≤
r∏

k=1

(1 + [Λ(H)Z̃(H)]kk)
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=
r∏

k=1

(1 + [Λ(H)]kk[Z̃(H)]kk)

=
r∏

k=1

(1 + λk(H)Z̃kk(H)) , (2.68)

with obvious notation. The above upper bound is attained if Z̃(H) is
diagonal. Furthermore, note that

E[tr(Z̃(H))] =

M∑

k=1

E[Z̃kk(H)] = P ,

which means that also the power constraint can be written in terms of the
diagonal elements of Z̃(H). Since (2.68) is attained if Z̃(H) is diagonal
and both the upper bound and the power constraint can be written in
terms of the corresponding diagonal elements, Z̃(H) may be assumed to
be diagonal without loss of optimality. This concludes the proof.

Appendix 2.C Power Constraint in Closed-

Form

In this appendix, we prove that the power constraint in (2.38) can, as-
suming N = 1 receive antenna and spatially IID Rayleigh fading as in
Section 2.6.1, be written in closed-form to arrive at (2.52).

Note first that x , 2‖H‖2/σ2
h is a chi-squared random variable with

2M degrees of freedom. Hence, its PDF is given by [Kay98, p. 24]

px(x) =

{
xM−1 exp(−x/2)

2M (M−1)!
, x ≥ 0

0, x < 0 .

Let α , σ2/σ2
h and evaluate the expectation in the power constraint as

EH [max{1/µ − σ2/‖H‖2, 0}] = Ex[max{1/µ − 2σ2/(σ2
hx), 0}]

=

∫

max{1/µ − 2α/x, 0}px(x) dx

=

∫ ∞

2αµ

(1/µ − 2α/x) px(x) dx

=
1

µ

∫ ∞

2αµ

px(x) dx − 2α

∫ ∞

2αµ

px(x)/x dx .
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Since
∫

xneax dx =
(−1)n exp(ax)n!

an+1

n∑

k=0

(ax)k(−1)k

k!

it follows that

∫ ∞

2αµ

px(x) dx =
1

2M (M − 1)!

∫ ∞

2αµ

xM−1 exp(−x/2) dx

=

[

(−1)M−1 exp(−x/2)(M − 1)!

2M (M − 1)!(−1/2)M

M−1∑

k=0

(−x/2)k(−1)k

k!

]∞

2αµ

= exp(−αµ)
M−1∑

k=0

(αµ)k

k!

and

∫ ∞

2αµ

px(x)/x dx =
1

2M (M − 1)!

∫ ∞

2αµ

xM−2 exp(−x/2) dx

=

[

(−1)M−2 exp(−x/2)(M − 2)!

2M (M − 1)!(−1/2)M−1

M−2∑

k=0

(−x/2)k(−1)k

k!

]∞

2αµ

=
exp(−αµ)

2(M − 1)

M−2∑

k=0

(αµ)k

k!
.

Hence, the desired expression in (2.52) follows as

EH [max{1/µ − σ2/‖H‖2, 0}]

=
exp(−αµ)

µ

M−1∑

k=0

(αµ)k

k!
− α

exp(−αµ)

M − 1

M−2∑

k=0

(αµ)k

k!
.

Appendix 2.D Symmetric Feedback

In this appendix, we derive how the symmetric feedback conditions in
Section 2.6.3 affect the capacity formula. Hence, both the first and second
condition are tacitly assumed to be satisfied for the remainder of this
section.
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2.D.1 Encoder Probabilities and Conditional Expec-
tation

The expressions in (2.56), (2.57) for the feedback encoder probabilities
and the conditional expectation, respectively, will be proved below. The
proof relies on symmetries induced by the symmetric feedback conditions.
To start with, note that

pκ(q)(0) = Pr[H ∈ Sκ(q)(0)]

=

∫

H∈S
κ(q)(0)

pH(H) dH ,

where the notation “dH” means that the integration is to be carried out
with respect to the 2MN real-valued parameters of H. Now utilize the
first condition and make a change of variables to obtain

pκ(q)(0) =

∫

HQ
(q)
k

∈S
κ(q)(k)

pH(H) dH

=

∫

H̃∈S
κ(q)(k)

pH

(
H̃(Q

(q)
k )∗

)
dH̃ ,

where the second equality follows from the fact that the determinant
of the Jacobian of a unitary linear transformation is one. The second
condition finally gives

pκ(q)(0) =

∫

H̃∈S
κ(q)(k)

pH(H̃) dH̃

= Pr[H ∈ Sκ(q)(k)]

= pκ(q)(k) ,

which shows that all encoder output probabilities belonging to the qth
subset are equal, as claimed in (2.56).

Let pH|i(H|i = κ(q)(k)) denote the PDF of H conditioned on the

event that i = κ(q)(k), which corresponds to H ∈ Sκ(q)(k). To prove the
result on the conditional expectation, first note that

pH|i(H|i = κ(q)(k)) =

{
pH(H)
p

κ(q)(k)

, H ∈ Sκ(q)(k)

0, otherwise
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and hence, because of the unitary invariance pH(HU) = pH(H), the
first condition and pκ(q)(0) = pκ(q)(k),

pH|i(H|i = κ(q)(0)) =







pH(HQ
(q)
k

)

p
κ(q)(0)

, H ∈ Sκ(q)(0)

0, otherwise

=







pH(HQ
(q)
k

)

p
κ(q)(k)

, HQ
(q)
k ∈ Sκ(q)(k)

0, otherwise

= pH|i(HQ
(q)
k |i = κ(q)(k)) .

From this the desired relation in (2.57) follows as

E[log2 det(IN + R−1
ee HXH∗)|i = κ(q)(k)]

=

∫

log2 det(IN + R−1
ee HXH∗)pH|i(H|i = κ(q)(k)) dH

=

∫

log2 det(IN+R−1
ee H̃Q

(q)
k X(Q

(q)
k )∗H̃

∗
)pH|i(H̃Q

(q)
k |i = κ(q)(k)) dH̃

=

∫

log2 det(IN + R−1
ee H̃Q

(q)
k X(Q

(q)
k )∗H̃

∗
)pH|i(H̃|i = κ(q)(0)) dH̃

= E[log2 det(IN + R−1
ee HQ

(q)
k X(Q

(q)
k )∗H∗)|i = κ(q)(0)] .

2.D.2 Simplifying the Optimization Problem

This section presents a proof that the capacity formula in (2.53) simplifies

to (2.58). By grouping terms that correspond to the same subset S (q)
s

together and utilizing (2.56) and (2.57), the power constraint can be
rewritten as

Q−1
∑

k=0

pk tr(Zk) =

Q′−1
∑

q=0

∑

k∈I
(q)
s

pk tr(Zk)

=

Q′−1
∑

q=0

|I(q)
s |−1
∑

k=0

pκ(q)(k) tr(Zκ(q)(k))

=

Q′−1
∑

q=0

pκ(q)(0)

|I(q)
s |−1
∑

k=0

tr(Zκ(q)(k)) = P
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and the criterion function as

Q−1
∑

k=0

pk E[log2 det(IN + R−1
ee HZkH∗)|H ∈ Sk]

=

Q′−1
∑

q=0

∑

k∈I
(q)
s

pk E[log2 det(IN + R−1
ee HZkH∗)|i = k]

=

Q′−1
∑

q=0

|I(q)
s |−1
∑

k=0

pκ(q)(k) E[log2 det(IN + R−1
ee HZκ(q)(k)H

∗)|i = κ(q)(k)]

=

Q′−1
∑

q=0

pκ(q)(0)

|I(q)
s |−1
∑

k=0

f (q)
(
Q

(q)
k Zκ(q)(k)(Q

(q)
k )∗

)
,

where

f (q)(X) , E[log2 det(IN + R−1
ee HXH∗)|i = κ(q)(0)] .

Now re-parameterize the problem using Z̃
(q)

k , Q
(q)
k Zκ(q)(k)(Q

(q)
k )∗.

Since Q
(q)
k is unitary, tr(Zκ(q)(k)) = tr((Q

(q)
k )∗Z̃

(q)

k Q
(q)
k ) = tr(Z̃

(q)

k ) and
the power constraint becomes

Q′−1
∑

q=0

pκ(q)(0)

|I(q)
s |−1
∑

k=0

tr(Z̃
(q)

k ) = P .

The resulting capacity is hence

C = max
{Z̃

(q)
k }

Z̃
(q)
k =(Z̃

(q)
k )∗�0, ∀k,q

∑Q′−1
q=0 p

κ(q)(0)

∑|I
(q)
s |−1

k=0 tr(Z̃
(q)
k )=P

Q′−1
∑

q=0

pκ(q)(0)

|I(q)
s |−1
∑

k=0

f (q)
(
Z̃

(q)

k

)
. (2.69)

Note that f (q)(X) is a concave function of the set of positive semi definite
matrices. Hence, we have

|I(q)
s |−1
∑

k=0

f (q)
(
Z̃

(q)

k

)
≤ |I(q)

s |f (q)

(∑|I(q)
s |−1

k=0 Z̃
(q)

k

|I(q)
s |

)

,
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which holds with equality if the Z̃
(q)

k ’s are equal for all k ∈ I(q)
s . This

means that an upper bound on the capacity in (2.69) is given by

C ≤ max
{Z̃

(q)
k }

Z̃
(q)
k =(Z̃

(q)
k )∗�0, ∀k,q

∑Q′−1
q=0 p

κ(q)(0)

∑|I
(q)
s |−1

k=0 tr(Z̃
(q)
k )=P

Q′−1
∑

q=0

pκ(q)(0)|I(q)
s |f (q)

(∑|I(q)
s |−1

k=0 Z̃
(q)

k

|I(q)
s |

)

= max
{Z̃

(q)
}Q′−1

q=0

Z̃
(q)

=(Z̃
(q)

)∗�0, ∀q
∑Q′−1

q=0 p
κ(q)(0)

|I(q)
s | tr(Z̃

(q)
)=P

Q′−1
∑

q=0

pκ(q)(0)|I(q)
s |f (q)

(
Z̃

(q))
, (2.70)

where the equality is due to a straightforward re-parametrization based

on Z̃
(q)

,
∑|I(q)

s |−1
k=0 Z̃

(q)

k /|I(q)
s |. Clearly, if we for all k ∈ I(q)

s constrain

Z̃
(q)

k in the capacity formula in (2.69) to be equal to Z̃
(q)

, the result is
(2.70). In other words, the upper bound is attainable and the capacity
can therefore be computed according to

C = max
{Z̃

(q)
}Q′−1

q=0

Z̃
(q)

=(Z̃
(q)

)∗�0, ∀q
∑Q′−1

q=0 p
κ(q)(0)

|I(q)
s | tr(Z̃

(q)
)=P

Q′−1
∑

q=0

pκ(q)(0)|I(q)
s |f (q)

(
Z̃

(q))
. (2.71)

An optimal solution of the original problem in (2.69) is given by Z̃
(q)

k =

Z̃
(q)

, ∀k, where Z̃
(q)

is the maximizing argument of (2.71). This con-
cludes the proof.

2.D.3 Proving Symmetry of Feedback in the Exam-
ple Scenario

In this appendix it is proved that the uniform phase quantization scheme
in (2.60), under the assumptions of one receive antenna and spatially
IID Rayleigh fading channel coefficients, results in a symmetric feedback
scenario. In other words, we will show that the feedback is symmetric
with respect to all encoder regions. This will be accomplished by showing

that the two feedback conditions are satisfied for S (0)
s = {Sk}Q−1

k=0 , Q
(0)
k =
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Qk, with Qk defined as in (2.62) and the renumbering function κ(0)(k) =
k.

Since the channel coefficients are zero-mean IID and each channel
coefficient is complex Gaussian distributed with variance σ2

h, the PDF
pH(H) of the channel is given by [Kay93, p. 507]

pH(H) =
exp

(
−∑M

k=1 |H1k|2/σ2
h

)

πMσ2M
h

=
exp(−HH∗/σ2

h)

πMσ2M
h

.

Note that (HU)(HU)∗ = HUU∗H∗ = HH∗ for an arbitrary unitary
matrix U . Hence, pH(HU) = pH(H) and the second feedback condition
is seen to be satisfied.

To see that also the first feedback condition is satisfied, assume that
H ∈ Sκ(q)(0) = S0. That is, expressed using the encoder function in
(2.60), it holds that

ε(H) = arg min
l

‖HT/H11 − Qlε0‖2 = 0 , (2.72)

where Qlε0 = εl. The output of the encoder with HQ
(0)
k = HQk as

input, is then

ε(HQk) = arg min
l

‖QT
k HT/H11 − Qlε0‖2

= arg min
l

‖QkHT/H11 − Qlε0‖2

= arg min
l

‖Qk(HT/H11 − Q∗
kQlε0)‖2

= arg min
l

‖HT/H11 − Q∗
kQlε0‖2 ,

where the last inequality is due to the fact that the Euclidean vector norm
is invariant to a unitary linear transformation. Because of the uniform
phase quantization, it is realized that Q∗

kQl ∈ {Qm}Q−1
m=0. Hence, Q∗

kQl

represents an arbitrary Qm and, from Q∗
kQk = IM = Q0 in conjunction

with (2.72), it follows that

ε(HQk) = arg min
l

‖HT/H11 − Q∗
kQlε0‖2 = k .

This shows that HQk = HQ
(0)
k ∈ Sk = Sκ(q)(k) and consequently

that H ∈ Sκ(q)(0) ⇒ HQ
(0)
k ∈ Sκ(q)(k). To prove the converse, assume

HQ
(0)
k = HQk ∈ Sκ(q)(k) = Sk, i.e.,

ε(HQk) = arg min
l

‖QT
k HT/H11 − Qlε0‖2 = k . (2.73)



2.D Symmetric Feedback 89

The encoder output with H as input is then

ε(H) = arg min
l

‖HT/H11 − Qlε0‖2

= arg min
l

‖Qk(HT/H11 − Qlε0)‖2

= arg min
l

‖QT
k HT/H11 − QkQlε0)‖2 = 0 ,

where the last equality follows from QkQl ∈ {Qm}Q−1
m=0 and QkQ0 = Qk

in conjunction with (2.73). Consequently, H ∈ S0 = Sκ(q)(0) and the

converse is proved. Thus, H ∈ Sκ(q)(0) ⇔ HQ
(0)
k ∈ Sκ(q)(k), meaning

that also the first feedback condition is satisfied.





Chapter 3

System Description and
Preliminaries

The remainder of the thesis is concerned with code and transmission
scheme design for transmitters with possibly imperfect channel side in-
formation. The design methods are to a large extent developed based on
the same system model. The present chapter describes the parts of the
system model that all the design methods have in common. This generic
system model will in later chapters be supplemented with additional as-
sumptions for the respective case under study.

In the following, essentially a special case of the flat block fading sce-
nario in Section 2.3.2 is considered. A data model is presented and three
different classes of channel side information dependent space-time block
codes are described for later reference. The code classes, mentioned in
order of increasingly restrictive structure, are unstructured codes, linear
dispersive codes and weighted OSTBC. While the first two code types
are simple extensions of structures previously known in the literature,
weighted OSTBC was originally proposed in the works that form this
thesis and hence represents a new code/transmission structure.

3.1 A Generic System Model

Consider a MIMO wireless communication system in a flat block fading
scenario with channel side information at the transmitter under assump-
tions that essentially correspond to a special case of the flat block fading
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scenario in Section 2.3.2. Hence, both the channel and the side infor-
mation is constant during a block of L samples but may vary from one
block to another in a statistically stationary fashion. However, in con-
trast to the previous scenario, the channel coding is now assumed to be
performed independently for each block. More specifically, the length of
the codewords in the channel code is equal to the block length L and
each transmitted codeword experiences only one channel realization.

A typical benefit of such type of channel coding is that the processing
delay incurred by the coding scheme is relatively short, since the delay is
on the same order of magnitude as the block length L. This suits delay
sensitive applications such as voice traffic or video conferencing. On the
other hand, a drawback is that the temporal variations of the channel
are not exploited for achieving time diversity. If needed however, time
diversity can be achieved by interleaving and employing an outer code,
at the expense of increased processing delay.

Because the channel coding is performed independently for each block,
we may restrict our attention to a single arbitrary block, without loss
of generality. In the following, the time-interval n = 0, 1, · · · , L − 1 is
therefore considered and the block index is dropped.

A symbol sampled complex baseband equivalent model of the sys-
tem is depicted in Figure 3.1. At the transmitter, a space-time encoder
maps bits, representing the message to be transmitted, into a sequence of
codeword matrices. The result is a set of parallel and generally different
channel symbol streams. Each symbol stream corresponds to the signal
for a particular transmit antenna. Side information ζ about the channel
is assumed to be available and utilized for adapting the transmission to
the channel characteristics. The space-time encoder has access to a set
{C(ζ)} of codes. Out of this set, the side information is utilized for deter-
mining the channel code C currently in use as C = C(ζ). At the receiver,
the information carrying signals are first decoded into codewords and the
result is then mapped back into bits, corresponding to an estimate of the
transmitted message. As before, the decoding relies on the assumption
that both the channel and the side information is known perfectly.

Recall that there are M transmit and N receive antennas. Let H,
with complex-valued elements {Hkl}, be an M ×N matrix used for rep-
resenting the MIMO channel1 during the block under consideration as

1Compared with the system model used for the information theoretic investigations,
H is now the complex conjugate of the previous MIMO channel matrix. Hence, each
column of H represents the MISO channel between the transmitter’s antenna array
and the corresponding receive antenna. This will turn out to be convenient.
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PSfrag replacements

...
...

Space-Time

Encoder
Receiver

H⇔h=vec(H)
︷ ︸︸ ︷

{C(ζ)}

C = C(ζ)

ζ

M N

c(n) x(n)

Figure 3.1: The generic system model.

H∗. Consequently, the SISO channel coefficient between the kth trans-
mit antenna and the lth receive antenna is H∗

kl. Furthermore, let the
MIMO channel be alternatively represented by its vectorized counterpart
h , vec(H), with elements {hk}. Assumptions determining the exact
nature of the channel fading will be introduced in later chapters.

The received signals at sample index n ∈ {0, · · · , L− 1} are collected
in a vector x(n), that similarly to (2.12), can be written as

x(n) = H∗c(n) + e(n) ,

where the potentially complex-valued symbols, transmitted from the M
antennas at time instant n, are represented by

c(n) ,
[
c1(n) c2(n) · · · cM (n)

]T
.

The noise term e(n) is assumed to be generated from a zero-mean tempo-
rally white complex Gaussian random process with the spatial covariance
matrix Ree , E[e(n)e(n)∗] = σ2IN , where σ2 denotes the variance of
the individual elements in e(n). Thus, the noise is spatially white. By
grouping the L consecutive vectors x(n) into a matrix X, the received
block of vectors can be written as

X = H∗C + E ,

where E contains the noise vectors and

C ,
[
c(0) c(1) · · · c(L − 1)

]

corresponds to the codeword output by the space-time encoder. The
transmitted codeword C belongs to the currently used code C = C(ζ) ,
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{C(ζ)
k }K

k=1, where K is the number of codewords and C
(ζ)
k represents the

kth codeword in C(ζ). Note that each codeword is a function of the side
information. Hence, the number of codes in the set {C(ζ)} is possibly
uncountable when ζ is non-discrete.

The data to be transmitted is modeled as an IID sequence of infor-
mation bits where both bit-values are equally probable. Since the length
of the codewords is L, the coding results in a code rate of log2(K)/L
information bits per channel use. The choice of L and K allows an ap-
propriate tradeoff between data rate and time redundancy. Conditioned
on the use of a certain code C(ζ), it is assumed that the transmission is
such that all the codewords are equally probable and that the average
energy/power per information bit is P . In other words, the output power
is limited by

E[‖C‖2
F|ζ]

log2(K)
= P , (3.1)

which corresponds to a scenario without power control since the average
output power does not depend on ζ.

The receiver is assumed to recover the transmitted codewords by
means of maximum likelihood (ML) decoding. Due to the fact that both
the channel and the side information are known, this amounts to decoding
the codewords according to

Ĉ = arg min
C∈C(ζ)

‖X − H∗C‖2
F , (3.2)

where Ĉ denotes the codeword chosen by the receiver. An estimate of
the part of the transmitted message corresponding to a block is obtained
by mapping the detected codeword into its equivalent bit representation.

3.2 Code Structures

The presence of noise means that the receiver will not always come to
the correct decisions. Hopefully, the probability that the receiver makes
an error is sufficiently small for the communication to still be meaning-
ful. Channel codes are typically designed with the goal of minimizing the
error probability. But low error probability is not the only criterion to
consider. Also important is that the codes can be decoded in a computa-
tionally efficient manner. In the worst case, the receiver has to perform
an exhaustive search over all the K different codewords like indicated in
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(3.2). The previously mentioned capacity achieving codes drawn from a
Gaussian distribution suffer from such a problem.

To avoid high decoding complexity, it is necessary to introduce struc-
ture in the code. Many different code types exist in the literature. Cyclic,
convolutional and trellis codes [Pro95] are just a few examples of code
types that all have in common that additional constraints on the code-
words have been imposed in order to lower the decoding complexity.
There is however a tradeoff between performance and structure since
structure generally limits the degrees of freedom in the code design. Com-
pletely unstructured codes obviously give the best performance, if de-
signed appropriately, but they result in high decoding complexity. Highly
structured codes, on the other hand, may be easy to decode but may also
perform considerably worse than their unstructured counterparts.

In later chapters of this thesis, the performance versus structure trade-
off will to some extent be investigated by designing codes based on three
different structures. The code structures under study are unstructured
and linear dispersive space-time block codes as well as weighted OSTBC.
The codes have here been mentioned in order of increasingly restrictive
structure and are all examples of channel side information dependent
codes. That is, they are functions of the channel side information vector
ζ. As previously mentioned, the unstructured and linear dispersive codes
are simple generalizations of previously known code types aimed for the
no channel knowledge case while weighted OSTBC is a new transmis-
sion structure proposed herein. Further details are given in the sections
below.

3.2.1 Unstructured Space-Time Block Codes

For unstructured space-time block codes, all the elements in all the code-
word matrices can be chosen arbitrarily from the complex number field
C, subject only to the power constraint. In other words, the search for

good codes is over codewords such that C
(ζ)
k ∈ Ck , C

M×L, for all k and
ζ. Here, Ck represents the codeword alphabet for the kth codeword. As
already pointed out, unstructured codes have potentially the best per-
formance but result in high decoding complexity since they require an
exhaustive search as in (3.2).

For later reference, note that the power constraint in (3.1) can be
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written in terms of the codewords as

E[‖C‖2
F|ζ] =

1

K

K∑

k=1

‖C(ζ)
k ‖2

F = log2(K)P , (3.3)

due to the previously mentioned assumption of equally probable code-
words conditioned on ζ.

3.2.2 Linear Dispersive Space-Time Block Codes

When linear dispersive space-time block codes are used, the data to be
transmitted corresponding to one codeword is first mapped into symbols
sm, m = 1, 2, · · · , Ld, each taken from some signal constellation alphabet
A. The transmitted codeword is thereafter formed as a linear combina-
tion of the information bearing symbols according to

C =

Ld∑

m=1

Bmsm , (3.4)

where Bm , B(ζ)
m represents an arbitrary complex-valued M ×L matrix

used to weigh the mth symbol. Assume without loss of generality2 that
the signal constellation alphabet A and hence also the symbols sm, are
real-valued. The symbols depend only on the data to be transmitted
while the weighting matrices may vary with the channel side information
ζ. Thus, the transmission is adapted to the available channel knowledge
by letting the side information determine the current set B , {Bm}Ld

m=1

of weighting matrices as B = B(ζ) , {B(ζ)
m }Ld

m=1. This is illustrated in
Figure 3.2 which represents a more specialized form of the setup in the
generic system model.

By choosing the weights appropriately, the information may be spread
both spatially and temporally to obtain diversity benefits and coding
gain while taking the channel knowledge available at the transmitter
into account. For the case of no channel side information, such lin-
ear dispersive structures have previously been described for example in
[TJC99, GS00, HH02b].

A major advantage of the above linear structure is that the decod-
ing complexity may in some cases be drastically reduced compared with

2Complex-valued symbols may be handled within the present framework by di-
viding the symbols into their real and imaginary parts. The codewords can then be
written on the same form as in (3.4) but with twice as many terms.
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Figure 3.2: Transmitter structure using linear dispersive space-time
block codes. The channel side information determines the current set B
of weighting matrices.

the complexity of an exhaustive search. The reduction in complexity is
achieved by the use of efficient decoding methods [VH02, JMO03] which
typically only incur a minor increase in error probability due to their
sub-optimal nature. These decoding methods are applicable if the signal
constellation A corresponds to a regular lattice, such as when the sym-
bols are taken from a pulse or quadrature amplitude modulation (PAM
or QAM) constellation. Sphere decoding is one example of a scheme that
is relatively efficient when the number of codewords K is large [VH02].
Decoding methods based on optimization techniques for semi definite
problems are also applicable assuming the symbols belong to a binary
phase shift keying (BPSK) or a four point QAM constellation [JMO03].

In the code design procedures presented in later chapters, the weight-
ing matrices will be optimized based on the available side informa-

tion while the constellation alphabet A will be held fixed. Let s
(k)
m ,

m = 1, 2, · · · , Ld be the particular symbol sequence corresponding to

the kth codeword C
(ζ)
k . Using linear dispersive codes thus means that

the codewords are constrained as

C
(ζ)
k ∈ Ck ,

{
Ld∑

m=1

Bms(k)
m : Bm ∈ C

M×L,∀m

}

,

for all k and ζ.
The constellation alphabet A is throughout this thesis assumed to

correspond to a PAM constellation of equidistant real-valued signal points
such that E[sm] = 0 and E[s2

m] = 1. It is further assumed that each
symbol represents an integer number of information bits. It follows that
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the symbols are IID since they have been mapped from an IID sequence of
information bits. Hence, the power constraint in (3.1) can be formulated
in terms of the weighting matrices as

E[‖C‖2
F|ζ] = E[tr(CC∗)|ζ]

= E
[

tr
( Ld∑

m=1

Ld∑

m′=1

BlB
∗
m′smsm′

)

|ζ
]

=

Ld∑

m=1

Ld∑

m′=1

tr
(

B(ζ)
m

(
B

(ζ)
m′

)∗
)

E[smsm′ ]

=

Ld∑

m=1

tr
(

B(ζ)
m

(
B(ζ)

m

)∗
)

=

Ld∑

m=1

‖B(ζ)
m ‖2

F = P log2(K) . (3.5)

3.2.3 Weighted OSTBC

We propose the weighted OSTBC transmission structure as a simple but
yet effective way of exploiting channel side information in conjunction
with space-time coding. In weighted OSTBC, the idea is to use the side
information for improving a predetermined OSTB code by means of a lin-
ear transformation. This is in line with the previous information theoretic
result in Section 2.3.1 concerning the optimality of separate space-time
coding and transmit weighting. Indeed, weighted OSTBC has already
been briefly described in connection with the information theoretic inves-
tigation in Section 2.5, where it was proved that the structure is optimal
in a capacity sense if there are two transmit antennas and one receive
antenna.

The transmitted codeword in weighted OSTBC can be written on the
form

C = WC̄ , (3.6)

where W , W (ζ) is an M×M ′ transmit weighting matrix which depends
on the side information ζ and where C̄ is an M ′ ×L matrix representing
the output of a fixed OSTB encoder. Here, L ≥ M ′, which means that
C̄ has more columns than rows. The OSTB encoder takes the data to
be transmitted corresponding to one codeword and first maps it into
symbols sm, m = 1, 2, · · · , Lo, each taken from some real-valued signal
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constellation alphabet A. Again, the symbols are IID and normalized so
that E[s2

m] = 1. Similarly as for the previously described linear dispersive
encoder, the symbols are then linearly combined to form the output as

C̄ =

Lo∑

m=1

B̄msm ,

where the M ′ × L weighting matrices {B̄m} are chosen so that they
correspond to an OSTB code. The exact conditions under which {B̄m}
correspond to an OSTB code will be described later in this section. For
now it suffices to know that they are fixed and hence independent of the
side information. Thus, only the transmit weighting W is affected by
the side information, as illustrated in Figure 3.3 where c̄(n) denotes the
output of the OSTB encoder.
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Figure 3.3: Transmitter structure in weighted OSTBC. Only the trans-
mit weighting W is now affected by the channel side information.

In the weighted OSTBC structure, only W is free to be optimized.
Hence, the structure is defined through

C
(ζ)
k ∈ Ck ,

{

WC̄k : W ∈ C
M×M ′

, C̄k =

Lo∑

m=1

B̄ms(k)
m

}

, ∀k,∀ζ ,

where s
(k)
m , m = 1, 2, · · · , Lo denotes the particular symbol sequence cor-

responding to the kth codeword C̄k in the OSTB code C̄ , {C̄k}K
k=1. It

is seen that weighted OSTBC is a special case of the less restrictive linear
dispersive code structure.

Before further discussing weighted OSTBC and OSTB codes in gen-
eral, it is instructive to consider a specific example illustrating typical
properties of the transmission structure.
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Example 3.2.1 (Weighted OSTBC using the Alamouti code)
Consider a scenario with M = 2 transmit antennas and assume that
M ′ = M so that the transmit weighting matrix W is square. Similarly
to (2.47), assume that the OSTB encoder is based on the Alamouti
code [Ala98]. Under the assumption that the information symbols are
real-valued, such a choice of code leads to the encoder output

C̄ =

[
s1 −s2

s2 s1

]

, (3.7)

which can also be written on the linear dispersive form

C̄ =

[
1 0
0 1

]

s1 +

[
0 −1
1 0

]

s2 . (3.8)

Using this code, the transmitted codeword in weighted OSTBC is given
by

C = WC̄ =
[
w1 w2

]
[
s1 −s2

s2 s1

]

, (3.9)

where wl denotes the lth column of W . It is seen that the Alamouti
code, and hence also the above scheme, has a data rate of one information
symbol per channel use.

The choice of the transmit weighting W significantly affects the prop-
erties of the transmitted signals. Consider first the case when W = I2.
The output of the OSTB encoder is then transmitted directly, without
modification. As seen from (3.9), the same symbol is transmitted twice at
alternating antennas. Switching antennas in this manner serves to pro-
tect against fading since if the channels from one of the transmit antennas
are poor, there is a good chance that the channels corresponding to the
other transmit antenna are better, increasing the likelihood of correctly
decoding the corresponding information symbol.

Note that the transmitted signal block is a unitary matrix, i.e.,
CC∗ = C̄C̄

∗
= (s2

1 + s2
2)I2. This means that the distribution of energy,

as seen over two sample periods, is isotropic in space. In other words, the
energy is distributed evenly in all directions. As already pointed out in
Section 2.3.1, such an energy distribution makes sense if the transmitter
does not know anything about the channel.

Consider now the case when the second column of W is zero, making
the rank of the transmit weighting matrix equal to one. It directly follows
that the transmitted codeword

C = WC̄ =
[
w1s1 −w1s2

]
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is also of rank one. Each symbol is now transmitted only once and both
symbols are weighted by the same vector w1. Thus, classic beamform-
ing in the direction of w1 is performed (the minus sign is irrelevant).
Clearly, the isotropic energy distribution of the Alamouti code has been
modified by the transmit weighting so that all energy is allocated to a
single direction. By an appropriate choice of w1 the transmission can
be directed towards the receiver so that the information carrying signals
there combine coherently. Naturally, this requires knowledge about the
channel at the transmitter.

It should be clear from these two special cases that the transmission,
depending on the choice of transmit weighting, may correspond to either
conventional OSTBC, beamforming or some combination thereof. Since
OSTBC and beamforming are suitable for transmitters with no and per-
fect channel knowledge, respectively, weighted OSTBC offers a flexible
structure that may handle channel side information of varying quality.
Thus, the OSTB encoder provides diversity when the quality is low while
the transmit weighting gives an additional array gain when the quality is
high.

As long as M ′ = M , the seamless combination of OSTB coding and
beamforming provided by weighted OSTBC holds in the general case as
well and not only in the above example. When M ′ < M beamforming is
still possible but unmodified OSTBC is not, since the transmit weight-
ing W has more rows than columns and thus cannot equal the identity
matrix. A spatially isotropic energy distribution is therefore impossible.
At best, the energy can be spread evenly over M ′ different directions.
However, such a non-square transmit weighting has other merits since it
makes it possible to take an OSTB code designed for a small antenna
array (here small M ′) and map it onto a larger array. This is particularly
important in view of the fact that OSTB codes designed for antenna ar-
rays with more than two antennas have a much lower maximum symbol
rate than the achievable rate when the design is geared towards two an-
tennas [TJC99]. The latter issue will be discussed further in the section
below.

Some Properties of OSTB Codes

Probably the most striking characteristic of OSTB codes is the fact that
the rows (and also the columns if M ′ = L) in each codeword are or-
thogonal to each other, or more precisely, form a scaled orthonormal set,
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regardless of the symbol sequence. In other words, the weights {B̄m} are
such that, for arbitrary real-valued constellation alphabets A,

C̄kC̄
∗
k =

Lo∑

m=1

(
s(k)

m

)2
IM ′ , k = 1, 2, · · · ,K . (3.10)

The very notion of an OSTB code is in fact defined by the orthogonality
property in (3.10), together with the linear dispersive structure of the
code.

It is straightforward to show that for (3.10) to hold, the weights {B̄m}
must satisfy the following conditions [TJC99]

B̄kB̄
∗
k = IM ′ , k = 1, 2, · · · , Lo (3.11)

B̄kB̄
∗
l + B̄lB̄

∗
k = 0M ′×M ′ , 1 ≤ k < l ≤ Lo . (3.12)

Depending on the symbol rate and the value of M ′, such weights, or
equivalently OSTB codes, may or may not exist [TJC99]. In particu-
lar, OSTB codes with the maximum rate of two real-valued symbols per
channel use (corresponding to a rate of one complex-valued symbol per
channel use) only exist for the case of M ′ = 2. Furthermore, when M ′

lies between three and eight, the symbol rate cannot be higher than one.
For all other M ′, the rate must be even lower for the conditions in (3.10)
or in (3.11) and (3.12) to hold. It is easily verified that the weighting
matrices in (3.8) satisfy the above conditions.

A direct consequence of the orthogonal property in (3.10) and the
linearity of the code is that

A(C̄k, C̄l) , (C̄k − C̄l)(C̄k − C̄l)
∗

=

Lo∑

m=1

(
s(k)

m − s(l)
m

)2
IM ′ , ∀k, l . (3.13)

Hence, also the rows in all pair of codeword differences form a scaled
orthonormal set.

The codeword pair quantity in (3.13) plays a fundamental role in the
field of space-time coding since it often appears in expressions for the
error probability. To be specific, assume a spatially uncorrelated flat
Rayleigh fading scenario. Furthermore, consider the use of an arbitrary
fixed space-time code with codewords {Ck}, i.e., the code does not rely on
any channel side information. It can then be shown that the codeword er-
ror probability for high SNR values roughly decays as 1/(CG·SNR)Nrmin ,
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where CG is the so-called coding gain and where rmin is equal to the min-
imum rank of A(Ck,Cl), taken over all codewords pairs [TSC98]. The
value of the exponent Nrmin clearly has a large impact on the perfor-
mance and is referred to as the (spatial) diversity order of the system.

If Ck = C̄k so that unmodified OSTB codewords are transmitted, it
follows from the property in (3.13) that all A(Ck,Cl), with k 6= l, are of
full rank. Hence, Nrmin = NM ′ = NM . This shows that OSTB codes
provide a diversity order equal to the product of the number of transmit
and receive antennas, which is the maximum diversity order the system
can offer.

Design methods for conventional space-time codes usually strive to
achieve the maximum diversity order while at the same time attempt to
increase the coding gain. One common design method is to maximize
the determinant of A(Ck,Cl) over all codeword pairs [TSC98]. Later on
in the thesis, A(Ck,Cl) will be frequently used in performance criteria
that take also the channel knowledge into account.

Weighted OSTBC – ML Decoding and Power Constraint

Recall that weighted OSTBC is a special case of the previously described
linear dispersive structure. Hence, performance has potentially been sac-
rificed by means of a more restrictive structure in order to obtain lower
decoding complexity. In this case, the decoding complexity is significantly
lower thanks to the orthogonality property in (3.10), which makes ML
decoding of OSTBC [TSC98], and hence also weighted OSTBC, very ef-
ficient. To see why, consider the ML decoding metric in (3.2) and rewrite
it for the problem at hand as

‖X − H∗C
(ζ)
k ‖2

F = ‖X − H∗W (ζ)C̄k‖2
F

= tr((X − H∗W (ζ)C̄k)(X − H∗W (ζ)C̄k)∗)

= tr(XX∗) − tr(XC̄
∗
k(W (ζ))∗H + H∗W (ζ)C̄kX∗)

+ tr(H∗W (ζ)C̄kC̄
∗
k(W (ζ))∗H)

= tr(XX∗) − 2 re(tr(H∗W (ζ)C̄kX∗))

+ tr(H∗W (ζ)C̄kC̄
∗
k(W (ζ))∗H)

= −2 re

(

tr

(

H∗W (ζ)
( Lo∑

m=1

B̄ms(k)
m

)

X∗

))
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+ tr(H∗W (ζ)(W (ζ))∗H)

Lo∑

m=1

(
s(k)

m

)2
+ tr(XX∗)

= tr(XX∗) −
Lo∑

m=1

f(B̄m, s(k)
m ) ,

where re(x) denotes the real part of x and where

f(B̄, s) , 2 re(tr(X∗H∗W (ζ)B̄))s − s2‖H∗W (ζ)‖2
F .

It is seen that minimizing the ML decoding metric with respect to the
set of possible codewords can be accomplished by maximizing the terms
in the sum separately. Hence, the symbols may be decoded individually
as

ŝm = arg max
s∈A

2 re(tr(X∗H∗W (ζ)B̄m))s − s2‖H∗W (ζ)‖2
F . (3.14)

Such separate decoding is attractive because the number of comparisons
has now decreased to Lo|A|, compared with |A|Lo = K as in joint de-
coding. For signal constellations with many points and/or codes with a
large number of symbols, the difference in complexity can be substantial.

Note that by inserting the expression for X in (3.14) and thereafter
utilizing (3.12), it can be shown that ML decoding can be performed in
an interference-free manner, i.e., when a certain symbol is decoded, the
values of the other symbols do not affect the decision in any way. It can
also be shown that the symbol error probabilities are all equal.

In addition to a simpler decoding metric, the orthogonality property
simplifies the power constraint in (3.1) so that it can be expressed in

terms of the transmit weighting W (ζ) as

E[‖C‖2
F|ζ] = E[‖WC̄‖2

F|ζ]

= tr((W (ζ))∗W (ζ) E[C̄C̄
∗
])

= tr((W (ζ))∗W (ζ))

Lo∑

m=1

E[s2
m]

= tr((W (ζ))∗W (ζ))Lo

= Lo‖W (ζ)‖2
F = P log2(K) . (3.15)



Chapter 4

Code Design with
Gaussian Side
Information in Mind

In this chapter, we consider the case when the transmitter has partial,
but not perfect, knowledge about the channel and how to design chan-
nel side information dependent space-time block codes so that this fact is
taken into account. The development is based on the previously described
generic system model which here is specialized by in addition assuming
that the channel conditioned on the side information is complex Gaus-
sian distributed. The model covers scenarios in which the channel and
the side information are correlated and obey a jointly complex Gaussian
distribution. An important example of such a scenario is when the side
information corresponds to delayed channel feedback.

Design procedures for the three code structures are developed. How-
ever, the focus is primarily on weighted OSTBC and how to efficiently
determine the transmit weighting. Toward this end, the optimization
problem corresponding to the transmit weight design procedure is shown
to be convex when the transmit weighting is a square matrix. Thus,
standard numerical methods can be used for efficiently obtaining a so-
lution. In addition, a particularly efficient solution method is developed
for the special case of independently fading channel coefficients. The
proposed weighted OSTBC transmission scheme combines the benefits of
conventional beamforming with those given by OSTB coding. Simulation
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results for a narrowband system with multiple transmit antennas and one
or more receive antennas demonstrate significant gains over conventional
methods in a scenario with non-perfect channel knowledge.

4.1 Introduction

The use of transmit diversity techniques in wireless communication sys-
tems has recently received considerable attention [HH78, Wit91, HAN92,
Wit93, Mog93, Wee93, SW93, Win94, KF97, Win98, TSC98, GFBK99,
TJC99]. By utilizing antenna arrays at both the transmitter as well as
the receiver the limitations of the radio channel may be overcome and
the data rates increased. The high data rates that these MIMO systems
may offer were demonstrated in [Tel95, FG98]. Therein, calculations of
the information theoretic capacity assuming a flat Rayleigh fading envi-
ronment were presented. This triggered the development of space-time
codes [GFBK99, TSC98, TJC99] that utilize both the spatial and tem-
poral dimension to achieve a significant portion of the aforementioned
capacity.

The present work considers the generic system model described in
Section 3.1 and investigates how channel side information at the trans-
mitter can be utilized in the design of space-time block codes. Accurate
estimates are in practice not always possible, particularly in environments
where the parameters of the channel are rapidly time-varying. This fact
is taken into account in the proposed design procedures by modeling the
channel knowledge as non-perfect. As a result, the scheme continues to
work well also when the quality of the side information is low.

Early attempts at designing transmission schemes for exploiting the
potential offered by antenna arrays at the transmit side are gener-
ally concerned with increasing the diversity order of the system. Ex-
amples of such work include techniques for introducing artificial fre-
quency/phase offsets [HH78, HAN92, Wee93, KF97] and time offsets
[Wit91, Wit93, Mog93, SW93, Win94, Win98] between the transmitted
signals. The latter technique is commonly referred to as delay diversity
and is closely related to the layered space-time architecture in [Fos96].
A more systematic approach to find appropriate codes was pioneered in
[GFK96, GFBK99]. A major contribution in [GFK96, GFBK99] was the
development of a design criterion involving the rank and eigenvalues of
certain matrices. The design criterion was later generalized to multiple
receive antennas and to other channel models in [TSC98], where the now
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popular notion of space-time coding was introduced. Examples of trel-
lis codes based on the design criterion were also provided. A simple and
novel block code for two transmit antennas that leads to a low-complexity
receiver was developed in [Ala98]. The code is commonly known as the
Alamouti code and is a member of the class of OSTB codes that in
[TJC99] was extended to up to eight transmit antennas. In the same
paper, it was shown that OSTB codes satisfy the rank constraint of the
previously mentioned design criterion. Consequently, these codes provide
the maximum spatial diversity order the system has to offer.

Common to the space-time coding schemes mentioned above is that
they do not exploit channel knowledge at the transmitter. Information
about the channel realization, if it is available, should of course be utilized
in order to maximize the performance. As a simple example consider a
scenario with perfect channel state information at both sides of the com-
munication link. It is well-known that by appropriate linear processing
at the transmitter and the receiver, the system can be transformed into
a set of parallel scalar channels. The available transmit power may then
be optimally allocated to the individual channels, thereby increasing the
performance relative a system with a transmitter that does not exploit
channel knowledge. An example of combining such an approach with
coding is found in [RC98].

This chapter proposes code design procedures and transmission
schemes that combine the two extremes regarding the degree of chan-
nel knowledge. Methods for improving the performance by taking the
channel side information into account are developed for the three code
structures described in Section 3.2. Most of the focus is however on
weighted OSTBC and how to reduce the computational requirements of
the transmit weight design procedure so that real-time use is feasible.
An analysis providing insight into the behavior of the resulting transmis-
sion scheme is also presented. The side information is modeled using a
purely statistical approach in which the channel conditioned on the side
information is assumed to obey a complex Gaussian distribution. An
important special case of this model is when the channel and the side
information are correlated and jointly complex Gaussian. Specific atten-
tion is devoted to the latter as it offers a reasonable way of modeling the
common situation of errors introduced by feedback delay.

Previous and related work on the use of non-perfect side information
at the transmitter includes [Wit95, NLTW98, NTC99]. While a simi-
lar model for the side information was utilized in [Wit95, NLTW98] for
determining suitable transmit beamformers in the presence of channel
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estimation errors, those papers neither considered space-time codes nor
multiple antennas at the receiver. Another possibility for modeling par-
tial channel knowledge is to take on a physical perspective. This is the
approach used in [NTC99] for adapting a predetermined space-time code
to the particular channel. The assumption in that work is that the signals
propagate along a finite number of directions, known at the transmitter,
before entering a rich local scattering environment near the receiver.

The present work contributes in several ways. One important contri-
bution is the derivation of a new performance criterion that takes channel
knowledge at the transmitter into account. Although the derivation is
to some extent similar in spirit to the derivation of the design crite-
rion in [TSC98], that paper did not treat side information and therefore
utilized certain approximations which prohibit the resulting design cri-
terion from exploiting any channel knowledge. Another contribution is
the development and study of techniques for code design. Of particular
importance is our proposed weighted OSTBC structure and the resulting
low-complexity transmission scheme which offers a seamless combination
of OSTB coding and beamforming. Further motivation for weighted OS-
TBC is provided by the setup in the WCDMA system, where an OSTB
code is used in one of the transmission modes whereas one of the other
modes uses transmit beamforming [3GP02a, 3GP02b].

The chapter is organized as follows. In Section 4.2, supplements to
the generic system model, including a measure on the quality of the side
information, are introduced. Examples of scenarios where the assump-
tions are reasonable are also given. A performance criterion is derived
in Section 4.3 and then utilized in Section 4.4 for developing design pro-
cedures for the three code types. The remaining part of the chapter is
entirely focused on weighted OSTBC. Section 4.5 describes ways to sim-
plify the originally proposed transmit weight design procedure, leading to
a low-complexity transmission scheme. In Section 4.6, an analyses for a
number of special cases reveal the highly intuitive behavior of the trans-
mission scheme. A particularly efficient design algorithm is presented in
Section 4.7 for a class of simplified fading scenarios. This algorithm is
then applied in Section 4.8 to an actual example of a simplified fading
scenario. Finally, simulation results are presented in Section 4.9 show-
ing significant gains compared to conventional beamforming as well as
conventional OSTB coding.
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4.2 System Model

As illustrated in Figure 4.1, a wireless MIMO communication system
with potentially imperfect channel side information at the transmitter is
considered. The model of the system was described in Chapter 3 and is
here briefly reviewed before introducing additional assumptions.

PSfrag replacements

...
...

Space-Time

Encoder
Receiver

H⇔h=vec(H)
︷ ︸︸ ︷

{C(ζ)}

C = C(ζ)

ζ

M N

c(n) x(n)

Figure 4.1: System model.

Recall that there are M transmit antennas, N receive antennas and
that L consecutive received signal vectors x(n) = H∗c(n) + e(n), corre-
sponding to a fading block, are collected in a matrix

X = H∗C + E ,

where the noise elements in E are zero-mean IID complex Gaussian with
variance σ2, the MIMO channel is represented by the M × N matrix
H and where C ∈ C = {Ck}K

k=1 represents the transmitted codeword.
Based on the outcome of the side information ζ, the channel code C cur-

rently in use is chosen out of a set {C(ζ)} of codes as C(ζ) = {C (ζ)
k }K

k=1.
The transmitted codewords conditioned on ζ are equally probable and
the power is limited by the constraint

E[‖C‖2
F|ζ]

log2(K)
= P .

To obtain an estimate Ĉ of the transmitted codeword, the receiver makes
use of ML decoding according to

Ĉ = arg min
C∈C(ζ)

‖X − H∗C‖2
F , (4.1)
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where we recall that H as well as ζ are assumed to be known at the
receiver.

The statistical relation between the side information and the chan-
nel was previously not specified. In this chapter, it is generally assumed
that the statistical relation is such that the channel h conditioned on
the side information ζ, denoted h|ζ for short, obeys a complex Gaus-
sian distribution with mean vector mh|ζ , E[h|ζ] and covariance matrix

Rhh|ζ , E[(h − mh|ζ)(h − mh|ζ)∗|ζ]. As will be apparent from the de-
velopment to follow, both mh|ζ and Rhh|ζ are needed in the code design
process and hence must be known at the transmitter. However, these
statistics can usually be computed from some scenario specific parame-
ters. Examples of scenarios modeled by the Gaussian assumption will be
further discussed later in the present section.

Note that mh|ζ is the MMSE estimate of h based on ζ [Kay93, p. 533].
Since Rhh|ζ is the corresponding conditional error covariance matrix,
Rhh|ζ quantifies the remaining uncertainty about the channel h when the
side information ζ is known. Hence, the covariance matrix is a measure of
the quality of the side information. A salient consequence of this measure
is that also the distribution of the true channel is considered as part of
the channel knowledge.

Loosely speaking, high quality side information corresponds to a small
covariance (measured in a suitable norm) whereas a large covariance cor-
responds to side information of low quality. With such a measure, it is
clear that “perfect side information” (or “perfect channel knowledge”)
corresponds to1 ‖Rhh|ζ‖ → 0, while “no side information” (or “no chan-

nel knowledge”) corresponds to ‖R−1
hh|ζ‖ → 0. In both these cases, it is

assumed that ζ is fixed so that Rhh|ζ is a deterministic quantity.
However, not all scenarios where the transmitter is without channel

knowledge are covered by the latter definition. This will be more clear in
a later section where for illustrative purposes a special case of the system
model will be considered, resulting in a need to modify the notion of “no
channel knowledge”.

1Any matrix norm may be used in the definition. The spectral norm used here is
only chosen for the sake of convenience in later expressions.
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4.2.1 Scenarios Modeled by the Gaussian Assump-
tion

The Gaussian assumption regarding the statistical relation between the
channel and the side information may be used to model various practical
situations. Examples of such scenarios are given below.

Channel Estimates Obtained from Reverse Link Data

In systems employing TDD or FDD for duplex communication, channel
estimates may be obtained in the reverse link. By utilizing the reciprocity
of the propagation medium in conjunction with the time or frequency
correlation of the fading channel, it is possible to compute estimates of the
forward channel based on the reverse channel estimates. These estimates
will typically suffer both from the presence of noise in the reverse link as
well as from limited time or frequency correlation. This scenario may be
modeled by assuming that ζ is the estimate of the reverse channel. Due
to the often Gaussian nature of channel fading and noise, it is reasonable
to assume that h and γ are jointly complex Gaussian. Consequently, h|ζ
is also complex Gaussian and our model is applicable. The conditional
mean mh|ζ would then be the MMSE estimate of the forward channel
with the conditional estimation error covariance matrix given by Rhh|ζ .

Geometrical Properties of the Propagation Environment

In fading scenarios where the time or frequency correlation is low, it
may be difficult to obtain a reliable forward channel estimate based on
a reverse channel estimate ζ. In the worst case, ζ and h are zero-mean
and completely uncorrelated/independent. The first and second order
conditional statistics then reduce to mh|ζ = E[h] = 0 and Rhh|ζ =
E[hh∗].

Obviously, the channel estimate mh|ζ does not give any useful infor-
mation about the forward channel. However, Rhh|ζ describes the spatial
correlation properties of the channel and hence gives some information
about the channel realizations in the forward direction. For example, if
Rhh|ζ is not a scaled identity matrix, some types of channel realizations
will on the average be more likely than others and this can be used for
adapting the transmission so as to obtain approximately coherent com-
bining of the signals at the receiver.

The correlation properties are often heavily influenced by the large
scale geometry of the multipath environment such as the angular posi-
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tions of scatterers in the propagation paths with respect to the transmit-
ter. Since the large scale geometry typically varies at a much lower rate
than the instantaneous channel, it may be easier to track the channel
covariance matrix than the channel itself [GP94b, RDJP95, Zet97].

An estimate of the covariance matrix Rhh|ζ = E[hh∗] for the forward
link channel can be obtained from reverse link data. One idea is to use this
data for estimating the covariance of the corresponding channel. In TDD
systems with sufficiently short duplex time compared with the coherence
time of the channel, the resulting covariance also represent an estimate of
the forward channel covariance. This since the reverse and forward links
operate on the same carrier frequency. However, when FDD is employed,
the reverse channel covariance may need to be modified before it can
be used in the forward direction [Zet99]. An alternative approach is to
form E[hh∗] based on reverse link estimates of physical parameters like,
for example, the angular positions of scatterers in the propagation paths
[ZO95]. In any case, the above Gaussian assumption is a useful model
for such scenarios.

Quantized Side Information from a Feedback Link

Consider now a scenario in which the transmitter has access to quan-
tized channel side information obtained from the receiver via a dedicated
feedback link. Such a feedback setup is common in FDD systems in or-
der to acquire channel estimates that are more accurate than those that
can be obtained based solely on reverse link data. Similarly to as in
Section 2.6.2, the side information ζ is now some integer (or equivalent
parameter) representing the quantized output of the feedback link. Con-
sequently, mh|ζ represents the MMSE estimate of the channel based on
the quantized information and Rhh|ζ is a measure of the correspond-
ing quantization error. By modeling the quantization errors as complex
Gaussian distributed, it follows that also h|ζ is complex Gaussian and
the assumptions in this chapter thus hold.

Such an approach for dealing with quantized side information will be
considered in Chapter 5. However, it should be noted that the assump-
tion of Gaussian quantization errors represents a rather crude approxima-
tion. A consequence of this is that to get the corresponding transmission
schemes to work really well in the typical case of very coarse quantization
requires some heuristic modifications of the design procedures described
in the present chapter. In Chapter 6 of this thesis we therefore opt for a
different, but closely related, strategy for specifically handling the case of
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quantized side information without relying on a Gaussian approximation.

Side Information Suffering from Feedback Delay

Also this example concerns channel side information obtained from a
feedback link. In contrast to the previous case, the side information is
not quantized but is still potentially imperfect due to feedback delay. The
presence of feedback delay, in conjunction with a time-varying channel,
may make the output of the feedback link outdated by the time it reaches
the transmitter.

Because of the feedback delay, ζ corresponds to a delayed version
of the fading channel vector h. The present scenario may be modeled
by assuming that h and ζ are correlated and equally distributed jointly
complex Gaussian vectors. Motivation for such an assumption is provided
by, for example, the well-known Jakes model [Jak94], which describes the
variations of the channel as a function of time due to movement of the
receiver.

In the Jakes model, the channel coefficients are samples of station-
ary zero-mean complex Gaussian processes, each with an autocorrelation
function proportional to J0(2πfmτ), where J0(·) is the zero-order Bessel
function of the first kind, τ denotes the time lag and fm is the maximum
Doppler frequency. If in addition it can be assumed that the channel co-
efficients fade independently of each other, then the vector of channel co-
efficients is generated from a stationary and spatially white vector-valued
complex Gaussian process where the individual channel coefficients are
correlated in time according to the mentioned Bessel function.

Applying this model to the present feedback situation means that the
outdated side information ζ and the current channel h are correlated
samples of the same complex Gaussian process with the degree of corre-
lation determined by the feedback delay. It follows that h|γ is complex
Gaussian and the development in the present chapter is therefore appli-
cable. This scenario will be used to exemplify the transmission schemes
to be developed and provide intuitive interpretations.

4.3 An Upper Bound on the Performance

To systematically incorporate channel knowledge into the code design
process, the codeword error probability Pr[Ĉ 6= C] will be used as the
basis for developing a performance criterion. A feasible expression is
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obtained by forming an upper bound on Pr[Ĉ 6= C]. The present section
develops this bound.

Assume the codes {C(ζ)} are fixed and consider first the codeword
error probability conditioned on the side information and the channel,
Pr[Ĉ 6= C|ζ,h]. By means of the well-known union bound technique we
have,

Pr[Ĉ 6= C|ζ,h] ≤ 1

K

∑

k 6=l

P (C
(ζ)
k → C

(ζ)
l |ζ,h) , (4.2)

where

P (C
(ζ)
k → C

(ζ)
l |ζ,h)

, Pr
[
‖X − H∗C

(ζ)
k ‖2

F > ‖X − H∗C
(ζ)
l ‖2

F |C = C
(ζ)
k , ζ,h

]
(4.3)

is the probability that, given a transmitted codeword C
(ζ)
k , the ML de-

coding metric (see (4.1)) corresponding to the codeword C
(ζ)
l is smaller.

This corresponds to the receiver making an error and choosing C
(ζ)
l in-

stead of the transmitted C
(ζ)
k , in the absence of any other codewords.

Similar such pairwise error probabilities will be used frequently in the
following. An upper bound on the codeword error probability is obtained
by averaging over ζ and h in (4.2) to arrive at

Pr[Ĉ 6= C] ≤ 1

K

∑

k 6=l

Eζ,h[P (C
(ζ)
k → C

(ζ)
l |ζ,h)]

=
1

K

∑

k 6=l

Eζ [Eh[P (C
(ζ)
k → C

(ζ)
l |ζ,h)|ζ]] , (4.4)

where

Eh[P (C
(ζ)
k → C

(ζ)
l |ζ,h)|ζ]

= Pr
[
‖X − H∗C

(ζ)
k ‖2

F > ‖X − H∗C
(ζ)
l ‖2

F |C = C
(ζ)
k , ζ

]
(4.5)

is the pairwise error probability averaged over the channel h and condi-
tioned on ζ and the use of a certain code C(ζ).

To obtain a closed-form upper bound on the pairwise error prob-
ability in (4.5), we proceed as follows. Since the noise is Gaussian,
(4.3) can be expressed in terms of the Gaussian tail function Q(x) ,
∫∞

x
exp(−x̃2/2)/

√
2π dx̃ as

P (C
(ζ)
k → C

(ζ)
l |ζ,h) = Q

(

‖H∗(C
(ζ)
k − C

(ζ)
l )‖F

2
√

σ2/2

)

, (4.6)
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where ‖H∗(C
(ζ)
k − C

(ζ)
l )‖F is the Euclidean distance between the two

codewords after they have been transformed by the channel matrix. In-
serting (4.6) into (4.5) and, similarly to [TSC98], utilizing the fact that
Q(x) ≤ 0.5 exp(−x2/2) [WJ90, p. 84] gives

Eh[P (C
(ζ)
k → C

(ζ)
l |ζ,h)|ζ] = Eh

[

Q

(

‖H∗(C
(ζ)
k − C

(ζ)
l )‖F

2
√

σ2/2

)∣
∣
∣
∣
∣
ζ

]

≤ 1

2
Eh

[
e−‖H∗(C

(ζ)
k

−C
(ζ)
l

)‖2
F/(4σ2)

∣
∣ζ
]

, V (C
(ζ)
k ,C

(ζ)
l |ζ) . (4.7)

Since the channel h conditioned on the side information ζ is assumed
to be complex Gaussian, the expectation in (4.7) is with respect to the
conditional PDF ph|ζ(h|ζ), given by [Kay93, p. 507]

ph|ζ(h|ζ) =
e
−(h−mh|ζ)∗R−1

hh|ζ
(h−mh|ζ)

πMN det(Rhh|ζ)
. (4.8)

Similarly to [TSC98], let

A(C
(ζ)
k ,C

(ζ)
l ) , (C

(ζ)
k − C

(ζ)
l )(C

(ζ)
k − C

(ζ)
l )∗

denote a quantity that contains the codeword pair. By utilizing the
relations (C.1), (C.2) in Appendix C and the fact that ‖X‖2

F = tr(XX∗),
it is possible to rewrite the Euclidean distance in (4.7) as

‖H∗(C
(ζ)
k − C

(ζ)
l )‖2

F = tr
(
H∗A(C

(ζ)
k ,C

(ζ)
l )H

)

=
(

vec
(
A(C

(ζ)
k ,C

(ζ)
l )H

))∗

vec(H)

= h∗
(
IN ⊗ A(C

(ζ)
k ,C

(ζ)
l )
)
h . (4.9)

Inserting (4.9) into (4.7) hence gives

V (C
(ζ)
k ,C

(ζ)
l |ζ) =

∫
1

2
e−h∗

(
IN⊗A(C

(ζ)
k

,C
(ζ)
l

)
)
h/(4σ2)ph|ζ(h|ζ) dh .

(4.10)
For notational convenience, introduce the following expression,

Ψ(C) ,
(
IN ⊗ CC∗

)
/(4σ2) + R−1

hh|ζ .
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After expanding the exponent of the PDF in (4.8) and combining it with
(4.10), it is straightforward to verify that the sum of the exponents in
the integrand of (4.10) can be written as

m∗
h|ζR−1

hh|ζ

(
Ψ−1 − Rhh|ζ

)
R−1

hh|ζmh|ζ

−
(
h − Ψ−1R−1

hh|ζmh|ζ

)∗
Ψ
(
h − Ψ−1R−1

hh|ζmh|ζ

)
,

where the dependence on the codeword pair has been temporarily omitted
in order to simplify the notation. The integral in (4.10) is now easily
solved by making use of the fact that

∫
e
−
(

h−Ψ−1R−1
hh|ζ

mh|ζ

)∗
Ψ
(

h−Ψ−1R−1
hh|ζ

mh|ζ

)

πMN det(Ψ−1)
dh

is the integral of a complex Gaussian PDF and thus equal to one. Con-
sequently, the upper bound on the conditional pairwise error probability
can be expressed as

V (C
(ζ)
k ,C

(ζ)
l |ζ) =

e
m∗

h|ζR−1
hh|ζ

(Ψ(C
(ζ)
k

−C
(ζ)
l

)−1−Rhh|ζ)R−1
hh|ζ

mh|ζ

2 det(Rhh|ζ) det(Ψ(C
(ζ)
k − C

(ζ)
l ))

. (4.11)

Using (4.11) and noting that each codeword pair occurs twice in (4.4),
an upper bound PUB({C(ζ)}) on the codeword error probability is thus
given by

Pr[Ĉ 6= C] ≤ 2

K

∑

k<l

Eζ [V (C
(ζ)
k ,C

(ζ)
l |ζ)] , PUB({C(ζ)}) . (4.12)

4.4 The Code Design Problem

The derived performance bound in (4.12) may be used for designing
space-time codes that take the channel side information into account.
The idea is to minimize PUB({C(ζ)}) with respect to the codewords in all
the codes {C(ζ)}, subject to the power constraint E[‖C‖2

F|ζ] = log2(K)P
given in (3.1). Since the power constraint acts on each code C(ζ) sepa-
rately, it is clear that minimizing

∑

k<l

V (C
(ζ)
k ,C

(ζ)
l |ζ) (4.13)



4.4 The Code Design Problem 117

with respect to C(ζ) for each ζ also minimizes PUB({C(ζ)}). Motivated
by this, parameter independent factors in (4.13) are neglected and the
code design criterion is defined as

W ({Ck}|ζ) ,
∑

k<l

V (Ck − Cl|ζ) , (4.14)

where {Ck} denotes the codewords in an arbitrary code and where, with
a slight abuse of notation2, V (C|ζ) , e`(C|ζ) with

`(C|ζ) , m∗
h|ζR−1

hh|ζΨ(C)−1R−1
hh|ζmh|ζ − log det(Ψ(C)) . (4.15)

Thus, PUB({C(ζ)}) is minimized by designing the codes as

C(ζ) = arg min
{Ck}

Ck∈Ck,∀k
E[‖C‖2

F|ζ]=log2(K)P

W ({Ck}|ζ), ∀ζ , (4.16)

where the optimization is over a code structure described by the codeword
alphabets {Ck}. So far, the development is general in the sense that
an arbitrary code structure {Ck} may be used. In Section 4.4.2, the
code design procedure in (4.16) will be explicitly tailored to the three
structures previously described in Section 3.2.

4.4.1 Interpretations of the Performance Criterion

As seen from (4.16), the design criterion is a sum over all codeword pairs.
Obviously, V (Ck−Cl|ζ), or `(Ck−Cl|ζ), constitutes a performance cri-
terion for a particular codeword pair. A possible alternative to the above
code design procedure is therefore to minimize the maximum, taken over
all codeword pairs, of `(Ck − Cl|ζ). For a similar strategy based on
the classic space-time code design criterion, see e.g. [BBH00]. Maximiz-
ing the worst codeword pair criterion in this manner will be pursued in
Section 4.5 for the weighted OSTBC structure. However, for unstruc-
tured or linear dispersive codes, it turns out to be easier to work with a
differentiable criterion function as in (4.16).

The two terms in `(Ck −Cl|ζ) give rise to some interesting interpre-
tations. The first term mainly deals with the channel knowledge obtained
from the actual realization of the side information, as contained in mh|ζ .

2We have retained V as a function name, even though the arguments and the func-
tion have changed. Obvious variations of this notation will be used in the following.
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The second term, on the other hand, does not depend on the realization
of the side information and therefore strives for a code design suitable for
a system where only the spatial correlation of the channel is known.

This interpretation of how the two terms in `(Ck − Cl|ζ) affect the
code design is further supported by considering the two special cases
of perfect side information (‖Rhh|ζ‖ → 0) and of no side information

(‖R−1
hh|ζ‖ → 0), respectively. In the first case, the first term is seen

to dominate and in the second case, the second term dominates. The
codeword pair performance criterion in the second case is equivalent to

1

det A(Ck,Cl)
,

which is basically the same as the criterion used in [GFBK99, TSC98] for
designing conventional space-time codes.

As a final remark, it should be emphasized that the proposed perfor-
mance criterion can also be used for designing conventional space-time
codes in various scenarios where there is no side information. To see this,
bear in mind that if the side information is statistically independent of
the true channel, we have

`(Ck − Cl|ζ) = m∗
hR−1

hhΨ(Ck − Cl)
−1R−1

hhmh

− log det(Ψ(Ck − Cl)) , (4.17)

where now Ψ(C) =
(
IN ⊗ CC∗

)
/(4σ2) + R−1

hh. Thus, the develop-
ment in the present work also applies to situations where the trans-
mitter only knows the distribution of the true channel and nothing
about the current realization. This version of the codeword pair per-
formance criterion is therefore closely related to the design criterion in
[GFBK99, TSC98]. In fact, after some simple manipulations, it can be
shown that (4.17) includes several of the results from the various fading
scenarios in [GFBK99, TSC98] as special cases.

4.4.2 Code Design Based on the Three Code Struc-
tures

Any of the three code structures described in Section 3.2 can be used in
conjunction with the above code design procedure. The details for the
individual cases are listed below.

1. Unstructured codes: In the case of unstructured codes, there are no
constraints on the structure, i.e., the codeword alphabets are given
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as {Ck = C
M×L}. Since the power constraint can be written as in

(3.3), the generic design procedure in (4.16) specializes to

C(ζ) = arg min
{Ck}

∑K
k=1 ‖Ck‖

2
F=K log2(K)P

W ({Ck}|ζ), ∀ζ . (4.18)

2. Linear dispersive codes: The structure of linear dispersive codes is
given by the codeword alphabets

Ck =

{
Ld∑

m=1

Bms(k)
m : Bm ∈ C

M×L,∀m

}

, ∀k , (4.19)

where s
(k)
m ∈ A, m = 1, 2, · · · , Ld is the symbol sequence corre-

sponding to the kth codeword with A representing a real-valued
PAM signal constellation alphabet. This means that the design
procedure simplifies in the sense that the maximization is instead
over all possible weighting matrices {Bm}. Moreover, the power
constraint reduces to (3.5) and, consequently, the designed codes
may be obtained from

{B(ζ)
m }Ld

m=1 = arg min
{Bm}

∑Ld
m=1 ‖Bm‖2

F=log2(K)P

W
({

Ld∑

m=1

Bms(k)
m

}∣
∣ζ
)
, ∀ζ .

(4.20)

3. Weighted OSTBC: Codes of type weighted OSTBC are determined
by specifying the transmit weighting matrix as a function of the
side information. Recall that C̄ = {C̄k}K

k=1 denotes the constituent
OSTB code. From (3.10) and (3.2.3) it is seen that the codeword
structure is given by

Ck =

{

WC̄k : W ∈ C
M×M ′

, C̄k =

Lo∑

m=1

B̄ms(k)
m

}

, ∀k ,

where the fixed B̄m’s describe some OSTB code and are such that

A(C̄k, C̄l) = (C̄k − C̄l)(C̄k − C̄l)
∗ = µklIM ′ , ∀k, l . (4.21)

Here, µkl ,
∑Lo

m=1

(
s
(k)
m − s

(l)
m

)2
is a scaling factor which depends

on the codeword pair. From the orthogonality property in (4.21) it
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follows that A(W C̄k,WC̄l) = µklWW ∗. Inserting this and the
power constraint (3.15) into (4.16) leads to

W (ζ) = arg min
W

‖W ‖2
F=P log2(K)/Lo

W (WW ∗|ζ), ∀ζ , (4.22)

where

W (WW ∗|ζ) ,
∑

k<l

e`(W W ,µkl|ζ) (4.23)

`(WW ∗, µkl|ζ) , m∗
h|ζR−1

hh|ζΨ(WW ∗, µkl)
−1R−1

hh|ζmh|ζ

− log det(Ψ(WW ∗, µkl)) (4.24)

Ψ(WW ∗, µkl) ,
(
IN ⊗ WW ∗

)
µkl/(4σ

2) + R−1
hh|ζ .

The design procedures for unstructured and linear dispersive codes
both represent complicated optimization problems that are difficult to
solve efficiently. The unstructured approach requires 2KML real-valued
parameters to be optimized. For linear dispersive codes, the correspond-
ing number of parameters is 2MLLd, which typically is a considerably
smaller number than its unstructured counterpart, for the same number
of codewords K. Moreover, the criterion functions in (4.18) and (4.20)
each consist of a large number of terms even for moderate K. The large
number of parameters and terms effectively makes real-time design of un-
structured or linear dispersive codes infeasible in practice. This basically
excludes the use of these code structures for the case of non-quantized
side information.

On the other hand, when the side information is quantized, these two
code structures are perfectly viable due to the finite number of possible
outcomes of the side information. The entire channel side information
dependent code {C(ζ)} can consequently be precalculated off-line and
stored in a lookup table, suitable for real-time use. Such off-line design
procedures will be investigated later in this thesis in Chapters 5 and 6.

In contrast to the unstructured and linear dispersive structures, the
properties of weighted OSTBC considerably simplifies the design prob-
lem. For example, the optimization in (4.22) is just over a single M ×M ′

matrix W . This makes code design based on weighted OSTBC a promis-
ing candidate for real-time use. The focus in the remaining part of this
chapter is therefore on a transmission scheme based on weighted OSTBC
and the development of computationally efficient algorithms for design-
ing the transmit weighting. In particular, it will be argued that suitable
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transmit weighting matrices can be designed by considering only one of
the terms in the criterion function in (4.23).

4.5 Weighted OSTBC – Simplifying the De-
sign Problem

This section focuses on weighted OSTBC and presents techniques for ef-
ficiently designing the transmit weighting matrix. To reach the goal of a
computationally efficient transmit weight design procedure, an approxi-
mative version of the optimization problem in (4.22) is considered. It is
pointed out that the resulting design method minimizes an upper bound
on the symbol error probability. Another attractive feature of the design
method is that it can be formulated in terms of a convex optimization
problem, when the transmit weighting matrix is square.

Reducing the Number of Terms in the Criterion Function

As previously mentioned, the design problem in the case of weighted
OSTBC is not as computationally demanding as for the unstructured or
linear dispersive codes because of fewer parameters in the optimization
problem. However, the number of terms in the criterion function still
grows as rapidly with the code size K as for the two other code structures.
In order to avoid this problem, an approximate version of the criterion
function in (4.23) will instead be considered. Only the largest term(s)
corresponding to the worst codeword pair(s) will be retained in the sum.
Hence, we take on the common min max approach and minimize the worst
pairwise performance criterion, i.e., the transmit weighting is obtained as

W (ζ) = arg min
W

‖W ‖2
F=P log2(K)/Lo

max
k,l
k<l

`(WW ∗, µkl|ζ), ∀ζ .

This min max design problem is considerably easier to solve than the
corresponding problem for the other code structures. The reason why
is because the maximization part can be performed analytically. Due
to the orthogonal property of the constituent fixed space-time code, the
dependence on the codeword pair is now only through the scaling factor
µkl. This together with the easily verifiable fact that `(WW ∗, µkl|ζ) is
a decreasing function of µkl means that

max
k,l
k<l

`(WW ∗, µkl|ζ) = `(WW ∗, µmin|ζ) ,
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where µmin denotes the minimum µkl. An optimal W (optimal in the
sense that it minimizes the criterion function under consideration) can
now be determined as

W (ζ) = arg min
W

‖W ‖2
F=Po

`(WW ∗, µmin|ζ), ∀ζ , (4.25)

where Po , P log2(K)/Lo is used to shorten the notation.

Relation to the Symbol Error Probability

Note that, for weighted OSTBC, the above min max approach is actually
better than using the original criterion function in (4.23) since, as will
be argued below, (4.25) minimizes an upper bound on the symbol error
probability, as opposed to the codeword error probability.

To see this, recall from the discussion in Section 3.2.3 that each con-
stituent information bearing symbol can be decoded separately and inde-
pendently of all the others. Hence, the symbol error probability may be
studied by keeping only one out of the Lo different symbols in the OSTBC
output C̄. The other symbols may be set to zero. The resulting code-
words in such a fictitious code are therefore given by {W B̄ms : s ∈ A},
where only the mth symbol sm is kept. As also pointed out in Sec-
tion 3.2.3, the error probability is the same for all symbols and hence
m may here be chosen in an arbitrary manner. Let s(k) denote the kth
symbol alternative. Note now that, since B̄mB̄

∗
m = IM ′ , as evident from

(3.11), the codeword pair W B̄ms(k), WB̄ms(l) satisfies the relation

A(WB̄ms(k),WB̄ms(l)) = WW ∗µ̃kl ,

where µ̃kl , (s(k) − s(l))2. Consequently, the fictitious code can be seen
as a degenerate version of weighted OSTBC and the present framework is
therefore applicable. After letting µ̃min denote the minimum µ̃kl it is re-
alized that e`(W W ∗,µ̃min|ζ) is, except for a parameter independent scaling
factor, an upper bound on the conditional symbol error probability.

Since µmin = µ̃min, the transmit weight design procedure in (4.25)
corresponds to minimizing an upper bound on the symbol error proba-
bility. It can be shown that the bound is much tighter than the previously
utilized bound on the codeword error probability. In fact, if it were not
for the use of the Gaussian tail inequality Q(x) ≤ 0.5 exp(−x2/2) in the
earlier derivation, the design procedure would minimize the exact symbol
error probability, since A is assumed to correspond to a PAM constella-
tion of equidistant points.
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Turning the Design Procedure into a Convex Problem

Although (4.25) is considerably easier to solve than the original weight
design procedure, it still represents a rather complicated optimization
problem since the corresponding criterion function has multiple min-
ima3. With the goal of obtaining a more efficient solution procedure,
we therefore re-parameterize the problem as follows. An inspection of
(4.25) suggests the parametrization Z = WW ∗. A two step procedure
can now be used for finding an optimal solution to the design problem in
(4.25). Rewriting the criterion function and the constraints in terms of
the new parameters give rise to the following optimization problem

Z(ζ) = arg min
Z

Z=Z∗�0
rank(Z)≤min{M ′,M}

tr(Z)=Po

`(Z|ζ), ∀ζ , (4.26)

where, with a slight abuse of notation, the codeword pair performance
criterion is here written as

`(Z|ζ) , `(Z, µmin|ζ)

= m∗
h|ζR−1

hh|ζ

(
(IN ⊗ Z)η + R−1

hh|ζ

)−1
R−1

hh|ζmh|ζ

− log det
(
(IN ⊗ Z)η + R−1

hh|ζ

)
, (4.27)

with η , µmin/(4σ2). The matrix Z has here been constrained to
have a maximum rank of min{M ′,M} to take into account that W

may be non-square. An optimal transmit weighting is finally obtained
as W (ζ) = (Z(ζ))1/2, where (·)1/2 is a matrix square-root such that

Z(ζ) = W (ζ)(W (ζ))∗. Note that a square-root always exists since Z(ζ)

is a non-negative definite matrix. Clearly, the solution is not unique.
Assuming M ′ = M so that the transmit weighting is square, the rank

constraint vanishes. In this case, the described reformulation is particu-
larly attractive since both the criterion function as well as the remaining
constraints in (4.26) are convex, making the entire optimization problem
convex. To see that the criterion function is convex, first note that

Ψ(Z, µmin) = (IN ⊗ Z)η + R−1
hh|ζ

3To see this, consider an optimal solution W (ζ) of (4.25) and note that W (ζ)U ,
where U denotes an arbitrary unitary M ′ × M ′ matrix, is also a solution. Hence the
solution is not unique.
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defines an affine transformation of Z and that Ψ(Z, µmin) is positive
definite over the set of all positive semi definite Z. Since affine transfor-
mations preserve convexity [BV99, VB96], the convexity of the criterion
function can now be established by proving that

m∗
h|ζR−1

hh|ζΨ
−1R−1

hh|ζmh|ζ + log det(Ψ−1) (4.28)

is convex over the set of positive definite matrices Ψ.
The first term in (4.28) is shown to be convex by utilizing a theorem

saying that a function is convex over a set X if it is convex when restricted
to any line that intersects X [BS93, p. 94]. For this purpose, let Ψ =
λΨ1+(1−λ)Ψ2, where Ψ1 = Ψ∗

1, Ψ2 = Ψ∗
2 are arbitrary positive definite

matrices and 0 ≤ λ ≤ 1, represent any line in the set of positive definite
matrices. By making use of the identity [Kay93, p. 73]

∂X(θ)−1

∂θ
= −X(θ)−1 ∂X(θ)

∂θ
X(θ)−1 ,

the second order derivative of the first term with respect to λ is easily
obtained as

2m∗
h|ζR−1

hh|ζΨ
−1(Ψ1 − Ψ2)Ψ

−1(Ψ1 − Ψ2)Ψ
−1R−1

hh|ζmh|ζ .

This quadratic form is non-negative since the matrix

R−1
hh|ζΨ

−1(Ψ1 − Ψ2)Ψ
−1(Ψ1 − Ψ2)Ψ

−1R−1
hh|ζ

clearly is positive semi definite. Because the second order derivative is
non-negative it follows that the first term is convex with respect to λ (see
e.g. [BS93, p. 91]) and thus, according to the theorem in [BS93, p. 94],
also over the set of positive definite matrices Ψ.

The convexity of the second term in (4.28) follows directly from e.g.
[HJ96, p. 466]. Consequently, (4.28) is convex over all positive definite
Ψ. Due to the affine relation between Ψ and Z, the criterion function is
convex also with respect to Z. It is easily verified that the constraints
are convex [BV99, VB96]. The entire optimization problem is therefore
convex, which implies that all local minima are also global minima.

We will not go into great detail describing an algorithm that solves
this particular convex optimization problem, since there are a number
of standard techniques that are applicable. For example, interior point
methods can be used for efficiently solving this kind of problem [NN94].

Note that when M ′ < M , corresponding to a tall transmit weight-
ing matrix, the presence of the rank constraint makes the optimization
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problem in (4.26) non-convex. One possible suboptimal approach is then
to first neglect the rank constraint and solve the resulting convex opti-
mization problem. If the obtained solution Z(ζ) is of rank M ′ or lower,
the optimum also of the original design problem is found. On the other
hand, if this is not the case, the solution of the convex problem is modi-
fied by replacing Z(ζ) with its nearest, in a Frobenius norm sense, rank
M ′ matrix [HJ96, p. 427]. This is done by utilizing the SVD for setting

the M − M ′ smallest singular values of Z(ζ) to zero. Such a strategy is
clearly suboptimal but provides an intuitively appealing way of dealing
with a transmit weighting matrix which has more rows than columns.
As will be shown in Section 4.7, it turns out that an optimal solution is
easily obtained even for this case if some additional assumptions on the
statistics of the channel and the side information are made.

Another alternative approach is of course to avoid the rank constraint
altogether by optimizing with respect to W as in (4.25). Numerical opti-
mization techniques can be employed to “solve” this problem. However,
since (4.25) is not convex it is difficult to ensure that a global optimal
solution is found.

4.6 Properties of the Designed Transmit
Weighting

Although the transmit weight design procedure given by (4.26) must in
general be solved numerically, there are a few special cases that permit
a closed-form solution. These special cases concern the asymptotic prop-
erties of the solution. In particular, attention is here turned toward the
behavior of the solution when the channel quality is perfect and when
there is no channel information, respectively. In addition, the influence
of the SNR level is investigated. The solutions turn out to agree well with
intuition and allow for some interesting interpretations. For simplicity it
is assumed throughout this section that M ′ = M so that the rank con-
straint vanishes. Detailed derivations can be found in Appendix 4.A.

No Channel Knowledge

In the first case, no channel knowledge is considered, i.e., ζ is assumed
to be fixed and ‖R−1

hh|ζ‖ → 0. For technical reasons, it is also assumed

that ‖mh|ζ‖ is bounded as ‖R−1
hh|ζ‖ → 0. The criterion function used
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in (4.26) is then minimized for Z(ζ)
as = IMPo/M , where the index “as”

emphasizes that this is an asymptotic result. Consequently, the opti-
mal transmit weighting is a scaled unitary matrix, an obvious choice is
W (ζ)

as = IM

√

Po/M . Thus, the codewords are transmitted without mod-
ification. This makes sense considering the assumptions under which the
predetermined OSTB code was designed. It also makes sense in view of
the fact that the transmitter does not know the channel and therefore
has to choose a “neutral” spatially isotropic output power distribution.

High SNR

The second case concerns infinite SNR, in the sense that4 η =
µmin/(4σ2) → ∞. Similarly to the case of no channel knowledge, the
optimal transmit weighting can be chosen to be a scaled unitary matrix.
This indicates that the usefulness of channel knowledge diminishes as the
SNR increases. Simulation results described in Section 4.9 further sup-
port this claim. Moreover, recall that we came to a similar conclusion
in connection to the numerical results on channel capacity presented in
Figure 2.5.

Perfect Channel Knowledge

In the third case, the channel knowledge is assumed to be perfect. Hence,
ζ is fixed and ‖Rhh|ζ‖ → 0. It is further assumed that m̄h|ζ ,

lim‖Rhh|ζ‖→0 mh|ζ exists and is finite. Introduce the M × N asymp-

totic MMSE channel estimate matrix M̄H|ζ , lim‖Rhh|ζ‖→0 E[H|ζ],
also obtained by rearranging m̄h|ζ so as to satisfy the relation m̄h|ζ =
vec(M̄H|ζ). Moreover, let

Θ , M̄H|ζM̄
∗
H|ζ . (4.29)

To simplify the analysis it is assumed that one of the eigenvalues of Θ is
strictly larger than all the others. This assumption is further commented
on in the following. Studying the behavior of the solution as ‖Rhh|ζ‖ → 0
gives the following asymptotically optimal transmit weighting,

W (ζ)
as =

√

Po

[
vM 0 · · · 0

]
, (4.30)

where vM is the unit norm eigenvector of Θ corresponding to the largest
eigenvalue.

4The analysis can easily be extended to cover a more general definition of the SNR.
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Due to the special structure of OSTB codes, and since only one col-
umn of W (ζ)

as is non-zero, (4.30) may be interpretated as beamforming
in the direction of vM . To see this, consider for example the two trans-
mit antenna case and assume like in (3.7) that the output of the OSTB
encoder is given by

C̄ =

[
s1 −s2

s2 s1

]

, (4.31)

where sm represents the mth information bearing symbol in the fad-
ing block. The encoder output in (4.31) corresponds to the well-known
Alamouti space-time code [Ala98]. By utilizing the asymptotic result in
(4.30) and the expression for the space-time code it is seen that the signal
transmitted over the two antennas during the two time instants can be
written as

C = W (ζ)
as C̄ =

[
c(0) c(1)

]
=
√

Po

[
vMs1 −vMs2

]
.

Clearly, beamforming in the direction of vM is performed (the minus
sign in the second column is irrelevant). The present development can
be generalized to all the OSTB codes found in [TJC99].

Note that because of the perfect channel knowledge, M̄H|ζ is essen-
tially the same as H. Consequently, for all practical purposes, vM can
be considered equal to the left singular vector of H corresponding to
the largest singular value [HJ96, p. 414]. Thus, the transmission is now
conducted in much the same way as in schemes which utilize the SVD
of the channel matrix to convert the MIMO system into a set of parallel
subchannels. Such a strategy was adopted for example in [RC98], where
a water-filling procedure was used for allocating transmit power among
all the subchannels and determining the corresponding data rates. How-
ever, our transmission scheme differs, among other things, in that only
the strongest sub-channel is used.

The structure of the underlying OSTB code together with the present
goal of minimizing error probability, as opposed to maximizing data rate
as in [RC98], explain why such a transmission strategy is obtained. To
see this, recall that the constituent data symbols are decoded in an
interference-free manner, allowing the transmission scheme to be stud-
ied by considering the symbols separately from each other. For example,
consider again the Alamouti code in (4.31) and observe that the contri-
bution to the transmitted signal from s1 is

C = W (ζ)
as

[
s1 0
0 s1

]
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=
[
c(0) c(1)

]
=
√

Po

[
w1s1 w2s2

]
,

where w1 and w2 represent the columns of W (ζ)
as . It is now easily shown

that to maximize the SNR for c(0) and c(1), which in this case is equiva-

lent to minimizing the symbol error probability, the two columns of W (ζ)
as

should be matched to the channel. In other words, both should be paral-
lel to the strongest left singular vector of the channel. Similar arguments
apply to s2 and also to other OSTB codes.

Also note that the assumption that Θ has a strictly largest eigen-
value is weak. This is due to the often random nature of M̄H|ζ (or
H, since M̄H|ζ ≈ H) when ζ varies as in practical fading scenarios.
Consequently, also Θ is a random quantity, which makes it highly un-
likely that the assumption is violated except in some degenerate cases. In
particular, the probability that Θ does not have a strictly largest eigen-
value is vanishingly small for the simplified fading scenario described in
Section 4.8.

Low SNR

Finally, in the fourth case we consider an SNR value tending to zero, i.e.,
η → 0. It turns out that the result is similar to the one derived in the
previous case. Hence, the asymptotically optimal transmit weighting is
again given by (4.30). However, Θ is now defined as

Θ , MH|ζM∗
H|ζ + RHH|ζ ,

where MH|ζ , E[H|ζ] and RHH|ζ , E[(H − MH|ζ)(H − MH|ζ)∗|ζ].
As seen, also the spatial correlation properties of the channel influence
the transmission through the inclusion of the additional term RHH|ζ .
Again, the result relies on the existence of an eigenvalue of Θ that is
strictly larger than all the others.

Note that in the case of one receive antenna, the beamforming strategy
proposed in [NLTW98], although derived using a different performance
criterion, is seen to also give a beamformer proportional to vM . The
approach taken on in [NLTW98] was to minimize the average SNR. As
also pointed out therein, such a performance criterion makes sense for
small SNR values. Hence, the result for the fourth case in this section
provides a generalization of the corresponding result in [NLTW98] to
multiple receive antennas when a predetermined OSTB code is used.
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4.7 A Weight Design Algorithm for a Sim-

plified Scenario

In this section we consider a simplified fading scenario in order to obtain a
semi closed-form solution of the transmit weight design problem given in
(4.26). In spite of the existence of fairly efficient numerical optimization
techniques for the general case, the complexity of the algorithm described
in this section is substantially lower.

Introduce the simplifying assumption that the conditional covariance
matrix is diagonal, also expressed as Rhh|ζ = αIMN . Here, α represents
the conditional variance of the channel coefficients. A scenario where
this assumption is reasonable will be considered in Section 4.8. By letting
Υ̂ , 1

αMH|ζM∗
H|ζ it is now possible to rewrite the performance criterion

(4.27) in the following way

`(Z|ζ) =
1

α
m∗

h|ζ

(
(IN ⊗ Zαη) + IMN

)−1
mh|ζ

− log det
(
(IN ⊗ Zαη) + IMN

)
+ MN log(α)

=
1

α
tr
((

IN ⊗ (Zαη + IM )
)−1

mh|ζm∗
h|ζ

)

− log det
(
IN ⊗ (Zαη + IM )

)
+ MN log(α)

= tr
(
(Zαη + IM )−1Υ̂

)
− N log det(Zαη + IM ) + MN log(α) ,

where the second equality is due to the well-known relation tr(AB) =
tr(BA). In order to minimize this criterion, let Z = V ΛV ∗ and

Υ̂ = V̂ Λ̂V̂
∗

represent the EVD of Z and Υ̂, respectively. The diag-
onal elements of Λ and Λ̂, corresponding to the eigenvalues, are here
denoted by {λi}M

i=1 and {λ̂i}M
i=1, respectively. In each set the eigenvalues

are sorted in ascending order. The M×M matrices V and V̂ are unitary.
Next, the above preliminaries will be used to derive an optimal trans-

mit weighting. In the presentation, it is assumed that M ′ = M so that
the rank constraint is absent. The derivation is however easily generalized
to M ′ 6= M as commented on at the end of the present section.

Substitute the new parametrization into `(Z|ζ) and into the con-
straints and neglect parameter independent terms to arrive at an equiv-
alent minimization problem with the criterion function

`({λi}M
i=1,V ) , tr

(
(Λαη + IM )−1V ∗V̂ Λ̂V̂

∗
V
)

− N log det(Λαη + IM ) , (4.32)
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and the constraints

M∑

k=1

λk = Po (4.33)

λi ≥ 0, i = 1, · · · ,M (4.34)

λ1 ≤ λ2 ≤ · · · ≤ λM . (4.35)

It is seen that V is independent of the constraints and that it only affects
the first term in (4.32). Keeping Λ fixed and following the development
in [And63, p. 131], the optimal V can then be chosen as V = V̂ . For
this to hold, (4.35) is needed.

The remaining optimization problem is clearly convex. The solution
may therefore be obtained by means of the Karush-Kuhn-Tucker (KKT)
conditions [BS93, p. 164]. The approach used for deriving the solution is
to temporarily relax the problem by omitting the last constraint (4.35),
and then find a set of eigenvalues which satisfies the KKT conditions for
the relaxed problem. A detailed derivation is provided in Appendix 4.B.
The optimal eigenvalues for the relaxed problem turn out to be given by

λi = max






0,

αηN +

√

α2η2N2 + 4αηλ̂iµ

2αηµ
− 1

αη






, (4.36)

where µ is the Lagrange multiplier corresponding to the power constraint.
Note that this is also the optimum for the original problem since the above
solution automatically satisfies (4.35).

The value of µ is obtained by inserting (4.36) into the power constraint
(4.33) and solving the resulting equation. One possible procedure for
accomplishing this is now described. To start with, assume that the
number of eigenvalues equal to zero in the optimum solution is known.
Let l − 1 denote this quantity. Inserting (4.36) into the power constraint
(4.33) then gives the equation

Po +
M − l + 1

αη
−

M∑

k=l

αηN +

√

α2η2N2 + 4αηλ̂kµ

2αηµ
= 0 , (4.37)

from which µ can be determined. Let f(µ, l) represent the left hand side
of the equation. Since f(µ, l) is strictly increasing as a function of µ, the
solution is unique and may be found numerically. For example, applying
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Newton’s method gives rapid convergence. In this case, a suitable starting
value is

µ =
αη(M − l + 1)2

(M − l + 1 + αηPo)2

(

λ̂l +
N(M − l + 1 + αηPo)

M − l + 1

)

,

obtained by using equal power on all eigenvectors whose eigenvalues are
assumed to be non-zero and solving for µ for i = l. In order to arrive
at the correct value of l, an iterative approach is used where, starting at
l = 1, successive values of l are tried. An algorithm similar to the one
utilized when computing the well-known water-filling power profile can
be used for this purpose [CT91, p. 253]. The optimal transmit weighting
is finally obtained by an appropriate matrix square-root of Z. Thus, the
whole procedure can be summarized as follows

1. Set l = 1

2. Solve f(µ, l) = 0 with respect to µ

3. Compute λi =
αηN+

√
α2η2N2+4αηλ̂iµ

2αηµ − 1
αη , i = l, · · · ,M

4. If λl < 0 then set λl = 0, l = l + 1 and repeat from 2

5. Compute W (ζ) = V̂ Λ1/2

As previously mentioned, the proof and hence the algorithm for the
simplified scenario can easily be adapted to also handle the important
case of an M × M ′ transmit weighting where M ′ ≤ M . The resulting
design procedure is the same as above except that the starting value
of l should be modified to M − M ′ + 1 and only the columns of W (ζ)

that correspond to {λi}M
i=M−M ′+1 should be retained from step five. In

this way, a simple predetermined code, designed for a small number of
transmit antennas, can be used in conjunction with a much larger antenna
array. Such a transmission scheme is particularly interesting in view of
the fact that OSTB codes with high symbol rates exist for only a limited
number of transmit antennas, see [TJC99] and the brief discussion in
Section 3.2.3.

4.8 A Simplified Fading Scenario

In this section, the generic assumption concerning the statistics of the
channel and the side information is specialized to arrive at a so-called
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simplified fading scenario. The simplified fading scenario will be used to
illustrate properties of weighted OSTBC. It will also provide the setup
for the simulation results presented in the section to follow.

In the simplified fading scenario, it is assumed that the antennas at
both the transmitter and the receiver are spaced sufficiently far apart so
that the fading is independent. A rich scattering environment with non-
line-of-sight conditions is also assumed. It is then reasonable to model
the elements {hk} of the channel vector h as zero-mean IID complex
Gaussian, corresponding to a situation of spatially uncorrelated Rayleigh
fading. Let σ2

h denote the variance of each individual channel coefficient.

An estimate ĥ of h now plays the role of the channel side information.
Hence, ζ = ĥ, where ĥ is modeled in exactly the same way as h. It is
further assumed that ĥ and h are jointly complex Gaussian distributed.
Each estimated channel coefficient ĥk is correlated with the corresponding
true channel coefficient hk, and uncorrelated with all others. In order to
describe the degree of correlation, introduce the normalized correlation
coefficient ρ̃ , E[hkĥ∗

k]/σ2
h. For later reference, note that 0 ≤ |ρ̃| ≤ 1.

Thus, the distribution of the true channel and the side information is
completely characterized by the mean vectors

mh , E[h] = 0, mĥ , E[ĥ] = 0 ,

the covariance matrices

Rhh , E[(h − mh)(h − mh)∗] = σ2
hIMN

Rĥĥ , E[(ĥ − mĥ)(ĥ − mĥ)∗] = σ2
hIMN ,

and the cross-covariance matrix Rhĥ , E[(h − mh)(ĥ − mĥ)∗] =

σ2
hρ̃IMN . Since h and ζ = ĥ are jointly complex Gaussian, it follows

that the conditional mean and covariance of h needed in the design pro-
cedure are given by [Kay93, p. 509]

mh|ζ = mh + RhĥR−1

ĥĥ
(ĥ − mĥ) = ρ̃ĥ (4.38)

Rhh|ζ = Rhh − RhĥR−1

ĥĥ
R∗

hĥ
= σ2

h(1 − |ρ̃|2)IMN . (4.39)

These assumptions may model a situation in which the channel side
information suffers from a feedback delay, as discussed in Section 4.2.1.
In other words, ĥ can be thought of as an old channel realization and the
magnitude of the correlation coefficient ρ̃ is close to one if the feedback
delay is short and correspondingly close to zero if the delay is long.
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Although the previous measure of channel quality, as represented by
Rhh|ζ , can be retained in this scenario, we now opt for ρ , |ρ̃| as the
quantity describing the channel quality. Such a measure was also used
in [NLTW98]. Perfect channel knowledge corresponds to ρ → 1. As seen
from (4.39), this in turn implies that ‖Rhh|ζ‖ → 0. Hence, we also have
perfect channel quality as defined by the original channel quality measure.
On the other hand, no channel knowledge corresponds to ρ → 0. For this
case, ‖R−1

hh|ζ‖ cannot tend to zero since σ2
h is fixed. The two measures

thus disagree. However, what seems like an inconsistency is really not
since the corresponding asymptotically optimal transmit weighting can be
shown to be W (ζ)

as = IM

√

Po/M , regardless of which of the two quality
measures is used. The similarity in the asymptotic results is explained by
the inherent symmetry in the distribution implied by (4.38) and (4.39)
as ρ → 0. Due to the symmetry, the distribution can be considered to
be non-informative from the perspective of the transmitter, resulting in
a system without any channel knowledge. This is clearly not true in
general, since even if h and ĥ are uncorrelated, the distribution of the
true channel represents a form of channel knowledge on its own.

4.8.1 Applying Weighted OSTBC

This subsection deals with how the transmission scheme that was de-
scribed in Section 4.7 can be customized for the simplified scenario. In
addition, the behavior of the optimal transmit weighting is studied.

In order to use the transmission scheme for the scenario at hand, α
and Υ̂ need to be determined. Based on (4.38) and (4.39), it is seen that

Υ̂ =
1

α
MH|ζM∗

H|ζ =
ρ2

α
ĤĤ

∗
, (4.40)

where α = σ2
h(1 − ρ2) and Ĥ is obtained from ĥ so that it corresponds

to an estimate of H. It is now straightforward to apply the algorithm
described in Section 4.7.

Let us investigate how the transmission scheme distributes the avail-
able output power. Assuming perfect side information, i.e., ρ → 1, the
asymptotic result for the perfect channel knowledge case, discussed in
Section 4.6, is applicable. Hence, all the power is allocated in the direc-
tion of the eigenvector vM , corresponding to the largest eigenvalue of Υ̂.
In addition, only λM in (4.36) is non-zero. In view of (4.40), it is clear
that vM is also the strongest left singular vector of Ĥ.
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Consider the other extreme case of no channel knowledge in the
sense that ρ → 0. From (4.40) it is obvious that Υ̂ then tends to

zero, which means that the corresponding eigenvalues {λ̂i}M
i=1 of Υ̂ also

tend to zero. It follows from (4.36) that {λi}M
i=1 will all be equal. As

a result, W (ζ)
as = V̂

√

Po/M . Such a transmit weighting implies that

Z(ζ)
as = IMPo/M , which constitutes a transmission scheme equivalent5

to conventional OSTBC.
For the special case when min{M ′, N} ≤ 2, the transmission scheme

can be simplified further. To see this, first note that if N ≤ 2, only two
of the eigenvalues λ̂i are possibly non-zero, since Υ̂ can be seen as the
sum of N rank one matrices of size M × M and hence has a rank which
at most is equal to two. Note also that if M ′ ≤ 2, only λM−1 and λM are
potentially non-zero. In any case, this allows the transmission scheme
to be simplified by reorganizing the remaining terms in (4.37) and then
squaring repeatedly so that a polynomial equation is obtained.

Obviously, the condition min{M ′, N} ≤ 2 covers the situation in
which the number of antennas at either the transmitter or the receiver is
two or lower. For example, consider a system with one receive antenna
and assume the simplified scenario. It follows that

Υ̂ =
ρ2

α
ĥĥ

∗
.

Analytical expressions for the eigenvalues and the eigenvector correspond-
ing to the largest eigenvalue are easily found to be given by

λ̂1 = · · · = λ̂M−1 = 0, λ̂M =
ρ2

α
‖ĥ‖2

and

vM =
ĥ

‖ĥ‖
, (4.41)

respectively. Tedious but straightforward calculations now show that the
procedure for determining the optimal eigenvalues reduces to

1. Let κ = α(M + αηPo) and compute

µ =
ηPo

(
κ(2M−1)+ρ2‖ĥ‖2+

√
2κ(2M−1)ρ2‖ĥ‖2+ρ4‖ĥ‖4+κ2

)

2(M+αηPo)2

2. Compute λ = 1
µ − 1

αηPo

5Equivalent in the sense that the performance as measured by `(Z|ζ) is the same.
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3. If λ > 0 then set λ1 = · · · = λM−1 = λ and compute
λM = Po − (M − 1)λ

4. If λ ≤ 0 then set λ1 = · · · = λM−1 = 0, λM = Po

Although we have assumed the simplified fading scenario, the develop-
ment easily generalizes to all scenarios where Rhh|ζ is diagonal. One
important example of such a situation is when there are line-of-sight con-
ditions so that the mean value of the true channel is non-zero, like in, for
example, an environment with Ricean fading.

By analyzing the above procedure it is possible to make some inter-
esting observations regarding the distribution of power among the eigen-
directions of the channel. The expression for λ in the second step of
the procedure is clearly decreasing as a function of ‖ĥ‖. Hence, when
‖ĥ‖ is above some threshold, the expression after the comparison in step
four will be executed and all the power is allocated to the direction of
the channel estimate ĥ. On the other hand, falling below the threshold
means that a part of the total power is allocated to ĥ and the remaining
power is divided equally between the M − 1 directions orthogonal to the
channel estimate.

Recall that σ2 is inversely proportional to η. A slightly more involved
analysis then shows that the power distribution behaves similarly with
respect to the noise variance σ2 as well. The opposite behavior is observed
for the fading variance σ2

h. Thus, when σ2
h is below a certain threshold

all power is allocated to ĥ, whereas exceeding the same threshold leads
to a portion of the total power being allocated to ĥ and the remaining
power equally divided among the orthogonal directions.

Since the SNR can be taken to be proportional to σ2
h/σ2, the above

discussion shows that beamforming in the direction of the channel es-
timate ĥ available at the transmitter is optimal as long as the SNR is
below some threshold. Similar results based on information theoretic cri-
teria have been reported in [NLTW98, VM01]. This threshold effect is
important for understanding the numerical examples to follow.

In the case of only two transmit antennas, a closed-form expression
for W ∗(ζ) may be formulated. Recall that ĥ1 and ĥ2 represent the two
elements of ĥ. The eigenvector v2 is obtained from (4.41), whereas the
other remaining eigenvector is obtained by forming a vector orthogonal
to ĥ. It follows from step five in the design procedure of Section 4.7 that
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the optimal transmit weighting can be written as

W (ζ) =
1

√

|ĥ1|2 + |ĥ2|2

[
−ĥ∗

2 ĥ1

ĥ∗
1 ĥ2

] [√
λ1 0
0

√
λ2

]

.

Thus, the proposed transmission scheme basically consists of a threshold
test and some simple computations which are easily implemented using
a lookup table. The complexity of the algorithm must therefore be con-
sidered very low.

Based on the assumptions in the present section and using the corre-
sponding transmission scheme, the transmit weighting may now be effi-
ciently determined. However, in order for the optimization to be carried
out, the variances σ2 and σ2

h and the correlation coefficient ρ must be

known, in addition to the channel estimate ĥ. In practice, σ2, σ2
h and ρ

may be estimated at the receiver and fed back to the transmitter. An-
other approach is to treat these as design parameters chosen such that
they roughly match the conditions the system is operating in. Never-
theless, in the simulations to follow, the parameters are assumed to be
perfectly known at the transmitter.

4.9 Numerical Examples

In order to examine the performance of the proposed weighted OSTBC
transmission scheme, and to investigate how it compares with conven-
tional methods, simulations were conducted for several different cases
under the assumptions of the simplified fading scenario. The min max
based design procedure in Section 4.5 was utilized for determining the
transmit weighting. The resulting performance was compared with three
other methods – conventional OSTBC, conventional beamforming and,
what is here referred to as, ideal beamforming. Conventional beam-
forming means that the transmitted signal can be written on the form
c(n) = vs(n), where s(n) represents the nth data symbol and where
v is a transmit weight vector proportional to the strongest left singular
eigenvector of the channel estimate matrix obtained by rearranging ζ = ĥ

into an M × N matrix Ĥ. Ideal beamforming is similar to conventional
beamforming except that v is based on the true channel matrix H.

For all examined cases, perfect knowledge of σ2, σ2
h and ρ was as-

sumed. The variance of the channel coefficients was arbitrarily set to
σ2

h = 1 and the output power was fixed at a level of P = 1. The channel
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was constant during the transmission of a codeword and independently
fading from one codeword to another. Furthermore, all the OSTB en-
coders under consideration used codes found in [TJC99] with a symbol
rate of one. Only square transmit weighting matrices were considered,
i.e., M ′ = M . The particular code used in each case is therefore directly
determined by the number of transmit antennas. In all the transmis-
sion methods, the IID information bearing symbols were taken from a
BPSK constellation, resulting in a data rate of one bit per channel use.
Throughout the simulations, the bit error rate (BER) was used as the
performance measure6. Finally, the SNR was measured for the bench-
mark system using conventional OSTBC and defined as

SNR ,
E[‖H∗C‖2

F]

LNσ2
,

where C =
√

Po/MC̄ represents the transmitted signals. The expression
for the SNR is equal to the total received average signal energy, divided
by the total average noise energy. Since the codes under consideration
span as many time instants as the number of transmit antennas, L is here
equal to M .

Varying the SNR

In the first case, a system with two transmit antennas and one receive
antenna was considered. The channel quality was set to ρ = 0.9. The
BER as a function of the SNR for the various transmission methods is
depicted in Figure 4.2.

It is seen that the performance of the proposed weighted OSTBC
transmission scheme with ρ = 0.9 is for all SNR values better than con-
ventional OSTBC but, as expected, worse than ideal beamforming. As
the SNR decreases, the curve for weighted OSTBC approaches the one
for ideal beamforming whereas for increasing SNR it approaches the per-
formance of conventional OSTBC. Thus, the proposed scheme efficiently
combines beamforming with OSTBC. This is also in good agreement with
both the asymptotic results of Section 4.6 as well as the observations
in Section 4.8.1 regarding the allocation of power among the transmit-
directions.

6Normally, the codeword error probability would have to be used in order to provide
the grounds for fair comparisons. However, because the individual binary symbols
both in beamforming and in (weighted) OSTBC can be decoded independently (c.f.
(3.14)), BER is also a fair performance measure.
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Figure 4.2: The performance of weighted OSTBC compared with OSTBC
and beamforming for the case of M = M ′ = 2 transmit antennas and N = 1
receive antenna.

Note that the two curves for conventional OSTBC and ideal beam-
forming also show the performance of weighted OSTBC in the case of
ρ → 0 and ρ → 1, respectively. Conventional beamforming is seen to give
good performance at low SNR values, but as the SNR increases, the lack
of correct channel knowledge leads to a serious performance degradation.

In the second case the number of transmit antennas was increased to
eight. This was done in order to illustrate how the number of transmit
antennas influences the performance. The channel quality was now set
to ρ = 0.7. The BER versus the SNR for the four methods are presented
in Figure 4.3.

As seen, the potential gains due to channel knowledge are now consid-
erably higher. These gains remain to a large extent even when the number
of receive antennas is increased, as illustrated in a comparison between
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Figure 4.3: The performance of weighted OSTBC compared with OSTBC
and beamforming for the case of M = M ′ = 8 transmit antennas and N = 1
receive antenna.

the proposed method and conventional OSTBC in Figure 4.4. Although
not presented, simulation results demonstrating significant gains were
also obtained for scenarios with fewer transmit antennas.

Varying the Channel Quality

The third and last case concerns how the channel quality affects the per-
formance. Again, a system with two transmit antennas and one receive
antenna is considered. The SNR was fixed at 10 dB and the BER versus
the channel side information quality ρ was plotted. The result is shown
in Figure 4.5, which thus provides an illustration of how the proposed
scheme adapts to the variations in the channel quality. Hence, when the
channel quality is low weighted OSTBC is similar to conventional OS-
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Figure 4.4: The performance of weighted OSTBC compared with OSTBC for
different number of receive antennas N while the number of transmit antennas
is set to M = M ′ = 8.

TBC and when it is high weighted OSTBC is essentially the same as ideal
beamforming.

4.10 Conclusions

In this work, a new performance criterion for the design of space-time
codes was derived. The performance criterion takes channel knowledge at
the transmitter, if there is any, into account. Design procedures for three
types of space-time block codes were proposed. Specific attention was
paid to weighted OSTBC and how to design the transmit weighting in an
efficient manner. Weighted OSTBC was shown to result in a transmission
scheme that can be seen as a seamless combination of OSTB coding and
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Figure 4.5: Shows how the channel knowledge quality measure ρ affects the
performance. Weighted OSTBC is compared with OSTBC and beamforming
for a system with M = M ′ = 2 transmit antennas, N = 1 receive antenna and
a fixed SNR=10 dB.

classical beamforming. The transmit weight design optimization problem
was proved to be convex for square transmit weighting matrices, implying
that it can be solved in a reasonably efficient manner. Closed-form solu-
tions were derived under certain asymptotic assumptions. Furthermore,
the assumption of a simplified fading scenario was shown to result in a
particularly efficient optimization algorithm. Numerical results demon-
strated significant gains over both an OSTBC system and a system using
conventional beamforming.
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Appendix 4.A Asymptotic Results

Our strategy for deriving the asymptotic results presented in Section 4.6
is to make use of the fact that, under certain conditions, it is possible to
interchange the order of the limit and minimization operator, as exem-
plified by

xas , lim
%→a

arg min
x∈X

V%(x)

= arg min
x∈X

lim
%→a

V%(x)

= arg min
x∈X

V̄ (x) ,

where X denotes the feasibility set and V̄ (x) , lim%→a V%(x). From
[SS89, p. 221] it follows that this holds if V%(x) converges uniformly in x

over X to the limit function V̄ (x), X is a compact set (i.e., closed and
bounded) and V̄ (x) is continuous and has a unique global minimum.

To apply this theorem for the problem at hand, introduce a criterion
function `′(Z) that is equal to the original criterion function `(Z|ζ), ex-
cept for parameter independent terms and factors. Let ¯̀

i(Z) , lim `′(Z),
where the limit will be taken as either ‖R−1

hh|ĥ
‖ → 0, η → 0, ‖Rhh|ĥ‖ → 0

or η → ∞, depending on the asymptotic case under consideration. The
index i is here used to number the four different cases. Assume for sim-
plicity that M ′ = M throughout this appendix so that the rank constraint
can be disregarded. Moreover, define the set over which the parameters
are optimized as

Z(ε) , {Z|Z = Z∗ � εIM , tr(Z) = Po} . (4.42)

Clearly, the requirement that Z(ε) is compact is satisfied. Normally,
ε is taken to be zero. The set in (4.42) then corresponds to the feasibility
set of the original optimization problem, as described by (4.26). However,
in order to satisfy the requirement of a continuous limit function ¯̀

i(Z),
we will for some of the cases first restrict Z(ε) by assuming that ε is
small and positive and then argue why we can let ε = 0 without affecting
the result. Proving that `′(Z) converges uniformly to ¯̀

i(Z) over Z(ε)
amounts to showing that

lim sup
Z∈Z(ε)

|`′(Z) − ¯̀
i(Z)| = 0 .

In order to simplify the notation, the original criterion function is for
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the remaining part of this section written as

`(Z|ζ) = m∗R−1
(
(IN ⊗ Zη) + R−1

)−1
R−1m

− log det
(
(IN ⊗ Zη) + R−1

)
,

where it is noted that η = µmin/(4σ2) is a quantity proportional to the
SNR. Furthermore, recall that ‖X‖ = σmax, where σmax is the maximum
singular value of X. Keep also in mind that if the argument is a vector,
the result is the usual vector norm.

4.A.1 Case 1: No Channel Knowledge

The first case that is considered is no channel knowledge, i.e., ‖R−1‖ → 0.
Furthermore, it is assumed that ‖m‖ is bounded as ‖R−1‖ → 0.

To remove parameter independent terms in the limit function, the
equivalent criterion function `′(Z) , `(Z|ζ) + MN log(η) is considered.
For now, assume that ε > 0 so as to ensure that Z is invertible. Hence,
`′(Z) can be written as

`′(Z) = m∗R−1
(
(IN ⊗ Zη) + R−1

)−1
R−1m

− log det
(
IMN + (IN ⊗ Zη)−1/2R−1(IN ⊗ Zη)−1/2

)

− log det (IN ⊗ Zη) + MN log(η) , (4.43)

where (·)1/2 is now a matrix square-root with Hermitian symmetry. As
shown below, this function converges uniformly in Z to the limit function

¯̀
1(Z) , lim

‖R−1‖→0
`′(Z) = − log det (IN ⊗ Zη) + MN log η

= −N log det(Z) . (4.44)

The limit function is obviously continuous. By utilizing Lagrangian mul-
tipliers and an EVD of Z, it is straightforward to show that ¯̀

1(Z), subject

to Z ∈ Z(ε), has a unique global minimum Z(ζ)
as = IMPo/M . This fact,

and the uniform convergence in Z over Z(ε), implies that, for a fixed
positive ε ≤ Po/M ,

Z(ζ)
as = lim

‖R−1‖→0
arg min

Z∈Z(ε)
`′(Z) = IMPo/M . (4.45)

Note that the above development holds for arbitrarily small ε > 0
and observe that the solution in (4.45) is independent of ε and does not
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lie on the boundary defined by the constraint Z = Z∗ � εIM . Further
note that if Z lies on the boundary when ε = 0, i.e., Z is singular, then
`′(Z) grows without bound as ‖R−1‖ → 0. In contrast, the value of

`′(Z(ζ)
as ) is finite also when ‖R−1‖ → 0. It can therefore be concluded

that Z(ζ)
as is the asymptotically optimal solution even if the constraint

Z = Z∗ � εIM is relaxed by letting ε = 0, so as to correspond to the
original optimization problem. Since WW ∗ = Z and Z(ζ)

as = IMPo/M ,
the optimal transmit weighting in the case of no channel knowledge may
consequently be chosen as W (ζ)

as = IM

√

Po/M .
To see that the convergence is uniform in Z over Z(ε) as ‖R−1‖ → 0,

consider the difference

`′(Z) − ¯̀
1(Z) = m∗R−1

(
(IN ⊗ Zη) + R−1

)−1
R−1m

− log det
(
IMN + (IN ⊗ Zη)−1/2R−1(IN ⊗ Zη)−1/2

)
. (4.46)

From [HJ96, p. 471] it readily follows that

(A + B)−1 � B−1, A � 0, B � 0 , (4.47)

and the first term in (4.46) is therefore upperbounded as

|m∗R−1
(
(IN ⊗ Zη) + R−1

)−1
R−1m| ≤ ‖m‖2‖R−1‖ .

Since the determinant equals the product of the eigenvalues, the second
term can be written as

MN∑

k=1

log(1 + λk) ,

where λk is the kth eigenvalue of

(IN ⊗ Zη)−1/2R−1(IN ⊗ Zη)−1/2 .

This matrix is Hermitian and positive definite which means that its eigen-
values and its singular values are the same. Thus, the eigenvalues can be
upperbounded as

λk = σk ≤ σmax = ‖(IN ⊗ Zη)−1/2R−1(IN ⊗ Zη)−1/2‖

≤ ‖(IN ⊗ Z)−1/2‖2‖R−1‖
η

≤ ‖R−1‖
εη

,

where σk represents the kth singular value and σmax denotes the largest
singular value. The second equality is due to the fact that the spectral
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norm is equal to the maximum singular value of its argument. An upper
bound to the second term in (4.46) may be formed as

MN∑

k=1

log(1 + λk) ≤ MN log

(

1 +
‖R−1‖

εη

)

. (4.48)

By utilizing the triangle inequality it is now clear that

sup
Z∈Z(ε)

|`′(Z) − ¯̀
1(Z)| ≤ ‖m‖2‖R−1‖ + MN log

(

1 +
‖R−1‖

εη

)

.

Since this expression, for a constant ε > 0 and a bounded m, obviously
tends to zero as ‖R−1‖ → 0, we have shown that `′(Z) converges uni-
formly to ¯̀

1(Z) within the parameter set defined by Z(ε). This completes
the derivation for the no channel knowledge case.

4.A.2 Case 2: Infinite SNR

In the second case it is assumed that the SNR tends to infinity, i.e.,
η = µmin/(4σ2) → ∞. Again, we start by assuming ε > 0. Similarly to
the previous case, an equivalent criterion function can be written as in
(4.43), which also in this case converges uniformly in Z to

¯̀
2(Z) , lim

η→∞
`′(Z) = −N log det(Z) = ¯̀

1(Z) .

To see that the convergence is uniform, consider the two terms in (4.46).
Utilizing (4.47), the first term is now upperbounded by

‖m‖2‖R−1‖2‖(IN ⊗ Zη)−1‖ ≤ ‖m‖2‖R−1‖2

εη
,

whereas the upper bound of the second term is again given by (4.48).
Hence, we have

sup
Z∈Z(ε)

|`′(Z) − ¯̀
2(Z)| ≤ ‖m‖2‖R−1‖2

εη
+ MN log

(

1 +
‖R−1‖

εη

)

,

which obviously tends to zero as the SNR tends to infinity. The conver-
gence is therefore uniform. The arguments following (4.45) then show
that the asymptotically optimal transmit weighting may once more be
chosen as W (ζ)

as = IM

√

Po/M . This completes the derivation for the
case of infinite SNR.
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4.A.3 Case 3: Perfect Channel Knowledge

The third case concerns perfect channel knowledge in the sense that
‖R‖ → 0. In addition, it is assumed that m̄ , lim‖R‖→0 m exists and is
finite (with respect to some norm). For the present and the next case, it
is possible to let ε = 0. The original constraints are therefore assumed.

Parameter independent terms and factors in the limit function are
removed by considering the equivalent criterion function

`′(Z) ,
(
`(Z|ζ) − log det(R) − m∗R−1m

)
/η

= m∗
(
IMN + (IN ⊗ Zη)R

)−1
R−1m/η

− log det
(
IMN + R1/2(IN ⊗ Zη)R1/2

)
/η

− m∗R−1m/η . (4.49)

We start by showing that this function converges uniformly in Z to the
obviously continuous limit function

¯̀
3(Z) , lim

‖R‖→0
`′(Z) = −m̄∗(IN ⊗ Z)m̄ . (4.50)

The Taylor series [HJ96, p. 301],

(I − X)−1 =

∞∑

k=0

Xk,

which is valid if ‖X‖ < 1, is used for writing the first term in (4.49) as

m∗
(

R−1 − (IN ⊗ Zη) +

∞∑

k=2

(
− (IN ⊗ Zη)R

)k
R−1

)

m/η .

By exploiting the triangle inequality and the formula for a geometric
series, an upper bound on the infinite sum, for sufficiently small η‖R‖,
is obtained as

‖
∞∑

k=2

(−(IN ⊗ Zη)R)kR−1‖ ≤
∞∑

k=2

‖IN ⊗ Zη‖k‖R‖k−1

=
‖IN ⊗ Zη)‖2‖R‖

1 − ‖IN ⊗ Zη‖‖R‖

=
η2‖Z‖2‖R‖

1 − η‖Z‖‖R‖

≤ η2P 2
o ‖R‖

1 − ηPo‖R‖ .
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For the last inequality, the fact that ‖Z‖ ≤ Po has been used, which is
due to the trace constraint on Z. Now, let λk represent the kth eigenvalue
of

R1/2(IN ⊗ Zη)R1/2 .

Since it then holds that

λk ≤ ‖R1/2‖2‖IN ⊗ Zη‖ = η‖R‖‖Z‖ ≤ ηPo‖R‖ ,

the second term in (4.49) is upperbounded by

MN log(1 + ηPo‖R‖)/η .

Finally, collecting the results for the first two terms yields

sup
Z∈Z(0)

|`′(Z) − ¯̀
3(Z)| ≤ ηP 2

o ‖R‖‖m‖2

1 − ηPo‖R‖ + MN log(1 + ηPo‖R‖)/η .

The right hand side clearly tends to zero as ‖R‖ → 0. Hence, the con-
vergence is uniform.

Changing the sign of the limit function in (4.50) and re-parameterizing
using Z = WW ∗ shows that the optimum of the limit function ¯̀

3(Z) is
given by

W (ζ)
as = arg max

W
‖W ‖2

F=Po

m̄∗(IN ⊗ WW ∗)m̄ . (4.51)

To solve this, let Ω , m̄m̄∗ and define

Θ ,

N∑

k=1

Ωk , (4.52)

where Ωk denotes the kth block of size M ×M on the diagonal of Ω. The
cost function in the above optimization problem can now be formulated
as

m̄∗(IN ⊗ WW ∗)m̄ = tr
(
(IN ⊗ WW ∗)Ω

)
(4.53)

= tr(W ∗ΘW )

=
(
vec(Θ∗W )

)∗
vec(W )

=
(
vec(W )

)∗
(IM ⊗ Θ) vec(W ) ,

where the two last equalities are due to (C.1) and (C.2) in Appendix C,
respectively. The power constraint is written on the form ‖ vec(W )‖ =√

Po.
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The optimization problem is readily solved utilizing the EVD of IM ⊗
Θ. For this purpose, let λM denote the largest eigenvalue of Θ and recall
the assumption that it is strictly larger than all the other eigenvalues, i.e.,
λM is unique. It can easily be verified that the eigenvalues of IM ⊗ Θ
are obtained by repeating the eigenvalues of Θ M times. Hence, λM is
also the largest eigenvalue of IM ⊗ Θ, with multiplicity M . The set of
optimal solutions of (4.51) is therefore given by the eigenspace associated
with λM . After introducing the complex-valued scalars {µk}M

k=1, the
solution can be written on the form

vec(W (ζ)
as ) = µ1u1 + µ2u2 + · · · + uM (4.54)

where

u1 =










vM

0
0
...
0










,u2 =










0
vM

0
...
0










, · · · ,uM =










0
...
0
0

vM










and vM are the eigenvectors of IM⊗Θ and Θ, respectively, corresponding
to λM . Here, 0 is an M × 1 vector with all elements equal to zero. Using
(4.54) all the solutions may also be expressed as

W (ζ)
as =

[
µ1vM µ2vM · · · µMvM

]
,

implying that Z(ζ)
as = W (ζ)

as (W (ζ)
as )∗ = vMv∗

M

∑M
k=1 |µk|2. Combining

this with the power constraint ‖W ‖2
F = Po means that

∑M
k=1 |µk|2 =

Po, and hence Z(ζ)
as = vMv∗

MPo. Consequently, regardless of the unit

norm vector vec(W (ζ)
as ) chosen from the aforementioned eigenspace, it

holds that Z(ζ)
as = vMv∗

MPo, which is thus a unique minimum point
of ¯̀

3(Z). Accordingly, the use of ¯̀
3(Z) in the asymptotic analysis is

justified. Letting, for example, µ1 =
√

Po, µ2 = · · · = µM = 0 and
utilizing Z(ζ)

as = W (ζ)
as (W (ζ)

as )∗, an asymptotically optimal solution is
given by

W (ζ)
as =

√

Po

[
vM 0 · · · 0

]
.

As previously indicated, the solution is not unique. For example, per-
muting the columns gives the same value of the cost function.

Recall that m = mh|ζ and R = Rhh|ζ . Note that (4.52) may also

be written on the form Θ = M̄H|ζM̄
∗
H|ζ , where M̄H|ζ is an M × N

matrix defined by the relation vec(M̄H|ζ) = m̄h|ζ , m̄ = lim‖R‖→0 m.
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Another equivalent way of defining M̄H|ζ is as the asymptotic MMSE

channel estimate M̄H|ζ , lim‖Rhh|ζ‖→0 E[H|ζ].

4.A.4 Case 4: Zero SNR

In the fourth case, the SNR is assumed to tend to zero, i.e., η → 0. The
derivation is to a large extent similar to the previous case. The Taylor
expansion,

log det(I + X) = tr(X) + O(‖X‖2) ,

where O(·) is the big ordo operator, is used to write the second term of
(4.49) as

tr
(
R1/2(IN ⊗ Z)R1/2

)
+ O(η) .

Combining this with (4.50) results in the limit function

¯̀
4(Z) , lim

η→0
`′(Z)

= −m∗(IN ⊗ Z)m − tr
(
R1/2(IN ⊗ Z)R1/2

)
. (4.55)

It is now evident from

sup
Z∈Z(0)

|`′(Z) − ¯̀
4(Z)| ≤ ηP 2

o ‖R‖‖m‖2

1 − ηPo‖R‖ + |O(η)|

that the convergence is uniform. Thus, after changing the sign of ¯̀
4(Z)

and parameterizing in terms of W , the cost function can be taken as

m∗(IN ⊗ WW ∗)m + tr
(
R1/2(IN ⊗ WW ∗)R1/2

)
.

Using the relation tr(AB) = tr(BA), this expression can be rewritten as

tr
(
(IN ⊗ WW ∗)(mm∗ + R)

)
= tr

(
(IN ⊗ WW ∗)Ω

)
, (4.56)

where now Ω , mm∗ + R. Finally, due to the similarity between (4.56)
and (4.53), the development from the previous case shows that an asymp-
totically optimal transmit weighting is given by

W (ζ)
as =

√

Po

[
vM 0 · · · 0

]
,

where vM is the eigenvector corresponding to the largest eigenvalue
of Θ. Here, Θ is again defined as in (4.52). Note that an alter-
native and perhaps more intuitive formulation of Θ is given by Θ =
E[H|ζ] E[H|ζ]∗ + E[(H − E[H|ζ])(H − E[H|ζ])∗|ζ].
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Appendix 4.B An Algorithm for a Simpli-

fied Scenario

In this appendix, the solution of the optimization problem defined by
(4.32) - (4.35) is derived. It is easily seen that both the cost function and
the feasibility set are convex. Thus, the solution is given by the KKT con-
ditions. In order to simplify the development, the optimization problem
is temporarily relaxed by omitting (4.35). For the remaining problem,
the optimum is given by any {λk} that satisfy the KKT conditions

M∑

k=1

λk = Po (4.57)

λi ≥ 0 (4.58)

− αηλ̂i

(1 + αηλi)2
− αηN

1 + αηλi
+ µ − νi = 0 (4.59)

νi ≥ 0 (4.60)

νiλi = 0 , (4.61)

where i = 1, · · · ,M and where µ and νi are Lagrange multipliers for the
power constraint and the inequality constraints, respectively. We start
by solving for νi in (4.59) and substituting into (4.60) and (4.61). Thus,
the last three conditions reduce to

αηλ̂i

(1 + αηλi)2
+

αηN

1 + αηλi
≤ µ (4.62)

λi

(

µ − αηλ̂i

(1 + αηλi)2
− αηN

1 + αηλi

)

= 0 . (4.63)

First, assume that λi > 0. It follows that the second factor in (4.63)
must be zero. Rewriting this condition as

µ(1 + αηλi)
2 − αηN(1 + αηλi) − αηλ̂i = 0

and solving for λi gives

λi =
αηN +

√

α2η2N2 + 4αηλ̂iµ

2αηµ
− 1

αη
, (4.64)

where the positive root was picked due to (4.58). Note that (4.62) is now
satisfied by equality. Hence, we have a valid solution as long as (4.64)
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gives a positive result and (4.57) is satisfied. On the other hand, for the
case of a non-positive result, we let λi = 0. That this indeed satisfies the
KKT conditions is seen by verifying that (4.62) is true. Since

αηN +

√

α2η2N2 + 4αηλ̂iµ

2αηµ
− 1

αη
≤ 0

and λi = 0 implies that

µ ≥ αηλ̂i + αηN , (4.65)

it is obvious that all the KKT conditions, with the possible exception of
(4.57), are satisfied. Finally, also (4.57) can be handled by writing the
optimal eigenvalues as

λi = max






0,

αηN +

√

α2η2N2 + 4αηλ̂iµ

2αηµ
− 1

αη






(4.66)

and then solving for µ in (4.57). It is apparent that (4.66) gives eigen-
values that are sorted in ascending order. Therefore, the constraint that
was initially omitted, i.e., (4.35), is automatically satisfied. Thus, (4.66)
gives the optimal eigenvalues also for the original problem.





Chapter 5

Quantized Channel
Feedback: Design
Approach I

This chapter considers a wireless MIMO communication link in which the
transmitter has access to quantized channel side information obtained
from the receiver via a dedicated feedback link. The focus is on weighted
OSTBC, although the methods to be developed herein are applicable to
all three code structures mentioned in Section 3.2. Suitable transmit
weighting matrices are designed by modifying the previously developed
transmit weight design procedure in a heuristic manner to better cope
with quantized channel knowledge. An alternative and mathematically
cleaner technique for dealing with quantized channel feedback will be
described in Chapter 6.

Feedback delay, quantization errors and feedback channel bit-errors
are all assumed to impair the quality of the channel side information.
To reduce these errors, methods based on vector quantization for noisy
channels are used in the design of the feedback link. The proposed trans-
mission scheme and feedback link takes the non-perfect nature of the
channel information into account while combining the benefits of conven-
tional beamforming with those given by OSTB codes in a similar man-
ner as in Chapter 4. Simulation results for a spatially uncorrelated flat
Rayleigh fading scenario with two transmit antennas and one receive an-
tenna demonstrate significant gains over conventional methods, including
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robustness to feedback channel bit-errors.

5.1 Introduction

Recently, space-time codes [GFBK99, TSC98, TJC99] have been devel-
oped that utilize both the spatial and temporal dimensions for increasing
the performance of a wireless communication link where the transmitter
is equipped with multiple antennas. A potential drawback with classical
space-time codes is that they are designed under the assumption that the
transmitter does not know the channel. Hence, even if channel knowl-
edge is available, it is not used for improving the performance. In some
communication systems it is reasonable to assume that such channel side
information is in fact available. Both TDD systems and FDD systems
equipped with a feedback link belong to this category. In the former
case the channel may be estimated in the receive mode and then often
assumed to be the same for the transmit mode, whereas for the latter
case channel estimates are obtained at the receiver and then transported
over a dedicated feedback link to the transmitter.

A common way of utilizing channel side information is to make use
of beamforming techniques for maximizing the received energy, essen-
tially steering the transmission in the direction of the receiver. There
has recently been a growing interest on the use of feedback informa-
tion in conjunction with transmission methods related to beamforming
[Wit95, NLTW98, HP98, MSA01, VM01, OGDH01, HW01]. The fact
that beamforming based on channel information from a feedback link is
used in the closed-loop mode of the WCDMA system further illustrates
the practical significance of such schemes [3GP02b, DGI+02].

To keep the wireless system spectrally efficient, the channel informa-
tion is often heavily quantized prior to being transported over the feed-
back link. Needless to say, the channel knowledge at the transmitter is
typically far from perfect. Not only quantization may degrade the quality
of the channel information. The quality often suffers from a delay in the
feedback link, which means that the channel information is, due to the
time-varying nature of the wireless channel, more or less outdated by the
time it reaches the transmitter [OGDH01, HW01]. Bit-errors introduced
by the channel over which the feedback link operates may also severely
impair the performance.

In order to mitigate the detrimental consequences of errors in the
channel information, space-time codes can be combined with beamform-
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ing type of schemes, as evident from previous chapters in this thesis. The
idea is to make use of the complementary strengths of both transmission
methodologies. Traditional space-time codes [GFBK99, TSC98, TJC99]
are designed to operate without any channel knowledge and hence provide
the system with a basic level of performance in the absence of reliable
channel state information at the transmitter. Beamforming, on the other
hand, is advantageous when the channel knowledge is reliable. Weighted
OSTBC in conjunction with the transmit weight design procedure devel-
oped in Section 4.5 constitutes a particularly attractive combination of
space-time coding and beamforming.

In this work, we consider the use of weighted OSTBC in a MIMO
wireless communication link where the transmitter has access to quan-
tized channel side information obtained from the receiver via a dedicated
feedback link. Suitable transmit weighting matrices are constructed by
utilizing the transmit weight design procedure in Section 4.5. However,
since that design procedure was developed primarily with Gaussian chan-
nel side information in mind, it does not perform well in its original form
when the channel information is heavily quantized. To obtain better
performance, heuristic modifications to the original design procedure are
proposed in this chapter. The design of the feedback link is also addressed
and specifically tailored to suit the characteristics of weighted OSTBC.

In addition to feedback delay related errors covered by the methods
of the previous chapter, the system under study is assumed to suffer
from errors in the channel information due to quantization and feed-
back channel bit-errors. By designing the feedback link based on vector
quantization (VQ) for noisy channels [Far90, FV91], the damaging effects
caused by these errors are successfully avoided. Two different types of
feedback links are investigated. In the first type, the channel coefficients
are quantized directly, like in standard VQ, while in the second type the
amplitude and phase are first separated and then quantized. The remain-
ing errors are taken into account by the transmit weight design proce-
dure. Previous work dealing with quantized channel information includes
[NLTW98, HP98, MSA01]. However, these papers differ substantially
from the present work since they study conventional beamforming and
see quantization errors as the only error source1. Numerical examples for
a spatially uncorrelated flat Rayleigh fading scenario with two transmit

1The work in [NLTW98] does in fact also consider errors that can be described by
modeling the channel side information as correlated with the true channel. However,
that case is studied separately from the case of quantized channel information, not
jointly as herein.
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antennas and one receive antenna show the robustness against channel
information impairments of the proposed setup compared with systems
which tentatively assume the channel information at the transmitter to
be perfect.

The main contribution in this chapter is the development and study
of a transmission method and feedback designs that, used together, are
robust against feedback delay, quantization and feedback channel bit-
errors. We show how weighted OSTBC can utilize quantized feedback
information and also introduce the use of vector quantization for noisy
channels into the design of the feedback link. In addition, detection
of the transmit weighting matrix at the receiver is treated. The setup
considered in this work may be motivated by current standardization
proposals for the WCDMA system. For example, an OSTB code is used
in the open-loop mode, whereas in the closed-loop mode the receiver
informs the transmitter about the appropriate transmit antenna weights
based on heavily quantized channel estimates [3GP02a, 3GP02b].

The chapter is organized as follows. Section 5.2 presents the system
model including a generic overview of the feedback link. A so-called sim-
plified fading scenario is also described for later reference. In Section 5.3,
the transmit weight design procedure of the previous chapter is used to
determine a suitable codebook of transmit weights. The design of the
two types of feedback links is treated in Section 5.4. In Section 5.5, a
method for detecting the transmit weighting at the receiver is developed.
Finally, based on the simplified fading scenario, numerical examples are
presented in Section 5.6.

5.2 System Model

This work considers a MIMO wireless communication system that utilizes
weighted OSTBC based on quantized channel side information ζ obtained
from a feedback link. An illustration of the system under consideration is
given in Figure 5.1. As seen, the side information is used for choosing a
transmit weighting W = W (ζ) out of a fixed codebook {W (ζ)} of weights
corresponding to all possible outcomes of ζ. Methods for designing the
weighting matrices so as to take the available channel knowledge into
account are described later in the chapter.

The generic system model and the assumptions regarding code struc-
tures described in Section 3.1 still apply. Hence, there are M trans-
mit and N receive antennas and the received signal vector is given by
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Figure 5.1: Overview of a MIMO system where weighted OSTBC is
used in conjunction with quantized channel side information ζ obtained
from a feedback link.

x(n) = H∗c(n)+e(n), where the M×N matrix H represents the MIMO
channel, c(n) the transmitted vector at sample index n and e(n) is a noise
term generated from a spatially and temporally white complex Gaussian
process. The resulting received block of vectors, corresponding to a trans-
mitted codeword of length L, can be written as X = H∗C + E. Since
weighted OSTBC is used, it follows from (3.6) that the transmitted code-
word C ∈ C = {Ck}K

k=1 is given by C = WC̄, where C̄ ∈ C̄ = {C̄k}K
k=1

is the codeword output from the OSTB encoder. Hence,

X = H∗C + E = H∗WC̄ + E , (5.1)

where the variance of each element of the noise matrix E is equal to σ2.
All codewords in C̄ are assumed equally probable. From (3.15), it follows
that the average output power per information bit, conditioned on the
channel side information ζ, is limited to P by the power constraint

‖W (ζ)‖2
F = Po , (5.2)

where Po , P log2(K)/Lo.
Although the transmit weighting matrix W may contain more

columns than rows so as to map an OSTB code designed for a small
antenna array to a larger array, the focus in the present work is on the
case when W is square, i.e., M = M ′. If desired, the methods to be
developed herein are easily extended to handle also the case of M ′ < M .

To model the fading, the channel vector h , vec(H) with elements
{hk} is assumed to obey a complex Gaussian distribution described by
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the mean vector mh , E[h] and the covariance matrix Rhh , E[(h −
mh)(h − mh)∗]. This is a flexible fading model that can handle both
spatially uncorrelated Rayleigh fading as well as more realistic scenarios
with correlated fading.

It will be convenient to have a measure of the quality of the chan-
nel side information. Since the channel information is quantized, h|ζ
is not complex Gaussian distributed. Hence, unlike in Section 4.2, the
conditional covariance Rhh|ζ , E[(h − mh|ζ)(h − mh|ζ)∗|ζ] does not
provide a complete description of the remaining uncertainty in h when
the channel information ζ is known. Nevertheless, it is clear that it con-
stitutes a measure of the reliability of the channel side information. In
particular, perfect channel information corresponds to ‖Rhh|ζ‖ → 0, as-
suming a fixed ζ. The other extreme of no channel knowledge is defined
as a scenario in which ζ is independent of h (so that mh|ζ = mh and
Rhh|ζ = Rhh) and the fading is non-informative, i.e., mh is zero and
Rhh is a scaled identity matrix. This is a reasonable definition, since, as
also pointed out in Section 4.8, the symmetrical nature of the statistical
distribution of the channel means that all transmit directions are equally
good.

5.2.1 An Overview of the Feedback Link

A feedback link is assumed to provide the transmitter with estimates of
the current channel realization. In a typical such system, it is desirable
to keep the data rate over the feedback link to a minimum in order for
the whole system to be spectrally efficient. This often means that the
channel estimates must be heavily quantized, which in turn results in a
considerable amount of quantization errors. Feedback channel bit-errors
and feedback delay may also plague the channel information. To handle
these additional problems, we propose the use of techniques related to VQ
for noisy channels [Far90, FV91], which take into account that the channel
between the encoder and decoder may introduce bit-errors. Based on
such procedures, two different types of feedback links are designed in
Section 5.4.

In order to model feedback delay, it is assumed that the channel co-
efficients transmitted over the feedback link are correlated (to an ar-
bitrary degree) with the true channel. As illustrated in Figure 5.1,
these channel coefficients are contained in the MN × 1 initial channel
information vector γ, with elements {γk}. The vectors γ and h are
assumed to be jointly complex Gaussian distributed. Let mγ , E[γ]
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represent the mean of γ and let Rhγ , E[(h − mh)(γ − mγ)∗] and

Rγγ , E[(γ − mγ)(γ − mγ)∗] denote the relevant cross-covariance ma-
trix and covariance matrix, respectively. Since γ and h are correlated, γ

can be thought of as representing an earlier copy of the true channel h, in
accordance with the well-known Jakes model [Jak94], which may be used
to describe the time-variations of the channel as a temporally correlated
stationary complex Gaussian process. Loosely speaking, the correlation
properties determine the quality of the initial channel information. An-
other, more precise, measure is to again use the conditional covariance,
in this case Rhh|γ , E[(h−mh|γ)(h−mh|γ)∗|γ], where mh|γ , E[h|γ],
similarly to as when a quality measure for ζ was defined.

As seen in Figure 5.1, the initial channel information γ may, depend-
ing on the type of feedback link, be pre-processed2 prior to being input
to the encoder. For the sake of notational brevity, the remaining part of
this section assumes that the pre-processing stage is absent. The purpose
of the encoder is to map each input source vector γ to a corresponding
integer i. Since the feedback link is assumed to use b bits for the quan-
tization, the encoder is a mapping ε : C

NM → {0, · · · , 2b − 1} such that
ε(γ) = i for an input vector γ. The mapping of the encoder is described

by γ ∈ Si ⇒ ε(γ) = i, where the set {S i}2b−1
i=0 of encoder regions defines

a partition of C
NM .

The encoder output i is mapped into bits which are then transmitted
over what is here modeled as a memoryless binary symmetric channel
with bit-error probability Pb. After passing through the feedback chan-
nel, the resulting b bits are mapped into an index j representing the out-
put of an equivalent memoryless discrete multilevel input-output channel
with transition probabilities {Pj|i , Pr[j|i]}, (i, j) ∈ {0, · · · , 2b − 1}2.
Let dh(i, j) denote the number of bits in which the bit-patterns of i and
j differ, the so-called Hamming distance. Since the binary channel is

memoryless, it is clear that Pj|i = P
dh(i,j)
b (1 − Pb)b−dh(i,j).

The output j from the feedback channel is used by the feedback de-
coder for reconstructing the current channel realization or a related quan-
tity. More precisely, the decoder performs a mapping such that ζ = δ(j)

for the discrete feedback channel output j. The codebook {δ(j)}2b−1
j=0

thus defines the decoder, where δ(j) represents an estimate of the cur-
rent channel realization (or related quantity). Based on the outcome of
ζ, the transmit weighting W currently in use is chosen, out of a fixed

2Although not considered in this work, pre-processing may include predicting the
current channel h based on several earlier channel estimates.
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codebook {W (ζ)} of 2b possibly different weights, as W = W (ζ).

It should now be clear that the feedback decoder and the subsequent
block containing the codebook {W (ζ)} may be merged into a single equiv-
alent device with input j and output W . The merged device determines

the transmit weighting as W = W̃
(j)

based on an equivalent codebook

{W̃ (j)}2b−1
j=0 , where W̃

(j)
, W (δ(j)). Thus, the codebook is directly

indexed by the feedback channel output j. This is actually how the
transmission scheme would be implemented in practice. The feedback
decoder δ(j) is here included in the system model only because it will
turn out to be useful from a conceptual standpoint when later designing
the quantization scheme.

The transmission scheme and the feedback link rely on certain pa-
rameters. Because of this, both the transmitter and receiver are assumed
to know mh, mγ , Rhh, Rhγ , Rγγ , σ2 and Pb, which typically vary
much slower than the channel matrix. Hence, they can be updated at
a relatively low rate, considerably simplifying their distribution over the
system.

Note that the transmission scheme and the feedback link are in this
work designed separately, i.e., the goal is to first design the feedback
link such that a good channel estimate is obtained and then determine
a suitable transmit weighting based on this estimate. Another possible
approach is of course to design the transmission scheme and the feedback
link jointly. The codebook would in this case contain the transmit weights

explicitly, like in the equivalent codebook {W̃ (j)}2b−1
j=0 . Preliminary re-

sults in this direction may be found in our work in [JSO02b]. However,
a major problem with such a joint approach, which motivates the sepa-
rate design strategy considered in the present work, is that training the
quantizer represents a highly computationally demanding optimization
problem.

5.2.2 A Simplified Fading Scenario

The present section describes a simple special case of the previously dis-
cussed scenario with arbitrary complex Gaussian fading. As will be ev-
ident from below, this simplified fading scenario corresponds to the one
presented in Section 4.8 but now with a notation that complies with the
problem at hand.

In the simplified fading scenario, a rich scattering environment is con-
sidered in which the antennas at both the transmitter and the receiver
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are spaced sufficiently far apart so that the fading becomes independent.
Adhering to the usual assumptions in the space-time coding literature
a spatially uncorrelated Rayleigh fading scenario is considered, i.e., the
channel coefficients {hk} are modeled as zero-mean IID complex Gaus-
sian with variance equal to σ2

h. In view of the well-known Jakes fading
model [Jak94] and since the initial channel information γ is considered
to be a delayed copy of the current channel realization, we make the
reasonable assumption that h and γ are jointly complex Gaussian and
equally distributed. See the discussion concerning feedback delay in Sec-
tion 4.2.1 for a more detailed motivation as to why such an assumption
makes sense.

Each initial channel information coefficient γk is correlated with the
corresponding current channel coefficient hk and uncorrelated with all
others. The degree of correlation is given by the normalized correlation
coefficient ρ̃ , E[hkγ∗

k ]/σ2
h. Thus, the distribution of the current channel

and the initial channel information is characterized by

mh = 0, mγ = 0

Rhh = σ2
hIMN , Rγγ = σ2

hIMN , Rhγ = σ2
hρ̃IMN .

From the above and from standard results in estimation theory [Kay93,
p. 509] it follows that

mh|γ = E[h|γ] = ρ̃γ

Rhh|γ = E[(h − mh|γ)(h − mh|γ)∗|γ] = σ2
h(1 − |ρ̃|2)IMN .

Let ρ , |ρ̃| play the role of a separate quality measure for the initial
channel information, in the case of the present simplified fading scenario.
Based on such a quality measure, perfect initial channel information and
no initial channel information correspond to ρ → 1 and ρ → 0, respec-
tively. Obviously, the former definition complies with ‖Rhh|γ‖ → 0,
while the latter definition corresponds to the previously mentioned case
of non-informative fading statistics.

5.3 Determining the Weighting Matrices

Recall that weighted OSTBC utilizes the channel side information for
improving a predetermined OSTB code by means of a transmit weighting
W = W (ζ). As previously explained, the weighting is here obtained from
a fixed codebook {W (ζ)} of 2b possibly different weighting matrices. The
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strategy in the present chapter for constructing a suitable codebook is to
utilize the transmit weight design procedure developed in Section 4.5 for
determining the W (ζ)’s.

One drawback with such an approach is that the underlying design
procedure is not developed specifically for quantized channel side infor-
mation. Indeed, it is based on the assumption that the channel h condi-
tioned on the channel side information ζ is complex Gaussian. Such an
assumption may in some cases be a good approximation of the statistical
relation between h and ζ, particularly if the number of bits used for the
quantization is high and the feedback channel does not introduce any bit-
errors. This asymptotic argument provides motivation for the strategy
considered herein despite the fact that the complex Gaussian assumption
is not perfectly valid. Depending on the type of feedback link, the design
procedure may need to be modified in a heuristic manner so as to better
suit the characteristics of the quantized channel feedback. In any case,
the resulting transmission schemes are clearly suboptimal, but still useful
as later numerical examples will show.

Applying the above design strategy means that the codebook of trans-
mit weights is obtained based on the design procedure in (4.25), tailored
to the problem at hand, to arrive at

W (ζ) = arg min
W

‖W‖2
F=Po

˜̀(W ;m(ζ),R(ζ)), ζ = δ(j), ∀j , (5.3)

where

˜̀(W ;m,R) , m∗R−1
(
(IN ⊗ WW ∗)µmin/(4σ2) + R−1

)−1
R−1m

− log det
(
(IN ⊗ WW ∗)µmin/(4σ2) + R−1

)
. (5.4)

As seen, the transmit weight design procedure in (5.3) is formulated
in a somewhat different manner than what was done for the original
procedure in (4.25). Compared with (4.25), two new parameters m(ζ),
R(ζ) now replace the conditional mean mh|ζ and covariance Rhh|ζ , re-
spectively. Both m(ζ) and R(ζ) are determined from the output of the
feedback link, as explained in the following section where two different
types of feedback links will be investigated. This modified notation serves
to emphasize that the two parameters will not always represent the con-
ditional mean and covariance.

Techniques for efficiently solving the numerical optimization problem
posed by (5.3) were given in Section 4.5. Since the channel feedback is
quantized, the transmit weights may be predetermined by designing them
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off-line. As a result, the optimization problem in (5.3) is considered solved
in the following.

5.4 Feedback Link Design

This section describes the design of two different feedback links. Both
provide the transmitter with quantized channel information. The first
type employs an encoder that quantizes the channel coefficients directly.
It is an uncomplicated design which serves to illustrate the problem and
stands on solid theoretical grounds. A drawback is that it wastes bits
as simulation results in Section 5.6 will show. To remedy this deficiency,
modifications of the basic concept, to some extent based on heuristic
arguments, are utilized in the design of the second feedback link. In par-
ticular, the channel coefficients are re-mapped prior to the quantization
so that the required number of bits is reduced.

Regardless of the type of feedback link, the feedback encoder and
decoder are optimized with the aim of minimizing the total distortion
due to quantization, feedback delay and feedback channel bit-errors. This
is accomplished by using appropriately modified design techniques taken
from the field of vector quantization for noisy channels. Although the
VQ design is computationally demanding, it may be performed off-line
and the result can be stored in lookup tables for quick real-time access.
Thus, for a moderate number of bits b, the overall real-time complexity
of the feedback link must be considered low.

5.4.1 Feedback Link Type I – Direct Quantization

In the first feedback link that is considered, the channel coefficients are
directly quantized. This is illustrated in Figure 5.2, where the initial
channel information vector γ is input to the encoder. Hence, no pre-
processing of γ is performed. The decoder is seen to output an estimate
ĥ(j) , δ(j) of the true channel h. The estimate, which constitutes the
channel information ζ, is not explicitly used by the transmitter. Rather,
it is an imaginative output used only for designing a good encoder-decoder
pair that in turn produces suitable feedback information. After designing
the feedback link, the parameters m(ζ) and R(ζ), needed in the transmit
weight design procedure, may be determined based on the feedback link
output ĥ(j).



164 5 Quantized Channel Feedback: Design Approach I

PSfrag replacements

Enc: ε(γ)Dec: δ(j) Pj|i

ij
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Figure 5.2: Feedback link that quantizes the channel coefficients di-
rectly.

Designing the Encoder and the Decoder

Feedback information useful for the transmission scheme is obtained by
designing the encoder and the decoder so that the mean-square error
between ĥ(j) and the true channel h is minimized. We use channel opti-
mized vector quantization (COVQ) [FV91] so that also feedback channel
bit-errors are taken into account in the design process. For the problem
at hand, the encoder and the decoder are thus considered optimal if

D({Si}, {ĥ(j)}) , E[‖h − ĥ(j)‖2] (5.5)

is minimized with respect to the mappings defined by the set of encoder
regions {Si} and decoder channel estimates {ĥ(j)}.

The expression in (5.5) is similar to the criterion generally used in the
COVQ literature except for the fact that the decoder now attempts to
reconstruct h as opposed to reconstructing the source vector γ. However,
with some modifications, (5.5) can be minimized using standard methods
[Far90, FV91] for training COVQ:s. In this work, the COVQ is trained
using Monte-Carlo simulation of a modified version of the well-known
Lloyd algorithm [GG92]. This algorithm alternates between optimizing
the encoder while holding the decoder fixed, and optimizing the decoder
while holding the encoder fixed, until convergence is achieved. The met-
rics associated with such a training procedure are now derived.

By conditioning on i and γ, the distortion measure in (5.5) can be
rewritten as E

[
E[‖h− ĥ(j)‖2|i,γ]

]
. Hence, for the problem at hand, the

optimal encoder, assuming the decoder is known and fixed (as defined by
{ĥ(j)}), is given by

ε(γ) = arg min
i

E[‖h − ĥ(j)‖2|i,γ] . (5.6)

Since h|γ is independent of i and j, and j|i is independent of γ, the
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criterion function in (5.6) can be expanded as

E[‖h − ĥ(j)‖2|i,γ] =
2b−1∑

j=0

Pr[j|i,γ] E
[(

h − ĥ(j)
)∗(

h − ĥ(j)
)∣
∣i, j,γ

]

=
2b−1∑

j=0

Pj|i E[h∗h − h∗ĥ(j) − ĥ(j)∗h + ĥ(j)∗ĥ(j)|i, j,γ]

=
2b−1∑

j=0

Pj|i

(
E[h∗h|γ] − E[h|γ]∗ĥ(j) − ĥ(j)∗ E[h|γ] + ĥ(j)∗ĥ(j)

)

=
2b−1∑

j=0

Pj|i

(
mh|γ − ĥ(j)

)∗(
mh|γ − ĥ(j)

)
− m∗

h|γmh|γ + E[h∗h|γ] ,

where we note that mh|γ = E[h|γ] is the MMSE estimate of the current
channel realization h based on γ. The assumption that h and γ are
jointly complex Gaussian implies that mh|γ is given by

mh|γ = mh + RhγR−1
γγ(γ − mγ) .

After omitting terms independent of i, (5.6) simplifies to

ε(γ) = arg min
i

2b−1∑

j=0

Pj|i‖mh|γ − ĥ(j)‖2 . (5.7)

Now we turn to the decoder. Since a mean-square error criterion is
used, standard results from estimation theory imply that the optimal
decoder, given a known encoder (as described by the encoder regions
{Si}), is obtained as δ(j) = ĥ(j) = E[h|j]. By again utilizing that h|γ
is independent of i and j and, moreover, that γ|i is independent of j, the
decoder is derived as

δ(j) = ĥ(j) = E[h|j]

=

2b−1∑

i=0

Pr[i|j] E[h|i, j]

=
2b−1∑

i=0

Pi|j E[E[h|γ, i, j]|i, j]
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=

2b−1∑

i=0

Pi|j E[mh|γ |i] (5.8)

where

E[mh|γ |i] = mh + RhγR−1
γγ(E[γ|i] − mγ)

Pi|j ,
Pj|iPi

∑2b−1
i=0 Pj|iPi

,

with Pi denoting the probability that the feedback encoder outputs i.
As seen, the channel knowledge contained in γ is incorporated into

the feedback link design through the MMSE estimate mh|γ . This makes
sense since the goal is to reproduce the current channel h, as opposed to
reproducing the source vector γ like in standard COVQ. Note that when
the MMSE estimate is perfect, so that mh|γ is essentially the same as h,
the feedback link simplifies to a standard COVQ (as can be verified by
setting h in place of mh|γ).

Feedback delay, quantization errors and bit-errors in the feedback
channel all contribute to the non-perfect nature of the channel informa-
tion. This is also reflected by the fact that, as shown in Appendix 5.A.1,
Rhh|ζ , which is a measure of the quality of the channel side information

ζ = ĥ(j), can be decomposed into three corresponding terms according
to

Rhh|ζ = Rhh|γ + RhγR−1
γγ E[(γ − E[γ|i])(γ − E[γ|i])∗|j]R−1

γγR∗
hγ

+ RhγR−1
γγ E

[
(E[γ|j] − E[γ|i])(E[γ|j] − E[γ|i])∗

∣
∣j
]
R−1

γγR∗
hγ , (5.9)

where the first term can be interpreted as feedback delay distortion (i.e.,
h and γ differ), the second term can be thought of as describing the
contribution from quantization errors and the third term corresponds to
the feedback channel distortion.

Determining m(ζ) and R(ζ)

To construct the codebook of transmit weights, m(ζ) and R(ζ) need to
be determined for each of the 2b possible outcomes of the channel side
information vector ζ = δ(j) = ĥ(j). For the present type of feedback
link, we let m(ζ) , mh|ζ , R(ζ) , Rhh|ζ , in line with the setup of the
original design procedure. In case of an ideal feedback channel, this choice
essentially corresponds to modeling the quantization errors as complex
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Gaussian. As pointed out in Section 4.2.1, such a model represents a
rather crude approximation.

Since it can be assumed that there is a one to one correspondence
between ĥ(j) and j, the required entities are given by

m(ζ) = mh|ζ = E[h|j] = ĥ(j)

R(ζ) = Rhh|ζ = E[(h − E[h|j])(h − E[h|j])∗|j]
= E[hh∗|j] − E[h|j] E[h|j]∗

= Rhh|γ + RhγR−1
γγ(E[γγ∗|j] − E[γ|j] E[γ|j]∗)R−1

γγR∗
hγ ,

where

E[γ|j] =
2b−1∑

i=0

Pi|j E[γ|i], E[γγ∗|j] =
2b−1∑

i=0

Pi|j E[γγ∗|i] .

A more detailed derivation can be found in Appendix 5.A. To implement
(5.7) and (5.8) in the VQ design process, and also to compute m(ζ) and
R(ζ), the entities Pi, E[γ|i] and E[γγ∗|i] are all replaced by appropriate
sample estimates obtained from the Monte-Carlo simulation. The trans-
mit weight design procedure in (5.3) is thereafter used for obtaining the

codebook {W (ζ)}.

Parameter Independent Encoder/Decoder

Clearly, the COVQ depends on a number of parameters related to the
joint statistics of h and γ. From (5.7), (5.8) and the expression for
mh|γ it is obvious that mh, mγ , Rhγ and Rγγ directly influence the
COVQ. In practice, this may be handled by appropriately quantizing the
parameters and designing several COVQ:s off-line, one for each possible
realization of the quantized parameters.

Such an approach may be undesirable for complexity reasons. Hence,
it would be attractive if the encoder-decoder pair could be held fixed,
regardless of the value of these parameters and without loss of perfor-
mance. Toward this end, note that the dependence upon mh and mγ is
only superficial and can easily be removed. Because of the expression for
mh|γ , it is straightforward to show that the COVQ can be trained as-
suming that h and γ are zero-mean vectors, without loss of performance.
Consequently, to implement the COVQ, mh is added to the output of
the decoder and γ − mγ is used as input to the encoder.
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In general, the COVQ still depends on Rhγ and Rγγ . However, when
these are equal to scaled identity matrices, it can be shown that also the
remaining dependence can be removed. Thus, for the simplified fading
scenario the structure of the feedback link reduces to the one illustrated
in Figure 5.3. Without loss of performance, the feedback link is trained
using ρ → 1 and σ2

h = 1 and is then held fixed. The resulting encoder-
decoder pair is used also for other values of ρ and σ2

h by normalizing the

input to the encoder and computing the channel estimate ĥ(j) as the
product of the output of the decoder and the true value of ρσh.

PSfrag replacements
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Figure 5.3: Equivalent structure of feedback link for the simplified fad-
ing scenario.

Behavior of Weighted OSTBC Based on Quantized Feedback

The transmission scheme and the feedback link cooperate so that robust-
ness against channel information impairments is achieved. To understand
what makes the system successful, this section discusses the behavior of
the transmission scheme and the feedback link in the two extreme cases
of perfect and no channel knowledge, respectively. The discussion is to a
large extent also applicable to the second type of feedback link which is
presented in Section 5.4.2.

Perfect channel knowledge corresponds to ‖R(ζ)‖ = ‖Rhh|ζ‖ → 0,
which means that m(ζ) = mh|ζ is essentially equal to the true channel
vector h. By studying the expression for Rhh|ζ in (5.9) it is realized that
in order for the feedback link to output perfect channel information, all
of the three error sources must be absent. If this is the case, the first term
of the design criterion in (5.4) is seen to dominate. From the previous
analysis in Section 4.6, it is clear that this means that the designed trans-
mit weighting is a rank one matrix such that the all the output power
is allocated to the transmit-direction given by the strongest left singular
eigenvector of the channel matrix H. The transmitter is hence seen to
perform a sort of beamforming. In particular, in the case of only one
receive antenna it holds that H = h, which implies that the strongest
left singular eigenvector is proportional to h. Hence, all the output power
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is concentrated in the direction of the current channel realization. It can
thus be concluded that when the initial channel information is good, a
large number of bits b are used, the feedback channel bit-error probabil-
ity Pb is small and only one receive antenna is present, the transmission
scheme resembles classical beamforming.

Consider now the other extreme of no channel knowledge. In other
words, ζ is independent of h and the channel fading is non-informative
so that mh = 0 and Rhh = σ2

hIMN , as is for example the case in the
simplified fading scenario in Section 5.2.2. Clearly, ζ is independent of h

if there is no initial channel information (i.e., ρ = 0 or γ is independent of
h), Pb = 0.5 and/or b = 0. It readily follows that m(ζ) = mh|ζ = mh =
0 and R(ζ) = Rhh|ζ = Rhh = σ2

hIMN . From the previous development
in Section 4.8.1 it is now evident that the designed transmit weighting is a
scaled unitary matrix, for example W = IM

√

Po/M . The predetermined
codewords in C̄ are hence transmitted without modification, resulting in
an open-loop type of system employing conventional OSTBC. This makes
sense since the transmitter does not know the channel and therefore has
to choose a “neutral” solution. Taking the simplified fading scenario as an
example, the transmission scheme thus becomes more and more similar
to conventional OSTBC as ρ approaches zero, Pb approaches 0.5 and/or
b is decreased.

5.4.2 Feedback Link Type II – Relative Amplitude
and Phase

Experimental investigations show that the direct quantization strategy
adopted in feedback link type I gives good performance when the number
of bits b is large. At least in the case of no bit-errors, this should come
as no surprise as the quantization errors are negligible and the scenario
hence agrees reasonably well with the assumptions used in the derivation
of the performance criterion. However, when b is small, simulation results
indicate that there is a need for a distortion measure in the VQ design
process that better suits the characteristics of weighted OSTBC.

Accurate estimates of the phases of the channel coefficients are partic-
ularly important for obtaining good performance. The signals from the
different transmitter antennas might otherwise cancel each other, regard-
less of the quality of the channel coefficients’ amplitude estimates. This
agrees well with previous work where primarily the phases of the chan-
nel coefficients are taken into account [HP98, MSA01]. In addition, for
conventional beamforming it is sufficient for the transmitter to only have
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knowledge about the amplitudes and phases relative one of the channel
coefficients [NLTW98]. Since the number of degrees of freedom that must
be quantized decreases, the number of bits b can be reduced even further
without sacrificing performance. To enjoy these benefits also in the trans-
mission methods of the present work, this section presents a feedback link
where the design of the VQ is based on a distortion measure that mea-
sures the channel information error in terms of relative amplitudes and
phases.
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Figure 5.4: Feedback link based on quantizing the relative amplitudes
and phases of the channel coefficients.

An illustration of this second type of feedback link is provided in
Figure 5.4. Prior to quantization, the initial channel information γ is re-
mapped in two steps. In the first step, the elements of γ are all divided
by the first element γ1, producing an MN × 1 vector

γ́ , γ/γ1 =
[
1 γ2/γ1 γ3/γ1 · · · γMN/γ1

]T
,
[

1 γ̃T
]T

. (5.10)

The element corresponding to γ1/γ1 = 1 does not need to be quantized
and is hence discarded. The second step is to split the remaining ele-
ments γ̃ into their corresponding amplitudes and phases, resulting in the
(2MN − 2) × 1 vector

θ ,
[
θT

a θT
p

]T
, (5.11)

where

θa ,
[
|γ2|/|γ1| · · · |γMN |/|γ1|

]T
(5.12)

θp ,
[
arg(γ2/γ1) · · · arg(γMN/γ1)

]T
(5.13)

and where arg(·) now denotes the phase, in the range −π to π, of its
complex valued argument. Thus, (5.10) - (5.13) together define a func-
tion f : C

MN−1 → R
2MN−2, where R denotes the real number field,

such that θ = f(γ). The relative amplitudes and phases in θ are en-
coded, transmitted over the feedback channel and decoded into an esti-
mate θ̂(j) , δ(j) of θ, where θ̂(j) represents the channel information
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ζ. Based on the channel information, some intermediate entities mh́|ζ

and Rh́h́|ζ are first computed and then transformed into m(ζ) and R(ζ).
These will be determined in such a way that they mimic the behavior of
the conditional mean and covariance utilized in the first type of feedback
link.

Designing the Encoder and the Decoder

The VQ may be designed so as to make the error between the source
vector θ and θ̂(j) as small as possible in the mean-square error sense. A
problem with such an approach for the present feedback link is that it
does not take into account that the phase wraps around, or in other words,
phase values that are equal modulo 2π are equivalent. For example, two
vectors that are close to, but on opposite sides of, the negative real axis
should not be considered “far apart”. However, this is precisely the case
when the distance is measured in terms of phase difference. Neglecting the
phase wrapping effect is feasible in many cases since experimental studies
show that the designs work well anyway. Nevertheless, when bit-errors
are introduced by the feedback channel, the performance may suffer due
to the resulting mapping of codebook vectors to binary representations.
To avoid such a poor mapping, a so-called index assignment algorithm
can be used on a previously designed VQ for reordering the vectors in the
codebook in a better way. While it seems difficult to directly incorporate
phase wrapping into the design of the VQ, it is straightforward to use
a distortion measure in the index assignment algorithm that takes the
phase wrapping effect into account.

The above discussion motivates us to take on a two-step approach in
which the VQ is first designed without regard to bit-errors and then mod-
ified using an index assignment algorithm to achieve robustness against
bit-errors.

In the first step, an initial codebook is found by training the VQ in
a rather conventional manner under the assumption that there are no
feedback channel bit-errors, i.e., Pb = 0 and hence j = i. To obtain
an appropriate tradeoff between the importance of amplitude and phase
errors, the mean-square error between θ and the decoder output θ̂(i) is
weighted and the encoder and decoder are considered optimal if

D({Si}, {θ̂(i)}) , E[‖θ − θ̂(i)‖2
K ] (5.14)

is minimized. The encoder regions {Si} now form a partition of the set of
possible θ and the squared norm ‖·‖2

K is defined through ‖x‖2
K = x∗Kx,
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where K constitutes a Hermitian positive definite weighting matrix. An
optimal choice of K is beyond the scope of this work and K is instead
chosen empirically until satisfactory results are obtained. The encoder
and decoder are again found by minimizing (5.14) using Monte-Carlo
simulation of the Lloyd algorithm. Under the above conditions, it is
straightforward to verify that the required expression for the encoder,
assuming a fixed decoder, is given by

ε(θ) = arg min
i

E[‖θ − θ̂(i)‖2
K |i,θ] = arg min

i
‖θ − θ̂(i)‖2

K , (5.15)

whereas the decoder, assuming a fixed encoder, is given by

δ(i) = θ̂(i) = E[θ|i] . (5.16)

In the second and final step of the design procedure, the probability
of bit-error Pb is set at a high level, in our case 5%, and the average dis-
tortion E[d(θ̂(i), θ̂(j))] due to bit-errors is reduced by evaluating different
permutations of the codebook vectors. For this purpose, an index assign-
ment algorithm presented in [Far90] is used, but with phase wrapping
incorporated into a modified distortion measure

d
(
θ̂(i), θ̂(j)

)
= ‖θ̂a(i) − θ̂a(j)‖2

Ka
+
∥
∥q
(
θ̂p(i) − θ̂p(j)

)∥
∥

2

Kp
, (5.17)

where Ka and Kp are the sub-matrices on the main diagonal of K cor-
responding to θa and θp, respectively. Hence, K is assumed to be block
diagonal. Moreover, q(x) is an (MN −1)×1 vector valued function with
its kth element given by

q(xk) ,







xk, |xk| ≤ π

2π − xk, π < xk < 2π

−2π − xk, −2π < xk < −π .

(5.18)

As seen from (5.17), the distortion measure is fairly standard except
that phase difference is measured according to (5.18) so as to take phase
wrapping into account.

Determining m(ζ) and R(ζ) Based on Heuristic Arguments

In order for the transmission scheme to use (5.3) for determining good
transmit weighting matrices, appropriate values for m(ζ) and R(ζ) based
on the channel information θ̂(j) need to be found. It is important to
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realize that a direct computation of, for example, m(ζ) according to
m(ζ) , mh|ζ = E[h|θ̂(j)] will not work since information necessary for
reconstructing h has been inevitably lost when γ was divided by γ1. Be-
cause of the loss of information, the MMSE estimate E[h|θ̂(j)] will be
poor. Hence, such an estimate is almost useless for conveying channel
information to the transmitter. The need for a practical method of de-
termining useful expressions replacing the obvious, but naive, expressions
for m(ζ) and R(ζ) naturally arises. The remaining part of this section
is therefore devoted to showing how θ̂(j) can be put into practical use
by the proposed transmission scheme.

As indicated by Figure 5.4, the approach in this work is to compute
the conditional mean and covariance for h́ , h/h1, rather than for h.
Since the number of degrees of freedom in h́ is similarly reduced as in
θ̂(j), such an approach will not suffer from the consequences of infor-
mation loss as previously described. The use of h́ is justified as follows.
Consider the performance criterion in (5.4) with the parameters set to
m(ζ) , mh|ζ , R(ζ) , Rhh|ζ and assume perfect channel knowledge
at the transmitter, i.e., ‖Rhh|ζ‖ → 0 for a fixed ζ. Also, assume that

m̄h|ζ , lim‖Rhh|ζ‖→0 mh|ζ exists and is finite. Consequently, the first

term in (5.4) dominates and the performance criterion ˜̀(W ;mh|ζ ,Rhh|ζ)
is approximately equivalent to

¯̀(W ) , −m̄∗
h|ζ(IN ⊗ WW ∗)m̄h|ζ ,

as evident from (4.50). Due to the perfect channel knowledge assumption,
it holds that m̄h|ζ ≈ h and therefore also

¯̀̄(W ) , −h∗(IN ⊗ WW ∗)h ≈ ¯̀(W ) , (5.19)

with good accuracy. Similar to conventional beamforming, if h́ = h/h1

is substituted for h in (5.19) it is clear that neither the amplitude nor
the phase of h1 significantly affects the weighting W that is obtained
from the corresponding minimization problem. This roughly provides
motivation for using h́ in place of h in the performance criterion, i.e., we
wish to replace m(ζ) and R(ζ) with

mh́|ζ , E[h́|j] =

2b−1∑

i=0

Pi|j E[h́|i] (5.20)

Rh́h́|ζ , E[(h́ − E[h́|j])(h́ − E[h́|j])∗|j]
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= E[h́h́
∗|j] − E[h́|j] E[h́|j]∗

=

2b−1∑

i=0

Pi|j E[h́h́
∗|i] − mh́|ζm∗

h́|ζ
, (5.21)

respectively. However, these asymptotically motivated entities need to be
slightly modified before they can be successfully used in scenarios where
the channel knowledge is not perfect. Specifically, three issues need to be
addressed:

1. To approximately keep the original proportion between the first and
second term in the performance criterion (5.4), the lost amplitude
information is partially compensated for by multiplying h́ with the
mean E[|h1|].

2. Since h́1 ≡ 1, element (1, 1) of Rh́h́|ζ will be zero, which means that
Rh́h́|ζ is singular. A reasonable fix for this problem is to set element

(1, 1) to the average variance of the other elements. In other words,
the element is set to tr(Rh̃h̃|ζ)/(MN − 1), where Rh̃h̃|ζ represents

the (MN − 1) × (MN − 1) lower right block of Rh́h́|ζ and h̃ is

defined through h́ =
[

1 h̃
T
]T

. This modification makes intuitive

sense since it means that Rh́h́|ζ can be viewed as a parameter which
seamlessly tunes between conventional beamforming and OSTBC.

3. The use of (5.20), (5.21) and the two previous modifications in con-
junction with the transmission scheme generally gives good perfor-
mance. However, simulation results indicate that the transmission
scheme overcompensates for large quantization errors and thereby
steers the weighting W too close toward an open-loop solution.
Conventional beamforming is on the other hand relatively robust
against pure quantization errors and provides acceptable perfor-
mance for such scenarios. In cases where only quantization errors
affect the quality of the channel information, the performance of
weighted OSTBC can be improved by making the conditional co-
variance small, since the transmission scheme then resembles clas-
sical beamforming and thus inherits its for this case good perfor-
mance. It is of course highly desirable if such a modification also
works well when other errors influence the channel information. As
is shown next, both these latter aspects are taken into account by
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removing a part of the conditional covariance that can be consid-
ered to be due to quantization errors.

Recall the result in (5.9) that Rhh|ζ , assuming a feedback link of
type I, can be decomposed into three terms. One of the terms may
be attributed to quantization errors. Obviously, the assumptions
used when deriving that result do not hold in the present case. Nev-
ertheless, (5.9) is still reasonable for the feedback link type under
consideration so inspired by the expression for the term in (5.9)
that corresponds to quantization errors, we take

R
(q)

h̃h̃|ζ
, Rh̃γ̃R−1

γ̃γ̃ E[(γ̃ − E[γ̃|i])(γ̃ − E[γ̃|i])∗|j]R−1
γ̃γ̃R∗

h̃γ̃

= Rh̃γ̃R−1
γ̃γ̃(E[γ̃γ̃∗|j] −

2b−1∑

i=0

Pi|j E[γ̃|i] E[γ̃|i]∗)R−1
γ̃γ̃R∗

h̃γ̃
(5.22)

as a measure of the contribution of the quantization distortion to
Rh̃h̃|ζ . Motivated by the above discussion, Rh̃h̃|ζ is replaced with

R
(f+c)

h̃h̃|ζ
, Rh̃h̃|ζ −R

(q)

h̃h̃|ζ
. Examining simulation results shows that

this pragmatic approach works well and improves the performance
in scenarios with coarsely quantized channel information.

Thus, to summarize, incorporating the three heuristic modifications
mentioned above into the system means that the parameters passed to
the transmission scheme are set to

m(ζ) , E[|h1|]mh́|ζ

R(ζ) , E[|h1|]2



tr
(
R

(f+c)

h̃h̃|ζ

)
/(MN − 1) 0T

0 R
(f+c)

h̃h̃|ζ



 .

Because R
(f+c)

h̃h̃|ζ
is computed as a difference between two matrices, R

(f+c)

h̃h̃|ζ

and hence Rhh|ζ is not necessarily positive definite. This problem is
avoided by setting negative eigenvalues of Rhh|ζ to zero and adding a
small regularizing term εIMN , ε > 0 to the resulting matrix.

5.5 Detecting the Transmit Weighting

For high performance it is desirable to use coherent ML detection at the
receiver. To implement such a scheme, the transmit weighting must be
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known at the receiver. Because b-bit quantization is assumed, the trans-

mitter may have used any out of the 2b different weights {W (δ(j))}2b−1
j=0 .

Knowing which one is not a problem as long as the feedback link is free
from bit-errors, since then j = i and the receiver can demodulate using
W (δ(i)). However, in the presence of bit-errors, i does not necessarily
equal j and hence the receiver can no longer be sure that W (δ(i)) was
used in the transmission. To mitigate this problem, it is shown next
how the receiver can detect the value of j, based on knowledge of i, the
received signal and a training sequence.

In the derivation to follow, it is assumed that the transmitted signal
can be divided into frames, where each frame contains a block of unknown
OSTB codewords, corresponding to the data of interest, and possibly
also a known training sequence. Recall from the system model that the
channel is assumed known and constant for the duration of a frame. By
grouping, similarly to as in (5.1), a block of received signal vectors x(n)
into a matrix Xt+d, the received signal for one such frame can be written
on the form

Xt+d = H∗W (δ(j))C̄t+d + Et+d ,

where

C̄t+d =
[
C̄t C̄d

]

consists of a training part C̄t and a data part C̄d of unknown codewords
and where Xt+d and Et+d are similarly defined. The lengths of the
training and the data sequence are denoted Lt and Ld, respectively.

Based on knowledge of i and Xt+d, the feedback channel output j is
detected possibly jointly with the data C̄d according to the maximum a
posteriori decision rule, i.e.,

{ĵ, ˆ̄Cd} = arg max
{j,C̄d}

p(j, C̄d|i,Xt+d)

= arg max
{j,C̄d}

p(Xt+d|i, j, C̄d)p(j, C̄d|i)
p(Xt+d|i)

= arg max
{j,C̄d}

p(Xt+d|j, C̄d)p(j|i)p(C̄d)

= arg max
{j,C̄d}

p(Xt|j)p(Xd|j, C̄d)Pj|i

= arg min
{j,C̄d}

(
‖Xt − H∗W (δ(j))C̄t‖2

F + ‖Xd − H∗W (δ(j))C̄d‖2
F

− σ2 log(Pj|i)
)
, (5.23)
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where p(u|v) denotes the probability mass/density function of u condi-
tioned on v, p(j, C̄d|i) = p(j|i, C̄d)p(C̄d|i) = p(j|i)p(C̄d) is due to the
assumption that the output C̄d of the OSTB encoder only depends on
the data to be transmitted and is statistically independent of all other
random quantities and where the fourth equality follows from discard-
ing parameter independent factors, the whiteness of the noise and the
uniform distribution of C̄d. The receiver’s knowledge about i is ob-
viously incorporated into the detection process through the last term,
which guarantees that ĵ = j = i is obtained in the absence of bit-errors.

It is evident from (5.23) that compared with when the transmit
weighting is known, the computational complexity in the general case of
joint detection increases a factor of 2b since there are 2b different transmit
weights to be tried. Fortunately, the complexity is far from being as high
as when performing an exhaustive search, since for each tentative j the
detection of the OSTB code can be efficiently implemented by decoding
the constituent information symbols separately as in (3.14).

Nevertheless, such joint detection may still be prohibitively expensive
in some cases, making it worthwhile to consider the special case when
Ld = 0, i.e., the second term in (5.23) is omitted and the detection
of the transmit weighting is based on the training part alone. Once the
transmit weighting has been established, the data sequence can thereafter
be detected as in (3.14), thus avoiding joint detection. Naturally, the
requirements on the length of the training sequence might be tougher in
this case, compared with when joint detection is used.

Note that the training sequence C̄t is used for the sole purpose of
detecting W . This together with the previously mentioned assumption
that the channel matrix H is known at the receiver typically means that
H needs to be estimated from another training sequence which is not
weighted by W . In practice, such a training sequence may be transmitted
before or after C̄t or, as in the WCDMA system [3GP02b], in parallel on
a so-called common pilot channel.

5.6 Numerical Examples

In order to illustrate the benefits of the proposed transmission schemes,
simulations based on the simplified fading scenario described in Section
5.2.2 were performed. The focus is on a system with two transmit anten-
nas and one receive antenna. Two bit quantization in conjunction with
a type II feedback link was evaluated for all simulation cases to show
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that weighted OSTBC can be made to work well in the common scenario
of very coarsely quantized feedback information. Simulation results for
the case of more bits and a type I feedback link are also presented. The
performance of weighted OSTBC based on quantized feedback informa-
tion was compared with three other methods – conventional OSTBC,
ideal beamforming3 and conventional beamforming based on circularly
quantized feedback. In ideal beamforming it is assumed that the chan-
nel is known perfectly so the transmit weighting vector is equal to h

(one receive antenna). Conventional beamforming with circularly quan-
tized feedback is similar to standard ways of conveying quantized chan-
nel information to a beamformer [HP98, MSA01]. The phase of γ2/γ1 is
uniformly quantized or, more precisely, the encoder output is given by
i = ε(γ́) , arg mink ‖γ́ − ˆ́γ(k)‖2, with a two bit codebook

ˆ́γ(0) ,
[
1 1

]T
, ˆ́γ(1) ,

[
1 j

]T

ˆ́γ(2) ,
[
1 −j

]T
, ˆ́γ(3) ,

[
1 −1

]T
,

where j denotes the imaginary unit. As seen, care has been taken to
ensure that the impact of feedback channel bit-errors is reduced by or-
dering the codebook so that codebook vectors far from each other (e.g.
ˆ́γ(0) and ˆ́γ(3)) differ in two bits (0 = 00binary versus 3 = 11binary) while
neighboring vectors differ in only one bit. This serves to minimize the
likelihood of large errors, such as when ˆ́γ(0) is confused with ˆ́γ(3). Based
on the feedback channel output j, the transmit weighting vector is now
given by ˆ́γ(j).

The assumptions in the simulations were as follows. For all the ex-
amined cases, the simplified fading scenario was used assuming perfect
knowledge of σ2, σ2

h, ρ and Pb at both the transmitter and receiver. The
variance of the channel coefficients and the average energy per informa-
tion bit were arbitrarily set at σ2

h = 1 and P = 1, respectively. The
channel was constant during the transmission of a frame of codewords
and independently fading from one frame to another. Each frame con-
tained Lt = 2 training samples and Ld = 10 data samples, as described
in Section 5.5. The Alamouti OSTB code [Ala98] was used in the conven-
tional OSTBC system as well as in weighted OSTBC. Data to be trans-
mitted consisted of a sequence of IID information bits that was mapped
into a corresponding sequence of data symbols, prior to being input to

3Similarly to as in Chapter 4, beamforming is taken to be a system in which the
transmitted signal can be written on the form c(n) = vs(n), where s(n) represents
the nth data symbol and v is a transmit weighting vector.



5.6 Numerical Examples 179

the OSTB encoder. Each data symbol was taken from a gray coded,
four quadrature phase shift keying (4-QPSK), signal constellation. The
type II feedback links were designed using a diagonal weighting matrix
K = diag(0.2, 0.8). This choice was found empirically and emphasizes
the importance of primarily conveying phase information. Throughout
the simulations, BER was used as the performance measure. The SNR
was measured for the system using conventional OSTBC and defined as

SNR ,
E[‖H∗C‖2

F]

LNσ2
,

where C =
√

Po/MC̄ represents the transmitted signals. The expression
for the SNR is equal to the total received average signal energy, divided
by the total average noise energy.

Varying the SNR

In Figure 5.5, the BER as a function of the SNR is plotted. Only quan-
tization errors impair the quality of the channel information. Hence,
ρ → 1 and Pb = 0, where the latter implies that the receiver automati-
cally knows which transmit weighting that was used.

Using two bit quantization and a type II feedback link, the perfor-
mance of weighted OSTBC is seen to be similar to the performance of
conventional beamforming. As the number of bits is increased, the perfor-
mance quickly approaches that of ideal beamforming. On the other hand,
the performance of weighted OSTBC based on a type I feedback link is
significantly poorer for the two bit case. There are simply not enough
bits to capture any useful channel information. Because weighted OS-
TBC takes the quality of the channel information into account, the per-
formance is however not worse than conventional OSTBC. As expected
and illustrated by the eight bit curves, the difference between a type I and
type II feedback link becomes smaller as the number of bits increases. It
is also seen that weighted OSTBC is essentially robust against quantiza-
tion errors in the sense that the performance is better than conventional
OSTBC (with the minor exception of type I eight bit weighted OSTBC at
high SNR values). Conventional beamforming with circular quantization
is clearly better than a type I system at handling quantization errors.

Robustness against errors in the initial channel information is demon-
strated in Figure 5.6. The assumption of ρ = 0.1 means that the quality
of the channel knowledge is poor, even though Pb = 0. The curves corre-
sponding to weighted OSTBC are seen to closely follow the conventional
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Figure 5.5: Demonstrates how quantization errors affect the perfor-
mance. Simplified fading scenario with ρ → 1, M = 2 transmit antennas,
N = 1 receive antenna and Pb = 0.

OSTBC curve while conventional beamforming is not robust since the
performance rapidly deteriorates as the SNR is increased.

Next, the behavior of the proposed transmission scheme in the pres-
ence of feedback channel bit-errors is illustrated in Figures 5.7 and 5.8.
The feedback channel BER is set to Pb = 0.4 and results for both when
the receiver knows and does not know the weighting matrix W are plot-
ted. For the latter case, the weighting matrix was detected according to
(5.23). The same detection method was also used for the beamforming
case but now with C̄d representing a symbol sequence instead of space-
time codewords. Again, weighted OSTBC is robust while conventional
beamforming is unable to handle the situation.
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Figure 5.6: Impact of non-perfect initial channel information. Simpli-
fied fading scenario with ρ = 0.1, M = 2 transmit antennas, N = 1
receive antenna and Pb = 0.

Varying the BER of the Feedback Channel

To further illustrate the robustness against bit-errors introduced by the
feedback channel, the corresponding BER Pb was varied while the SNR
was held fixed at 15 dB. Results corresponding to when the receiver
knows as well as does not know the weighting matrix are presented in
Figures 5.9 and 5.10, respectively.

As expected, conventional beamforming is seen to perform poorly
when Pb is large. Weighted OSTBC for known W , on the other hand,
approaches conventional OSTBC in performance as Pb is increased. Only
a modest deterioration is incurred for the type II system when the receiver
has to detect the transmit weighting matrix. The type I system suffers
more because of higher failure rate in the detection process due to the
large number of possible transmit weights to choose from. From these
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Figure 5.7: Performance in presence of feedback channel bit-errors when
receiver knows the transmit weighting. Simplified fading scenario with
ρ → 1, M = 2 transmit antennas, N = 1 receive antenna and Pb = 0.4.

figures, we conclude that the transmission scheme proposed herein is
robust against errors due to the feedback channel. However, as mentioned
in Section 5.2.1, this comes at the price of estimating and distributing
certain necessary parameters.

5.7 Conclusions

This chapter investigated the use of weighted OSTBC in conjunction
with quantized channel side information obtained from a feedback link.
Techniques from the field of vector quantization for noisy channels were
used for designing two different types of feedback links, with the goal
of providing the transmitter with useful information about the current
channel realization. The channel information, including an accompanying
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Figure 5.8: Performance in presence of feedback channel bit-errors when
receiver has to detect the transmit weighting. Simplified fading scenario
with ρ → 1, M = 2 transmit antennas, N = 1 receive antenna and
Pb = 0.4.

reliability measure, was then used for determining a suitable codebook of
transmit weighting matrices. The resulting transmission scheme provides
a seamless combination of conventional beamforming and OSTB coding,
robust against errors in the channel side information due to feedback
delay, quantization as well as feedback channel bit-errors. Numerical
examples provided support of this claim.
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Figure 5.9: Performance in the presence of feedback channel bit-errors
when the receiver knows the transmit weighting. Simplified fading sce-
nario with ρ → 1, M = 2 transmit antennas, N = 1 receive antenna and
SNR = 15 dB.
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Figure 5.10: Performance in the presence of feedback channel bit-errors
when the receiver has to detect the transmit weighting. Simplified fading
scenario with ρ → 1, M = 2 transmit antennas, N = 1 receive antenna
and SNR = 15 dB.



186 5 Quantized Channel Feedback: Design Approach I

Appendix 5.A Conditional Covariance for

Feedback Link Type I

The conditional covariance Rhh|ζ for feedback link type I is given by

Rhh|ζ = E[hh∗|j] − E[h|j] E[h|j]∗ . (5.24)

Recall that h|γ is independent of j. The first term in (5.24) is rewritten
as

E[hh∗|j] = E
[
E[hh∗|γ, j]

∣
∣j
]

= E[Rhh|γ + mh|γm∗
h|γ |j]

= Rhh|γ

+ E
[(

mh + RhγR−1
γγ(γ − mγ)

)(
mh + RhγR−1

γγ(γ − mγ)
)∗∣
∣j
]

= Rhh|γ + mhm∗
h + mh E[γ − mγ |j]∗R−1

γγR∗
hγ

+RhγR−1
γγ E[γ−mγ |j]m∗

h+RhγR−1
γγ E[(γ−mγ)(γ−mγ)∗|j]R−1

γγR∗
hγ ,

where the third equality follows from the fact that Rhh|γ = Rhh −
RhγR−1

γγR∗
hγ is independent of γ and hence of j. The second term in

(5.24) is expressed as

E[h|j] E[h|j]∗ = E
[
E[h|γ, j]

∣
∣j
]
E
[
E[h|γ, j]

∣
∣j
]∗

= E[mh + RhγR−1
γγ(γ − mγ)|j] E[mh + RhγR−1

γγ(γ − mγ)|j]∗

= mhm∗
h + mh E[γ − mγ |j]∗R−1

γγR∗
hγ + RhγR−1

γγ E[γ − mγ |j]m∗
h

+ RhγR−1
γγ E[γ − mγ |j] E[γ − mγ |j]∗R−1

γγR∗
hγ .

Hence, combining the first and second term, gives the conditional covari-
ance

Rhh|ζ = Rhh|γ

+RhγR−1
γγ

(
E[(γ−mγ)(γ−mγ)∗|j]−E[γ−mγ |j] E[γ−mγ |j]∗

)
R−1

γγR∗
hγ

= Rhh|γ

+RhγR−1
γγ E

[
(γ−mγ−E[γ−mγ |j])(γ−mγ−E[γ−mγ |j])∗

∣
∣j
]
R−1

γγR∗
hγ

= Rhh|γ

+ RhγR−1
γγ E

[
(γ − E[γ|j])(γ − E[γ|j])∗

∣
∣j
]
R−1

γγR∗
hγ

= Rhh|γ + RhγR−1
γγ(E[γγ∗|j] − E[γ|j] E[γ|j]∗)R−1

γγR∗
hγ . (5.25)
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5.A.1 Decomposing the Conditional Covariance into
Three Terms

Consider

Rhh|ζ = Rhh|γ + RhγR−1
γγ E

[
(γ − E[γ|j])(γ − E[γ|j])∗

∣
∣j
]
R−1

γγR∗
hγ .

in (5.25). Expanding E
[
(γ − E[γ|j])(γ − E[γ|j])∗

∣
∣j
]

by utilizing that
γ − E[γ|j] = γ − E[γ|i] − (E[γ|j] − E[γ|i]) gives

E
[
(γ − E[γ|j])(γ − E[γ|j])∗

∣
∣j
]

= E
[
(γ−E[γ|i])(γ−E[γ|i])∗

∣
∣j
]
+E

[
(E[γ|j]−E[γ|i])(E[γ|j]−E[γ|i])∗

∣
∣j
]

−E
[
(E[γ|j]−E[γ|i])(γ−E[γ|i])∗

∣
∣j
]
−E

[
(γ−E[γ|i])(E[γ|j]−E[γ|i])∗

∣
∣j
]
.

It is clear that the two last terms are zero since

E
[
(E[γ|j] − E[γ|i])(γ − E[γ|i])∗

∣
∣j
]

= E
[

E
[
(E[γ|j] − E[γ|i])(γ − E[γ|i])∗

∣
∣i, j

]
∣
∣
∣j
]

= E
[
(E[γ|j] − E[γ|i])(E[γ|i] − E[γ|i])∗

∣
∣j
]

= 0 .

Hence,

E
[
(γ − E[γ|j])(γ − E[γ|j])∗

∣
∣j
]

= E
[
(γ − E[γ|i])(γ − E[γ|i])∗

∣
∣j
]

+ E
[
(E[γ|j] − E[γ|i])(E[γ|j] − E[γ|i])∗

∣
∣j
]

and thus,

Rhh|ζ = Rhh|γ + RhγR−1
γγ E

[
(γ − E[γ|i])(γ − E[γ|i])∗

∣
∣j
]
R−1

γγR∗
hγ

+ RhγR−1
γγ E

[
(E[γ|j] − E[γ|i])(E[γ|j] − E[γ|i])∗

∣
∣j
]
R−1

γγR∗
hγ .





Chapter 6

Quantized Channel
Feedback: Design
Approach II

Also this chapter considers a wireless MIMO communication system in
which the transmitter has access to quantized channel side information
obtained from a feedback link. The setup is thus similar to the scenario
considered in the previous chapter. This time however, a new space-time
code performance criterion is derived that is specifically tailored to quan-
tized channel side information. The performance criterion is similar in
structure to the one used earlier and can hence be utilized for construct-
ing any of the three code types described in the thesis. Still, the focus in
the present chapter is mostly on unstructured codes.

Because the effects of quantization are taken into account already
at the outset when deriving the performance criterion, heuristic modi-
fications of the code design procedure in order to obtain good perfor-
mance are not needed. This is in contrast to the methods in Chapter 5.
Compared with that chapter, the development to follow thus constitutes
a mathematically cleaner approach for incorporating quantized channel
side information into the design of space-time codes.

Efficient unstructured codes are found by utilizing a gradient search
technique for minimizing the performance criterion. Properties of op-
timal unstructured codes are derived for a number of different cases.
Design procedures for linear dispersive codes and weighted OSTBC are
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briefly described and implemented. Unstructured codes designed using
the techniques developed in this work are shown to perform better than
comparable OSTB codes, even without channel knowledge at the trans-
mitter. Experimental investigations reveal that the design procedure for
linear dispersive codes appears to automatically produce OSTB codes in
the case of no channel knowledge.

Simulation results for a spatially uncorrelated flat Rayleigh fading
scenario using two and four transmit antennas and one receive antenna
demonstrate that the designed unstructured codes give significant gains
relative conventional transmission schemes. In addition, the impact on
performance due to the choice of code type is illustrated by means of
one representative simulation example. The unstructured code is seen to
perform significantly better than both weighted OSTBC and the linear
dispersive code. It is also noted that the two latter have similar perfor-
mance.

6.1 Introduction

In general, conventional space-time codes [GFBK99, TSC98, TJC99] have
been designed for situations where the transmitter has no knowledge
about the wireless MIMO/MISO channel. The present work, on the
other hand, considers the design of space-time block codes that may uti-
lize channel information at the transmitter, if available, for increasing
the performance. Just as in Chapter 5, the design is targeted towards
a non-power-controlled narrowband scenario in which the transmitter is
provided with quantized channel information from the receiver via a ded-
icated feedback link. While the receiver has perfect channel knowledge,
both quantization errors as well as feedback delay are assumed to plague
the channel information at the transmitter. A model describing these
detrimental effects is exploited in the code design. In this way, the con-
structed codes continue to work well even if the quality of the channel
information is poor.

The channel knowledge is incorporated into the code construction
process by utilizing a new design criterion that is developed specifically
to deal with scenarios in which the channel side information is quantized.
The design criterion is similar in structure to the one originally presented
in Chapter 4, making it straightforward to modify the code design pro-
cedures described therein so that they utilize the new design criterion.
Most of the work is focused on the design and analysis of unstructured
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space-time block codes. However some effort is also spent on the design
of linear dispersive codes and weighted OSTBC.

Related work includes the design of conventional space-time codes
[GFBK99, TSC98, BBH00, ARU01, MBV02, HH02b], the design of mod-
ulation signal sets [FGW74, HSN91] and how to utilize non-perfect chan-
nel information at the transmitter [Wit95, NLTW98, HP98], respectively.

In [GFBK99, TSC98], code design criteria were introduced and used
for manually constructing conventional space-time codes exhibiting a high
degree of structure. The design criterion derived and used in this chap-
ter constitutes a generalization of these criteria so as to handle also the
case of (non-perfect) channel knowledge. A more automated design pro-
cess was investigated in [BBH00], where an exhaustive search technique
was employed in order to find appropriate space-time trellis codes. In
[ARU01, MBV02] the code search was conducted over the set of unitary
codeword matrices to produce codes suitable for a non-coherent detection
scenario in which the channel is unknown at the receiver. Linear disper-
sive codes were designed in [HH02b] based on maximizing an information
theoretic capacity measure. The design of efficient signal constellations
and modulation signal sets for a SISO channel was treated in [FGW74]
and [HSN91], respectively. Inspired by the numerical search approach in
the two latter papers, the present work applies gradient search techniques
for minimizing the design criterion and hence obtaining suitable channel
side information dependent space-time block codes.

The present work contributes in several ways. A major contribu-
tion is the development of a new design criterion that specifically handles
quantized channel side information. The design criterion lays the founda-
tion of a general strategy for incorporating non-perfect quantized channel
side information into the design of space-time codes. Another important
contribution is the development of design procedures for realizing this
strategy in the cases of unstructured and linear dispersive codes as well
as for weighted OSTBC. The focus is however on unstructured codes for
which a theoretical analysis is provided that illustrates the intuitively
pleasing characteristics of the resulting transmission scheme and gives
useful insights into the problem. Due to the unstructured nature of the
codewords, these codes potentially have better performance than all other
corresponding block codes with structure, albeit at the cost of a higher
decoding complexity. Hence an additional field of application for our
unstructured code design method is to produce benchmark codes that
quantify the loss in performance that results from introducing structure
to reduce decoding complexity. This is illustrated herein by simulation
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examples and coding gain measurements showing that the unstructured
codes perform better than comparable OSTB codes. Such gains are ob-
tained even when no channel information is available. A particularly
fascinating result is that the design procedure for linear dispersive codes
seems to, in the case of no channel knowledge, automatically produce
OSTB codes, if such codes exist for the setup under consideration. Fi-
nally, it should be noted that the design methods presented herein are
easily extended to also cope with errors in the channel side information
due to bit-errors introduced by the feedback channel.

The remaining part of the chapter is organized as follows. In Sec-
tion 6.2, the generic system model is briefly reviewed and additional
assumptions and preliminaries are described. The design criterion is
derived in Section 6.3 and utilized for defining a design procedure for
unstructured codes in terms of an optimization problem. The design
of linear dispersive codes and weighed OSTBC is also addressed. Vari-
ous properties of optimal unstructured codes are derived in Section 6.4.
The numerical technique used for solving the optimization problem is
described in Section 6.5. Section 6.6 gives explicit examples of designed
codes of the unstructured type and discusses properties of several other
codes, including a couple of constructed linear dispersive codes. Finally,
the performance of some constructed codes is assessed by means of sim-
ulation of a spatially uncorrelated flat Rayleigh fading scenario and the
results are presented in Section 6.7.

6.2 System Model

This work considers a MIMO wireless communication system making use
of space-time block codes that utilize quantized channel side information
at the transmitter for enhancing the performance. The channel side in-
formation is obtained from the receiver via a dedicated feedback link.
The generic system model and the assumptions regarding code struc-
tures described in Chapter 3 apply, as indicated by the setup illustrated
in Figure 6.1.

The channel side information ζ now comes in the form of an integer
i representing the quantized output of the feedback link. Hence, the
channel code C = C(i) currently in use is determined out of a set {C(i)} of
space-time block codes. Codes of the types unstructured, linear dispersive
or weighted OSTBC may be used. These code types are discussed in
detail in Section 3.2. The focus in this work is however primarily on
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Figure 6.1: System model.

unstructured codes. Hence, the codes in {C(i)} are henceforth assumed to
be unstructured, unless explicitly stated otherwise. Each code in {C(i)}
will be designed so as to adapt the code to the specific channel knowledge,
as described by the corresponding value of i. The resulting information
carrying signals are transmitted over a wireless frequency-nonselective
fading channel, picked up by the antennas at the receiver and thereafter
decoded to produce an estimate of the transmitted message.

Recall from the generic system model that there are M transmit and
N receive antennas and that the received signal vectors x(n) = H∗c(n)+
e(n) during the time interval n = 0, 1, · · · , L−1 are grouped into a matrix
X given by

X = H∗C + E , (6.1)

where the zero-mean IID complex Gaussian elements of the noise matrix
E have variance σ2. Here, the MIMO channel is described by the M ×N
matrix H or its vectorized counterpart h , vec(H) with elements {hk}.
The transmitted codeword C belongs to the current choice C , {Ck}K

k=1

of channel code. The rate of the code is log2(K)/L information bits per
channel use. The receiver is assumed to know the channel perfectly and
recovers the transmitted codeword by means of ML decoding according
to

Ĉ = arg min
C∈C(i)

‖X − H∗C‖2
F , (6.2)

where Ĉ represents the estimated codeword.

The output power is limited in the same manner as previously. Hence,
conditioned on the use of a certain code C(i), it is assumed that the
transmission is such that all the codewords are equally probable and that
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the average energy per information bit is equal to P . It was shown in
(3.3) that this implies the power constraint

K E[‖C‖2
F|i] =

K∑

k=1

‖C(i)
k ‖2

F = PK log2(K) . (6.3)

As is clear from (6.3), the focus in this work is on a scenario with-
out power control, since the average output power is constant regardless
of which code in the set {C(i)} that is chosen. However, power control
may be performed on top of our transmission scheme using techniques
similar to as in e.g. [SG00]. It is even possible to include power control
directly into the code construction process by taking the average in (6.3)
also over all the codes in {C(i)} and modifying our design method ap-
propriately. These modifications are straightforward but complicate the
resulting optimization problem.

6.2.1 The Feedback Link

As seen in Figure 6.1, the feedback link consists of an encoder, an ideal
feedback channel, which does not introduce any bit-errors, and a decoder
block {C(i)}. At the encoder, the MN × 1 vector γ, with elements {γk},
represents the initial channel information. The initial channel informa-
tion is quantized into a b bit integer i = ε(γ), which is transported over
the feedback channel to the transmitter. The encoder function ε(γ) is
such that it partitions the set of all possible γ into 2b different encoder

regions {Si}2b−1
i=0 based on the mapping γ ∈ Si ⇒ ε(γ) = i.

It will be apparent from the development in later sections that the
design method and theoretical analysis presented herein are applicable
to any mapping ε(γ), unless explicitly stated otherwise. However, for
the code construction and simulation examples the focus is on a specific
quantization scheme based on the encoder function

ε(γ) = arg min
i∈{0,1,··· ,2b−1}

‖γ/γ1 − ˆ́γ(i)‖2 , (6.4)

with the codebook vectors {ˆ́γ(i)}2b−1
i=0 given by

ˆ́γ(i) ,

[

1 ejφi0(i) · · · ejφiMN−2(i)

]T

, (6.5)

where j ,
√
−1 and φik(i) , 2πik(i)/2b̄. Here, b̄ , b/(MN − 1)

represents the number of feedback bits per complex-valued dimension
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and ik(i) ∈ {0, 1, · · · , 2b̄ − 1} is implicitly defined through the relation

i =
∑MN−2

k=0 ik(i)2b̄k.
The latter relation means that i0(i) represents the decimal number

corresponding to the b̄ least significant bits of a natural binary repre-
sentation of i. Similarly, i1(i) corresponds to the next b̄ bits and so on
up to iM−2(i) which corresponds to the b̄ most significant bits. Hence,
it is seen that (6.4) and (6.5) together implement b̄ bit uniform scalar
quantization of the phases of γk/γ1, k = 2, · · · ,MN . This is similar
to the so-called partial phase combining scheme in [HP98] and is closely
related to the feedback scheme in the closed-loop mode of the WCDMA
system [3GP02b]. The same quantization scheme was also considered in
connection with the information theoretic investigations in Section 2.6.3.

On the transmitter side, the decoder chooses the channel code as

C = C(i) from a set of 2b different codes C(i) , {C(i)
k }K

k=1. The codes
are designed to take the available channel knowledge into account using
techniques described in later sections. These techniques can be extended
to handle also joint design of codes {C(i)} and feedback encoder ε(γ), as
outlined in our work in [JSO02b].

6.2.2 Fading Statistics

The non-perfect nature of the channel information is not only due to
quantization errors. The channel information may also suffer from feed-
back delay. This, in conjunction with the common situation of a time-
varying channel, means that the channel information might be outdated
by the time it reaches the transmitter. Such a phenomenon is here mod-
eled by assuming that γ is a delayed copy of the current channel realiza-
tion, correlated, to an arbitrary degree, with h. More precisely, h and γ

are jointly complex Gaussian with mean vectors

mh , E[h], mγ , E[γ]

and cross- and covariance matrices

Rhγ , E[(h − mh)(γ − mγ)∗]

Rhh , E[(h − mh)(h − mh)∗]

Rγγ , E[(γ − mγ)(γ − mγ)∗] .

All cross- and covariance matrices are assumed to be constant and invert-
ible. It follows that the conditional mean and covariance of h are given
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by [Kay93, p. 509]

mh|γ , E[h|γ] = mh + RhγR−1
γγ(γ − mγ) (6.6)

Rhh|γ , E[(h − mh|γ)(h − mh|γ)∗|γ]

= Rhh − RhγR−1
γγR∗

hγ . (6.7)

Note that mh|γ is the MMSE estimate of h based on γ, with Rhh|γ

being the corresponding error covariance matrix.
As explained in Section 4.2.1, this way of modeling feedback delay

in terms of correlation is reasonable in view of the well-known Jakes
fading model [Jak94], which may be used to describe the time-variations
of the channel as a temporally correlated stationary complex Gaussian
process. The degree of correlation determines the quality of the initial
channel information. Loosely speaking, the quality of the initial channel
information improves as the correlation between h and γ grows larger,
and conversely, deteriorates as the correlation becomes smaller. Likewise,
the MMSE estimate error covariance Rhh|γ is large (measured in some
matrix norm) for low correlation and small for high. Guided by this and
the fact that (6.7) can be rewritten as

Rhh|γ = R
1/2
hh

(
IMN − R

−1/2
hh RhγR−1

γγR∗
hγ

(
R

−1/2
hh

)∗)(
R

1/2
hh

)∗
, (6.8)

where R
1/2
hh

(
R

1/2
hh

)∗
= Rhh, we let

ρ ,

√

tr
(
R

−1/2
hh RhγR−1

γγR∗
hγ

(
R

−1/2
hh

)∗)

MN

=

√

tr(R−1
hhRhγR−1

γγR∗
hγ)

MN
(6.9)

define a measure of the initial channel information quality. It is easily
verified that 0 ≤ ρ ≤ 1, with ρ = 0 if (and only if) there is no correlation
and ρ = 1 corresponding to “full correlation”. Thus, it makes sense to
define the two extremes of initial channel knowledge as

• No initial channel knowledge: Rhγ = 0 (⇔ ρ = 0)

• Perfect initial channel knowledge: Rhγ → R̄hγ with R̄hγ such that
ρ → 1

Note that from (6.8) it follows that the perfect initial channel knowledge
case also corresponds to ‖Rhh|γ‖ → 0.
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A Simplified Fading Scenario

For illustrative purposes, the described fading model will occasionally be
specialized into what is here called a simplified fading scenario, just as
in previous chapters. In this scenario, the channel coefficients {hk} are
assumed to be zero-mean IID with variance σ2

h. The same goes for the
initial channel information coefficients {γk}. Each γk is correlated with
the corresponding hk and uncorrelated with all others. It is easily verified
that (6.9) then reduces to ρ = |ρ̃|, where ρ̃ , E[hkγ∗

k ]/σ2
h represents the

normalized correlation coefficient. Thus the model is summarized by

mh = 0, mγ = 0

Rhh = σ2
hIMN , Rhγ = σ2

hρ̃IMN , Rγγ = σ2
hIMN .

In cases such as in the simplified fading scenario when the channel
mean mh is zero and the covariance Rhh is a scaled identity matrix,
we call the fading statistics non-informative. The name is motivated by
the fact that in this case the channel fading does not provide any channel
knowledge of its own, since the symmetric nature of the conditional chan-
nel distribution, in the absence of channel information from the feedback
link, makes all channel “directions” seem equally good. Non-informative
fading statistics combined with either ρ = 0 and/or b = 0 hence means
that the transmitter has no channel knowledge.

6.3 Performance Bounds and Code Design

To systematically incorporate channel knowledge into the code design
process, the codeword error probability Pr[Ĉ 6= C] is used as a basis
for developing a performance criterion. This strategy is similar to the
one adopted in Chapter 4. A feasible design criterion will be derived by
forming a lower bound on a certain upper bound on Pr[Ĉ 6= C]. The
following subsections develop these bounds and show how the resulting
design criterion may be used for constructing efficient channel side infor-
mation dependent codes.

6.3.1 Bounds Related to the Codeword Error Prob-
ability

In order to get a tractable closed-form expression, we start by exploiting
the well-known union bound technique for upperbounding the conditional
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codeword error probability Pr[Ĉ 6= C|i,h] so as to obtain

Pr[Ĉ 6= C|i,h] ≤ 1

K

∑

k 6=l

P (C
(i)
k → C

(i)
l |i,h)

=
1

K

∑

k 6=l

Q

(

‖H∗(C
(i)
k − C

(i)
l )‖F

2
√

σ2/2

)

≤ 1

2K

∑

k 6=l

e−‖H∗(C
(i)
k

−C
(i)
l

)‖2
F/(4σ2)

=
1

K

∑

k<l

e−‖H∗(C
(i)
k

−C
(i)
l

)‖2
F/(4σ2) , (6.10)

where P (C
(i)
k → C

(i)
l |i,h), with k 6= l, denotes the pairwise error proba-

bility

Pr
[
‖X − H∗C

(i)
k ‖2

F > ‖X − H∗C
(i)
l ‖2

F |C = C
(i)
k , i,h

]
(6.11)

and where the Gaussian tail function Q(x) is upperbounded [WJ90, p. 84]
by 0.5 exp(−x2/2). Note that (6.11) represents the probability that the

ML decoding metric for C
(i)
l is smaller than the metric for C

(i)
k , con-

ditioned on h, i and on the event that the transmitted codeword is

C = C
(i)
k .

An upper bound PUB({C(i)}) on the codeword error probability is
obtained by averaging over i and h in (6.10) to arrive at

Pr[Ĉ 6= C] ≤ 1

K

∑

k<l

Ei,h

[
e−‖H∗(C

(i)
k

−C
(i)
l

)‖2
F/(4σ2)

]

=
1

K

∑

k<l

Ei,γ

[

Eh

[
e−‖H∗(C

(i)
k

−C
(i)
l

)‖2
F/(4σ2)|i,γ

]]

=
1

K

∑

k<l

Ei,γ

[

Eh

[
e−‖H∗(C

(i)
k

−C
(i)
l

)‖2
F/(4σ2)|γ

]]

(6.12)

, PUB({C(i)}) ,

where the second equality is due to the fact that h, γ and i form a Markov

chain h – γ – i. Comparing Eh

[
e−‖H∗(C

(i)
k

−C
(i)
l

)‖2
F/(4σ2)|γ

]
with the

definition of the previous codeword pair criterion in (4.7), while keeping
in mind that γ corresponds to ζ in (4.7), shows that (4.11) can be used
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to obtain

V (C
(i)
k ,C

(i)
l |γ) ,

1

2
Eh

[
e−‖H∗(C

(i)
k

−C
(i)
l

)‖2
F/(4σ2)|γ

]

=
e
m∗

h|γR−1
hh|γ

(
Ψ(C

(i)
k

−C
(i)
l

)−1−Rhh|γ

)
R−1

hh|γ
mh|γ

2 det(Rhh|γ) det
(
Ψ(C

(i)
k − C

(i)
l )
) , (6.13)

where now

Ψ(C) , IN ⊗ CC∗η + R−1
hh|γ , η , 1/(4σ2) .

Inserting (6.13) into (6.12) then gives

PUB({C(i)}) =
2

K

∑

k<l

Ei,γ

[
V (C

(i)
k ,C

(i)
l |γ)

]

=
2

K

∑

k<l

2b−1∑

i=0

pi Eγ

[
V (C

(i)
k ,C

(i)
l |γ)|i

]

=
2

K

2b−1∑

i=0

pi

∑

k<l

Eγ

[
V (C

(i)
k ,C

(i)
l |γ)|i

]
, (6.14)

where pi denotes the probability that the feedback encoder outputs the
integer value i.

With the aim of obtaining a closed-form approximation of
PUB({C(i)}), let

`(C
(i)
k ,C

(i)
l |γ) , m∗

h|γR−1
hh|γΨ(C

(i)
k − C

(i)
l )−1R−1

hh|γmh|γ

− m∗
h|γR−1

hh|γmh|γ − log det
(
Ψ(C

(i)
k − C

(i)
l )
)
, (6.15)

which we note corresponds to the criterion function in (4.15) but with
an additional codeword independent term −m∗

h|γR−1
hh|γmh|γ . Inserting

(6.13) into (6.14) and utilizing the convexity of ex and Jensen’s inequality
[CT91, p. 25] gives a lower bound PLBUB({C(i)}) on the upper bound
PUB({C(i)}) as follows

PUB({C(i)}) =
1

K det(Rhh|γ)

2b−1∑

i=0

pi

∑

k<l

Eγ

[
e`(C

(i)
k

,C
(i)
l

|γ)|i
]
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≥ 1

K det(Rhh|γ)

2b−1∑

i=0

pi

∑

k<l

eEγ [`(C
(i)
k

,C
(i)
l

|γ)|i] (6.16)

, PLBUB({C(i)}) ,

which holds with equality if `(C
(i)
k ,C

(i)
l |γ), for a fixed i, is a constant.

In general, the lower bound PLBUB({C(i)}) approximates PUB({C(i)})
well when the variance of `(C

(i)
k ,C

(i)
l |γ) conditioned on i is small. From

(6.15) it is seen that this is the case if the quantization is dense (so
that mh|γ is concentrated around Eγ [mh|γ |i]), σ2 is low and/or the
correlation between γ and h is small. The final form of PLBUB({C(i)})
is obtained by utilizing the relation tr(AB) = tr(BA) and the fact that
Rhh|γ is constant with respect to γ, as evident from (6.7). With a slight
abuse of notation, the exponent in (6.16) can then be rewritten as

Eγ

[
`(C

(i)
k ,C

(i)
l |γ)|i

]
= Eγ

[
m∗

h|γR−1
hh|γΨ−1R−1

hh|γmh|γ |i
]

− Eγ [m∗
h|γR−1

hh|γmh|γ |i] − Eγ

[
log det(Ψ)|i

]

= tr(Ψ−1R−1
hh|γ Eγ [mh|γm∗

h|γ |i]R−1
hh|γ)

− tr(R−1
hh|γ Eγ [mh|γm∗

h|γ |i]) − log det(Ψ) . (6.17)

Using (6.6) it is easily verified that Eγ [mh|γm∗
h|γ |i] can be written in

terms of the first and second order moments E[γ|i], E[γγ∗|i]. In the code
design process, both these moments are replaced by the corresponding
sample estimates taken from a Monte-Carlo simulation of the encoder in
the feedback link.

Note that the development in this subsection is general in the sense
that it does not rely on the assumption of a specific space-time code.
Hence, the derived bounds can be used for assessing the performance of
any space-time code.

6.3.2 The Code Design Problem

In principle, as suggested in our work in [JSO02b], it is possible to con-
struct codes by minimizing PUB({C(i)}) with respect to the codewords,
while satisfying the output power constraint. However, the computa-
tional complexity of such an approach is challenging, to say the least,
since the conditional expectation in (6.14) is not available in closed-form
and since it depends on the codewords to be optimized. Motivated by
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the fact that PLBUB({C(i)}) approximates PUB({C(i)}) well in certain
cases, we therefore take on an alternative approach in which the goal is
to minimize PLBUB({C(i)}). This criterion function is more suitable from
a computational point of view since the conditional expectations do not
depend on the codewords and can hence be evaluated prior to the code
search.

Unstructured codes, linear dispersive codes and weighted OSTBC, as
described in Section 3.2, are considered. Design procedures for these code
types are developed below.

Unstructured Codes

Note from (6.16) and the power constraint (6.3) that the design problem
decouples and hence each unstructured code C(i) can be optimized sepa-
rately from all others without loss of optimality. Consequently, based on
(6.16) and (6.17), the design criterion is defined as

Wq(C|i) ,
∑

k<l

Vq(Ck − Cl|i) , (6.18)

where C ,
[
C1 C2 · · · CK

]
contains K arbitrary codewords and

Vq(C|i) ,
e
tr(Ψ(C)−1R−1

hh|γ
Eγ [mh|γm∗

h|γ |i]R−1
hh|γ

)

det(Ψ(C))
. (6.19)

The index “q” has here been introduced to emphasize that quantized
feedback is considered. For the present case of unstructured codes, we
minimize PLBUB({C(i)}), subject to the power constraint in (6.3), by
designing the codes as

C
(i) = arg min

C

‖C‖2
F=PK log2(K)

Wq(C|i), i = 0, · · · , 2b − 1 , (6.20)

where the codewords in C
(i) correspond to the ith code C(i). A strategy

for numerically solving (6.20) will be presented in Section 6.5.
Observe that the solution to (6.20) is not unique. Clearly, all code-

word matrices can be multiplied from the right by a common L × L
unitary matrix without affecting neither the cost function nor the power
constraint. However, if desired, this ambiguity can be removed by im-
posing a lower triangular structure onto one of the codewords.
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Note also that the above criterion function is closely related to the
one that was derived in Chapter 4 based on the assumption that h|ζ is
complex Gaussian. In fact, if Rhh|γ and Eγ [mh|γm∗

h|γ |i] in (6.19) are

replaced with Rhh|ζ and mh|ζm∗
h|ζ , respectively, then Vq(Ck − Cl|i)

is equal to the corresponding term V (Ck − Cl|ζ) in (4.14). Hence, the
criterion functions in (6.20) and in the corresponding design problem for
unstructured codes in (4.18) differ only in the choice of certain parame-
ters, but not in structure.

Design procedures based on the present criterion function are also
easily developed for both linear dispersive codes as well as weighted OS-
TBC. This since the design procedures may be directly inferred from
(4.20) and (4.26), respectively, by simply modifying the constituent cri-
terion functions. For completeness, the specifics for each code type are
given below.

Linear Dispersive Codes

From the performance criterion in (6.18) and from the previously de-
scribed design procedure given by (4.20) it is clear that the weights

{B(i)
m }Ld

m=1 in the ith linear dispersive code may be designed as

B
(i) = arg min

B

‖B‖2
F=P log2(K)

Wq(C(B)|i) , (6.21)

where

B ,
[
B1 B2 · · · BLd

]

B
(i)

,

[

B
(i)
1 B

(i)
2 · · · B

(i)
Ld

]

C(B) ,

[
∑Ld

m=1 Bms
(1)
m

∑Ld

m=1 Bms
(2)
m · · · ∑Ld

m=1 Bms
(K)
m

]

,

with s
(k)
m , m = 1, 2, · · · , Ld representing the symbol sequence corre-

sponding to the kth codeword.

Weighted OSTBC

Similarly to as in Section 4.5, the transmit weighting can be designed
by only considering the worst codeword pairs in the fixed OSTB code
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{C̄k}K
k=1. In other words, after substituting Ck = WC̄k into (6.18),

only the terms corresponding to codeword pairs such that

A(C̄k, C̄l) , (C̄k − C̄l)(C̄k − C̄l)
∗ = µminIM ′ , k 6= l

are retained. Here, µmin denotes the minimum value over all µkl ,
∑Lo

m=1

(
s
(k)
m − s

(l)
m

)2
. Let

`q(WW ∗, µkl|i) , log
(
Vq(W (C̄k − C̄l)|i)

)
.

Since the remaining terms are all equal, they are minimized by designing

the codebook of transmit weighting matrices {W (i)}2b−1
i=0 as

W (i) = arg min
W

‖W ‖2
F=Po

`q(WW ∗, µmin|i), i = 0, 1, · · · , 2b .

Just as in Section 4.5, the above optimization problem may be solved in
two steps. The first step is to re-parameterize using WW ∗ = Z and
then solve the equivalent problem

Z(i) = arg min
Z

Z=Z∗�0

rank(Z)≤min{M ′,M}
tr(Z)=Po

`q(Z|i), i = 0, 1, · · · , 2b , (6.22)

where

`q(Z|i) , `q(Z, µmin|i)

= tr
((

(IN ⊗ Z)η̃ + R−1
hh|γ

)−1
R−1

hh|γ Eγ [mh|γm∗
h|γ |i]R−1

hh|γ

)

− log det
(
(IN ⊗ Z)η̃ + R−1

hh|γ

)
, (6.23)

with η̃ , µmin/(4σ2). In the second and final step, the transmit weighting

is obtained as W (i) =
(
Z(i)

)1/2
, where (·)1/2 denotes a matrix square-

root.
Because of the previously mentioned similarity between Vq(Ck−Cl|i)

in (6.19) and V (Ck − Cl|ζ) in (4.14), it is not difficult to show that
basically all the theoretical results based on the latter criterion function
carry over, sometimes in somewhat modified form, to the present case.
In particular, it should be noted that also (6.22) is a convex optimization
problem if the transmit weighting is square, i.e., M ′ = M . Moreover,
it is straightforward to modify the algorithm for a simplified scenario
described in Section 4.7 to deal with the new criterion function. Thus,
the transmit weight design problem given by (6.22) can be efficiently
solved using simple modifications of techniques discussed earlier.
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6.4 Unstructured Codes – Analysis and In-

terpretations

It is in general a difficult task to explicitly characterize the optimal set
of codewords. However, in a few special cases it is possible to derive
some properties that the optimal codewords must posses. The analysis
presented in this section focuses entirely on unstructured codes. It is how-
ever straightforward to perform similar analyses for the two other code
types. The results to be derived herein are important for understanding
the behavior of the transmitter and also help to explain the simulation
results in Section 6.7.

Several of the following cases under consideration are asymptotic in
the sense that optimal unstructured codes obtained from (6.20) are to
be investigated as some parameter tends to a limit. In such asymptotic
cases, we rely, similarly to as in Appendix 4.A, on a theorem [SS89,
p. 221] stating that it is possible to interchange the order of the limit
and minimization operator in an optimization problem provided that 1)
the criterion function converges uniformly over the feasibility set to a
limit function, 2) the feasibility set is compact, 3) the limit function is
continuous and has a unique global minimum within the feasibility set. If
the limit function possesses several (i.e., non-unique) global minima then
the theorem reduces to a weaker form claiming that an asymptotically
optimal solution belongs to the set of global minima of the limit function.

Applying the weaker form of the theorem to the design procedure
means that (6.20) may be studied with Wq(C|i) replaced by the corre-
sponding limit function. Using techniques similar to the ones used in
Appendix 4.A, it can be shown that such an interchange of order is al-
lowed. Therefore, to simplify the presentation we will in the following
omit the proofs on uniform convergence and instead tacitly assume that
the limit function can be used for deriving the asymptotic properties of
the optimal code.

6.4.1 Perfect Channel Knowledge

Consider first the case of perfect initial channel information, i.e., Rhγ →
R̄hγ , where R̄hγ is such that ρ → 1. Introduce the M × N channel

estimate matrix MH|γ , E[H|γ], also obtained by rearranging mh|γ

so as to satisfy the relation mh|γ = vec(MH|γ). A Taylor expansion
of log(Vq(Ck − Cl|i)) then shows that a criterion function equivalent to
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Wq(C|i) in (6.20) may be written as

W̃1(C|i) , Wq(C|i)/etr(R−1
hh|γ

E[mh|γm∗
h|γ |i])+log det(Rhh|γ)

=
∑

k<l

e−η tr(IN⊗Akl(E[mh|γm∗
h|γ |i]+Rhh|γ))+O(η2‖Rhh|γ‖)

=
∑

k<l

e−η tr(Akl(E[MH|γM∗
H|γ |i]+R̃hh|γ))+O(η2‖R̃hh|γ‖) , (6.24)

where O(·) is the big ordo operator and where

Akl , (Ck − Cl)(Ck − Cl)
∗

R̃hh|γ , E[(H − MH|γ)(H − MH|γ)∗|γ] .

Note that R̃hh|γ can also be expressed as the sum of the N blocks of size
M ×M on the diagonal of Rhh|γ , explaining why O(η2‖Rhh|γ‖) may be

replaced by O(η2‖R̃hh|γ‖). Observing that Akl is bounded due to the
power constraint, dropping η from the ordo and making use of the Taylor
expansion ex = 1 + O(x) leads to

W̃1(C|i) =
∑

k<l

e−η tr(Akl E[MH|γM∗
H|γ |i])eO(‖R̃hh|γ‖)

=
∑

k<l

e−η tr(Akl E[MH|γM∗
H|γ |i]) + O(‖R̃hh|γ‖) .

As previously noted, Rhγ → R̄hγ implies ‖Rhh|γ‖ → 0 and hence also

‖R̃hh|γ‖ → 0. Thus, W̃1(C|i) converges to the limit function

W̄1(C|i) , lim
Rhγ→R̄hγ

W̃1(C|i)

=
∑

k<l

e−η tr((Ck−Cl)(Ck−Cl)
∗Ri) , (6.25)

where
Ri , E[M̄H|γM̄

∗
H|γ |i] ,

with M̄H|γ , limRhγ→R̄hγ
MH|γ .

Before discussing the above result, we consider the related case of
perfect channel knowledge at the transmitter. Hence, in addition to
perfect initial channel information, assume the feedback is such that
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the quantization is infinitely dense in the γ domain1. In such a case,
E[MH|γM∗

H|γ |i] can be expected to be essentially equal to MH|γM∗
H|γ

for a γ corresponding to some infinitely small encoder region Si. We
formalize this as follows. Assume a sequence of quantization schemes

is chosen so that the corresponding sequence of encoder regions S (b)
i ,

b = 0, 1, · · · , for a particular i, all enclose a certain fixed point γ̂ in the
vector space C

MN×1. Let

rb , max
γ∈S

(b)
i

‖γ − γ̂‖

be the radius of a sphere centered at γ̂ that encloses S (b)
i and assume that

S(b)
i becomes smaller as b is increased in the sense that limb→∞ rb = 0.

From the mean-value theorem it can then be shown that

E[MH|γM∗
H|γ |i] =

∫

S
(b)
i

MH|γM∗
H|γpγ|i(γ|i)dγ

= MH|γ̂M∗
H|γ̂ + O(rb) , (6.26)

where MH|γ̂ , E[H|γ = γ̂]. With (6.24) as a starting point, inserting
(6.26) into (6.24), using the Taylor expansion ex = 1 + O(x) and taking
the limit (Rhγ , rb) → (R̄hγ , 0) gives a limit function exactly like the one
in (6.25) but now with

Ri , M̄H|γ̂M̄
∗
H|γ̂ ,

where M̄H|γ̂ , limRhγ→R̄hγ
MH|γ̂ .

Based on the limit functions, properties of the optimal code are de-
rived as follows. Let UΛU ∗ be the EVD of Ri, where U is a uni-
tary M × M matrix with columns containing the eigenvectors of Ri

and Λ is an M × M diagonal matrix with ordered diagonal elements
λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λM = 0 representing the eigenvalues.
Here, r is the rank of Ri. Due to the unitary nature of U , the optimiza-
tion problem with (6.25) as criterion function can be re-parameterized
based on C̄k , U∗Ck and C̄ , U∗

C, without affecting the power con-

1Obviously, the phase-only quantization scheme used as an example in this work
does not belong to this category.
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straint since ‖C̄‖2
F = ‖C‖2

F, to arrive at

W̄1(U C̄|i) =
∑

k<l

e−η tr((C̄k−C̄l)(C̄k−C̄l)
∗Λ)

=
∑

k<l

e−η
∑r

m=1 λm‖c̄(k)
m −c̄(l)

m ‖2

, (6.27)

where (c̄
(k)
m )∗ is the mth row of C̄k. It is seen that the value of the

asymptotic criterion function in (6.27) does not depend on {c̄(k)
m }K

k=1,
m = r + 1, · · · ,M , i.e., the M − r last rows of the re-parameterized
codewords. Also, observe that letting these rows be non-zero decreases
the available output power that can be allocated to the remaining rows
and is hence wasteful. Since the optimal cost decreases as a function of

the output power it can be concluded that the rows {c̄(k)
m }M

m=r+1 in all
codewords must be zero. On the other hand, for the r first (potentially
non-zero) rows, each eigenvalue λm weighs the corresponding row in C̄.
Because of the weighting, rows with a large eigenvalue are favored which
in turn means that the energy allocated to a particular row tends to be
larger for a row with a large eigenvalue than for one with a small eigen-
value. After solving the re-parameterized problem in (6.27), the code is

formed as C
(i) = Ū C̄

(i)
, where C̄

(i)
denotes the optimal C̄. Consequently,

for the asymptotically optimal code, the transmitted power is distributed
only along the first r eigenvectors of Ri, with typically large power in
“eigen-directions” with large eigenvalues.

The above result is worth elaborating upon. Assume perfect channel
knowledge at the transmitter so that Ri = M̄H|γ̂M̄

∗
H|γ̂ . From the SVD

theorem [HJ96, p. 414], recall that U and {
√

λm}r
m=1 also represent the

left singular eigenvectors and singular values, respectively, of M̄H|γ̂ . Due
to the assumption of perfect channel knowledge, M̄H|γ̂ is now essentially
equal to the channel matrix H and we may base the following discussion
on the commonly used SVD of the channel matrix. Hence, since the last

M − r rows of C̄
(i)

are zero, the transmission is confined to the space
spanned by the left singular eigenvectors corresponding to the non-zero
singular values of the channel matrix. Moreover, the power tends to be
primarily allocated to strong eigen-directions, i.e., where the correspond-
ing singular values are large. Such a behavior makes sense since there
is no point wasting energy in directions which contribute little or not
at all to the received signal. In particular, for the case of one receive
antenna we have r = 1 and the optimal codewords are therefore of rank
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one, resulting in a beamforming type of transmission.
In comparison, an information theoretic result derived in e.g. [Tel95]

states that capacity in a MIMO system can be achieved by transmitting
along the left singular eigenvectors of the channel matrix with a power al-
location obeying a water-filling distribution. The water-filling procedure
ensures that the power allocated along strong eigen-directions is large
and that no power is wasted on eigen-directions having singular values
equal to zero. This clearly agrees well with the perfect channel knowledge
property derived above.

Note also that although the perfect channel knowledge case in the
present work and in Section 4.6 may seem to be similar, it is risky to draw
conclusions for the problem at hand based on the earlier development
in that section, where the totally different weighted OSTBC structure
was considered. In particular, if the channel knowledge is perfect, the
asymptotically optimal codewords mentioned in Section 4.6 are always of
rank one, regardless of the number of receive antennas, while the same is
in general not true for the code structure herein, unless only one receive
antenna is used.

6.4.2 Low SNR

The low SNR case is defined as P/σ2 = 4Pη → 0. For technical reasons,
we start with re-parameterizing the optimization problem in (6.20) based
on C̃k , Ck/

√
P and C̃ , C/

√
P . With η replaced by Pη, (6.24) can

be used as a starting point for deriving the first order (in terms of Pη)
Taylor expansion

W̃2(C̃|i) , Wq(
√

P C̃|i)
=
∑

k<l

e−Pη tr(Ãkl(E[MH|γM∗
H|γ |i]+R̃hh|γ))+O(P 2η2)

=
∑

k<l

1 − Pη tr(Ãkl(E[MH|γM∗
H|γ |i] + R̃hh|γ)) + O(P 2η2)

= −Pη tr
((∑

k<l

Ãkl

)

(E[MH|γM∗
H|γ |i] + R̃hh|γ)

)

+
K(K − 1)

2
+ O(P 2η2) , (6.28)

where Ãkl , (C̃k − C̃l)(C̃k − C̃l)
∗ and K(K − 1)/2 is the number of

different codeword pairs. From (6.28) it is clear that the asymptotic prop-
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erties of the optimal code can be analyzed by considering maximization
of the limit function

W̄2(C̃|i) , lim
Pη→0

−1

Pη

(

W̃2(C̃|i) −
K(K − 1)

2

)

= tr
((∑

k<l

Ãkl

)

(E[MH|γM∗
H|γ |i] + R̃hh|γ)

)

.

Assume that the rank of E[MH|γM∗
H|γ |i] + R̃hh|γ is r and let UΛU∗

represent the corresponding EVD. With a similar approach as was used
to obtain (6.27), the limit function can be re-parameterized using C̄k ,

U∗C̃k, C̄ , U∗
C̃ and written as

W̄2(U C̄|i) =

r∑

m=1

λm

∑

k<l

‖c̄(k)
m − c̄(l)

m ‖2 . (6.29)

Note that also in this case must the M − r last rows {c̄(k)
m }K

k=1, m =
r + 1, · · · ,M be equal to zero for optimality. To proceed, define

f(P̃ ) , max
{c̄(k)

m }K
k=1

∑K
k=1 ‖c̄(k)

m ‖2=P̃

∑

k<l

‖c̄(k)
m − c̄(l)

m ‖2

and again re-parameterize based on c̄(k) = c̄
(k)
m /

√

P̃ to obtain

f(P̃ ) = P̃ max
{c̄(k)}K

k=1
∑K

k=1 ‖c̄(k)‖2=1

∑

k<l

‖c̄(k) − c̄(l)‖2

= αP̃ , (6.30)

where α is a constant which can be interpreted as a measure of how
well the constellation of rows are separated. Optimization of the rows in
(6.29) can be carried out by first optimizing each row separately under a

fixed power constraint
∑K

k=1 ‖c̄
(k)
m ‖2 = P̃m, producing the concentrated

criterion function f(P̃m), and then using f(P̃m) for optimizing the power
values {P̃m} subject to

∑r
k=1 P̃m = K log2(K). By utilizing (6.30), it is

seen that the optimal power values may hence be obtained as

{Pm}r
m=1 = arg max

{P̃m}r
m=1∑r

m=1 P̃m=K log2(K)

r∑

m=1

λmf(P̃m)
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= arg max
{P̃m}r

m=1∑r
m=1 P̃m=K log2(K)

r∑

m=1

λmP̃m . (6.31)

For simplicity, assume that λ1 is strictly larger than all other eigenvalues.
It is then easily verified that in the optimal solution of (6.31), all power is
allocated to the first eigen-direction, i.e., P1 = K log2(K), Pm = 0,m =
2, · · · ,M . Thus, only the first row of an optimal C̄ is non-zero and,
because of C̃ = U C̄, the asymptotically optimal code distributes all power
along the strongest eigenvector of E[MH|γM∗

H|γ |i] + R̃hh|γ .

A comparison with the perfect channel knowledge case reveals several
similarities. Studying (6.27) and (6.29) we see that the perfect channel
knowledge and low SNR cases are closely related. In both cases the trans-
mission power is distributed along some eigen-directions and the amount
of energy in each eigen-direction depends on weights in the form of certain
eigenvalues. However, they primarily differ in that in the low SNR case
only the strongest eigen-direction is used while for the perfect channel
knowledge case the energy may be distributed among all eigen-directions
with non-zero eigenvalues. In addition, for the low SNR case, the EVD is
based not only on a feedback dependent term E[MH|γM∗

H|γ |i] but also

on an additional term R̃hh|γ .

6.4.3 No Feedback / No Channel Knowledge

In this section, the cases of no feedback and no channel knowledge are
analyzed. Consider first a scenario with no feedback, or more precisely,
assume that b = 0 and/or Rhγ = 0. In other words, the channel in-
formation at the transmitter is statistically independent of γ and hence
also of h. Consequently, E[mh|γm∗

h|γ |i] = E[mh|γm∗
h|γ ] = mhm∗

h and
Rhh|γ = Rhh, which means that the design criterion no longer depends
on the initial channel information γ. In order to also remove the ex-
ponential in (6.19), the scenario is further specialized by assuming that
mh = 0. These assumptions model a non-line-of-sight scenario with a
feedback delay that is very long compared to the coherence time of the
channel. After scaling with 1/det(Rhh) the design criterion in (6.18)
then takes on the equivalent form

W̄3(C|i) ,
∑

k<l

1

det(IMN + Rhh(IN ⊗ Akl)η)
, (6.32)
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which can be shown to be a valid upper bound on the codeword error
probability also when Rhh is singular. Now, assume fading such that
the columns {hl} of H are uncorrelated but with the same transmitter
covariance RT , E[hlh

∗
l ] or, equivalently, that the channel covariance

matrix has the Kronecker structure Rhh = IN ⊗ RT. This so-called
“one-ring” channel model may be appropriate in scenarios where the
transmitter is placed above the rooftops far away from scatterers while at
the receiver there is plenty of local scattering [SFGK00]. The Kronecker
structure of Rhh means that (6.32) simplifies to

W̄3(C|i) =
∑

k<l

1

detN (IM + ηRTAkl)
. (6.33)

To see how the criterion function in (6.33) affects the code design, let
UΛU∗ represent the EVD of RT, with Λ = diag(λ1, · · · , λM ), UU∗ =
IM . Furthermore, use the relation det(I + AB) = det(I + BA), found
in Appendix C, to express the determinant as

det(IM + ηRTAkl) = det
(
IL + η

M∑

m=1

λm(c̄(k)
m − c̄(l)

m )(c̄(k)
m − c̄(l)

m )∗
)
,

where (c̄
(k)
m )∗ is the mth row of C̄k , U∗Ck. Hence, we again see that

the transmission is along some eigen-directions, given by the columns
of U , and that the corresponding eigenvalues serve to weigh the eigen-
directions.

Unfortunately, further development is complicated by the large num-
ber of terms in (6.33). Therefore, in order to obtain tractable expressions,
a special case with only two codewords, C1 and C2, is studied next. It
is reasonable to assume that this provides valuable insight also into the
general case of an arbitrary number of codewords. In the derivation, a
necessary condition on the codewords of an optimal code will be utilized.
The following lemma summarizes the result, which is valid for any num-
ber of codewords and for the general assumptions described in the system
model.

Lemma 1 (A Necessary Condition for Optimality) Let {Ck}K
k=1

denote the codewords in an optimal code that solves the design prob-
lem in (6.20). These codewords then satisfy the necessary condition

K∑

k=1

Ck = 0M×L , (6.34)
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regardless of the quality of the channel information.

Proof:
The proof relies on the KKT conditions [BS93, p. 162] that are nec-

essary for optimality. In order to obtain compact expressions, it is con-
venient to first define some additional notation for derivatives. Let ∂f

∂X

denote a matrix where element (k, l), is equal to ∂f
∂[X]kl

, i.e., it is equal

to the derivative of f , f(X) with respect to element [X]kl of X. Since
the elements in the matrices of interest are typically complex-valued, the
notion of a complex derivative [Kay93, p. 517] is utilized and defined as

∂f

∂x
,

1

2

(
∂f

∂ re(x)
− j

∂f

∂ im(x)

)

, (6.35)

where j is the imaginary unit, f is a function of x, x is complex-valued
and re(x) and im(x) denote the real and imaginary part of x, respectively.

Let
∂Wq

∂Ck
(C) denote the derivative of Wq(C|i) with respect to the

complex-valued elements of Ck, evaluated at C. With δn representing
the Kronecker delta function, the derivative can be written as

∂Wq

∂Ck
(C) =

∑

k′<l′

k′=k or l′=k

(1 − 2δl′−k)V ′
q(Ck′ − Cl′) , (6.36)

where, as shown in Appendix 6.A, the derivative V ′
q(C) of Vq(C|i), eval-

uated at C, is equal to

V ′
q(C) ,

∂Vq

∂C
(C) = −ηVq(C|i)(ΩC)c . (6.37)

Here, (·)c denotes the complex conjugate and Ω represents the sum of
the N blocks of size M × M on the diagonal of

Ψ(C)−1 + Ψ(C)−1R−1
hh|γ E[mh|γm∗

h|γ |i]R−1
hh|γΨ(C)−1 .

It is now straightforward to verify that the KKT conditions applied to
Wq(C|i) and the power constraint ‖C‖2

F = PK log2(K) lead to the fol-
lowing system of equations

∂Wq

∂Ck
(C) + µ(Ck)c = 0M×L, k = 1, 2, · · · ,K (6.38)

K∑

k=1

‖Ck‖2
F = PK log2(K) , (6.39)
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where µ is a Lagrange multiplier. Adding all K equations in (6.38) and

noting that
∑

k
∂Wq

∂Ck
(C) = 0M×L, due to the coefficients (1 − 2δl′−k) in

(6.36), gives

µ

K∑

k=1

Ck = 0M×L . (6.40)

It is realized that µ must be non-zero, otherwise (6.38) and (6.39) imply

that all K gradients
∂Wq

∂Ck
(C) are identically zero for a code that satisfies

the power constraint. The latter is only possible if all codewords are all
equal since it can easily be checked that for any other code Wq(αC|i) is a
strictly decreasing function of α, meaning that the gradient is non-zero.
Clearly, the codewords cannot all be equal in an optimal code. Hence, µ
is non-zero and (6.40) reduces to the necessary condition in (6.34), which
all optimal codes must obey.

Returning to the K = 2 codeword case, the lemma is utilized for sim-
plifying W̄3(C|i) in (6.33). We solve for C2 in (6.34) and hence substitute
C2 = −C1 into W̄3(C|i) to arrive at the equivalent problem

A12 = arg max
Ã12

rank(Ã12)≤r

tr Ã12=4P

det(IM + RTÃ12/(4σ
2)) , (6.41)

where r = min{M,L} denotes the maximum possible rank of A12 =
(C1 − C2)(C1 − C2)

∗ = 4C1C
∗
1. Ignoring for a moment the rank con-

straint, this is a classical optimization problem that also occurs, for ex-
ample, when computing the capacity of a set of parallel channels with
colored Gaussian noise. It turns out that the rank constraint is eas-
ily handled within the scope of previous classical derivations (compare
with how a thin transmit weighting matrix is handled in Section 4.7).
Hence, with 4σ2(RT)−1 here playing the role of the covariance of the col-
ored noise, it follows from [CT91, p. 253-255] that the optimal solution
is A12 = V DV ∗, where V is an M × r matrix containing the r first
columns of U and D is a diagonal r × r matrix with elements given by
the water-filling solution

dm = max{ν − 4σ2λ−1
m , 0}, m = 1, 2, · · · , r . (6.42)

Here, ν is a Lagrange multiplier that can be determined from the power
constraint. Thus, since A12 = 4C1C

∗
1, the optimal codewords can be

taken as
C1 = −C2 = 0.5

[

V D1/2 0M×(L−r)

]
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and we conclude that the transmission power is distributed along the r
first eigen-vectors of RT.

A related water-filling result concerning the properties of linear disper-
sive codes in correlated fading scenarios is found in [SP01]. That result,
as well as the solution of (6.41), can also be used to directly determine a
semi closed-form expression for the optimal transmit weighting matrix in
the weighted OSTBC design procedure given by (4.26). This since (4.26)
reduces to an optimization problem of the same form as (6.41), when
mh|ζ is zero and Rhh|ζ has the same structure as the covariance matrix
Rhh considered herein.

Specializing the one-ring model by assuming non-informative fading
statistics Rhh = IN⊗σ2

hIM = σ2
hIMN leads to the no channel knowledge

case. Since the eigenvalues λm = σ2
h of RT then are all equal, it follows

from (6.42) that D is also a scaled identity matrix and hence the power
is distributed equally in all eigen-directions. Thus, for M ≤ L (M ≥ L)
the rows (columns) of C1 and C2 must be orthogonal and of equal mag-
nitude. Another way of formulating this is to say that the singular values
of each codeword are equal. In particular, note that M = L means that
the codewords are unitary matrices. How the statement generalizes for
codes with more than two codewords is still an open issue. However,
the experimental code construction results later presented in Section 6.6
indicate that the derived orthogonality property hold in many cases. The
appealing properties of unitary codewords have also been noted in pre-
vious work such as [BV01], where it is shown that unitary codewords
minimize the union bound of the codeword error probability under the
assumption of an unknown channel at both the transmitter and receiver.
This is in line with previous information theoretic based arguments in
[MH99] for a similar non-coherent scenario.

6.4.4 High SNR

The high SNR case is defined as P/σ2 = 4Pη → ∞. It is assumed in the
following derivation that the codeword matrices are wide, i.e., M ≤ L. In
practice, this is not a particularly restrictive assumption since space-time
codewords with shorter duration are unable to satisfy the rank criterion
[GFBK99, TSC98] and hence cannot reach the maximum diversity order
of the system.

Similar to as was done in the low SNR derivation, the optimization
problem in (6.20) is re-parameterized using C̃k , Ck/

√
P and C̃ ,

C/
√

P . Furthermore, the resulting power constraint ‖C̃‖2
F = K log2(K)
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is augmented with an additional constraint

Ãkl , (C̃k − C̃l)(C̃k − C̃l)
∗ � εIM

to ensure that Ãkl is invertible. Here, ε is a positive constant. It can
be argued that, for sufficiently small ε, introducing the additional con-
straint does not change the asymptotically optimal solution. Hence, the
properties of the asymptotically optimal code that will be derived next
are valid also for the original optimization problem, see Appendix 4.A.1
concerning a similar approach. Based on the Taylor expansions

tr
(
(IN ⊗ ÃklPη + R−1

hh|γ)−1Rhh|γ E[mh|γm∗
h|γ |i]−1Rhh|γ

)

= O(P−1η−1ε−1)

log det(IN ⊗ ÃklPη + R−1
hh|γ) = MN log(Pη)

+N log det(Ãkl) + O(P−1η−1ε−1) ,

an equivalent criterion function can be expressed as

W̃4(C̃|i) , Wq(
√

P C̃|i)eMN log(Pη)

=
∑

k<l

e−N log det(Ãkl)+O(P−1η−1ε−1)

=
∑

k<l

e−N log det(Ãkl) + O(P−1η−1ε−1) .

Thus, letting P/σ2 = 4Pη → ∞, while keeping ε constant and sufficiently
small, we conclude that the code properties can be inferred from the limit
function

W̄4(C̃|i) , lim
Pη→∞

W̃4(C̃|i)

=
∑

k<l

1

detN ((C̃k − C̃l)(C̃k − C̃l)∗)
. (6.43)

It is seen that the differences C̃k −C̃l must all be full-rank in the asymp-
totically optimal code. Otherwise, the determinant of (C̃k − C̃l)(C̃k −
C̃l)

∗ is zero for at least one codeword pair and the corresponding term in
(6.43) would be infinitely large, implying that this cannot be the optimal
solution. Consequently, performing the code design at a sufficiently high
SNR ensures full-diversity space-time codes.
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Note also that the criterion in (6.43) does not depend on neither the
feedback information i nor the channel statistics. Thus, as the SNR
increases the optimal code makes less and less use of channel knowledge
and in the limit does not use it at all. A similar observation was made
in connect with information theoretic results depicted in Figure 2.5. The
similarities with the previous no channel knowledge case suggest that the
optimal code tends to a no channel knowledge like code with codewords
whose rows are often more or less orthogonal. This can be proved for the
case of two codeword codes (K = 2) by arguing similarly as was done to
solve (6.41).

6.4.5 Parameter Insensitivity of Some Codes

In general, the codes designed in this work depend on a number of pa-
rameters in addition to the explicit channel information contained in i.
The power budget P , noise variance σ2, covariance and cross-covariance
matrices and the number of receive antennas N are all examples of such
parameters. This dependence may be a drawback in situations were the
parameters are not known, or are not known with great accuracy, since
the performance typically degrades when the assumptions in the design
process are different from those in the scenario in which the codes are
used. It would therefore be beneficial to have codes that remain optimal
even if the mentioned parameters are varied. Although the codes are in
general not parameter independent, it is in this section made plausible
that under certain circumstances the proposed code design process will
generate codes that work well regardless of the values of the parameters.
These theoretical findings are in line with code design and simulation
results presented in later sections.

Below, we will show that, for the simplified fading scenario with no

channel knowledge, a code C , {
√

P/P̃ C̃k} satisfies the KKT condi-

tions (6.38) - (6.39), regardless of the values of σ2, σ2
h, P and N , if the

codewords {C̃k} are such that they satisfy the KKT conditions for some
parameters σ2 = σ̃2, σ2

h = σ̃2
h, P = P̃ , N = Ñ and in addition obey the

orthogonality property

Ãkl , (C̃k − C̃l)(C̃k − C̃l)
∗ = λ̃klIM , k 6= l , (6.44)

with λ̃kl = λ̃ constant over all codeword pairs. As shown in Section 6.6,
the orthogonality property in (6.44) is a characteristic of one of the con-
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structed codes. Note that the well-known OSTB codes satisfy the or-
thogonality property in (6.44), albeit not with a constant λ̃kl.

Since the KKT conditions are only necessary and not sufficient for op-
timality, this parameter insensitivity result merely provides an indication
that a scaled version of an optimal code {C̃k} remains optimal even if the
parameters are changed. However, numerous experimental investigations
of designed codes that satisfy the above conditions seem to support the
claim.

The proof of the parameter insensitivity result proceeds as follows.
Since {C̃k} satisfies the KKT conditions and (6.44) for some λ̃ = λkl,
consider (6.38) - (6.39) and the expression for the gradient in (6.37) and
tailor them for the problem at hand to arrive at

Gk(C̃, σ̃2, σ̃2
h, P̃ , Ñ) + µ̃(C̃k)c = 0M×L, ∀k (6.45)

∑

k

‖C̃k‖2
F = P̃K log2(K) ,

where µ̃ is a Lagrange multiplier and, since

V ′
q(C̃k − C̃l) =

−η̃(Ω(C̃k − C̃l))
c

det(IN ⊗ Ãklη̃ + σ̃−2
h IMN )

=
−Ñ(C̃k − C̃l)

c

4σ̃2(λ̃/(4σ̃2) + σ̃−2
h )MN+1

,

the gradient is given by

Gk(C̃, σ̃2, σ̃2
h, P̃ , Ñ) ,

∂Wq

∂Ck
(C̃)

= − Ñ

4σ̃2(λ̃/(4σ̃2) + σ̃−2
h )MÑ+1

∑

k′<l′

k′=k or l′=k

(1 − 2δl′−k)(C̃k′ − C̃l′)
c .

After noting that changing the parameters only re-scales the gradient
Gk(C̃, σ̃2, σ̃2

h, P̃ , Ñ), it is clear that, because

Gk(

√
P

√

P̃
C̃, σ2, σ2

h, P,N) = αGk(C̃, σ̃2, σ̃2
h, P̃ , Ñ) ,

where

α ,
σ̃2N

√

P/P̃ (λ̃/(4σ̃2) + σ̃−2
h )MN+1

σ2Ñ(
√

P/P̃ λ̃/(4σ2) + σ−2
h )MN+1

,
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the code {
√

P/P̃ C̃k} and the Lagrange multiplier µ = αµ̃ simply scale

the left hand side of (6.45) and hence the KKT conditions are satisfied.
This concludes the proof.

6.4.6 A Symmetric Feedback Scenario

It often makes sense to design the feedback link so that the quantiza-
tion is, in some sense, symmetric. For example, in the commonly as-
sumed Rayleigh fading scenario, the phase of each channel coefficient is
uniformly distributed and hence it is reasonable to use an encoder that
quantizes the phase uniformly over the phase interval [0, 2π). This mo-
tivates the partial phase combining [HP98] type of method of this work.
The feedback method in the closed-loop mode of the WCDMA system
[3GP02b] is another example of uniform phase quantization. The en-
coder regions of these quantization schemes exhibit symmetries in the
sense that they are rotated copies of each other. This section investigates
how similar rotational symmetries affect the code design and how they
can be exploited for reducing the computational complexity of the de-
sign method. A similar concept of symmetric feedback was introduced in
Section 2.6.3 for simplifying numerical evaluation of a channel capacity
expression.

Recall that a unitary matrix may correspond to a rotation. With this
in mind, we say that the feedback scenario is symmetric if E[mh|γm∗

h|γ |i]
and Rhh|γ can be written on the form

E[mh|γm∗
h|γ |i] = D̃ ⊗ QiRQ∗

i (6.46)

Rhh|γ = D ⊗ IM , (6.47)

where Qi is a unitary M ×M matrix that depends on i, R is a constant
M × M matrix, D̃ , diag(d̃1, d̃2, · · · , d̃N ) and D , diag(d1, d2, · · · , dN )
for some arbitrary {d̃n}N

n=1 and {dn}N
n=1, respectively.

The above conditions affect the code design as follows. By using the
Kronecker relations (C.3) and (C.4) in Appendix C, repeated below for
convenience

(X1 ⊗ X2)(X3 ⊗ X4) = X1X3 ⊗ X2X4

(X1 ⊗ X2)
−1 = X−1

1 ⊗ X−1
2 ,

and assuming (6.46), (6.47) hold, it is possible to write

R−1
hh|γ E[mh|γm∗

h|γ |i]R−1
hh|γ = D̃D−2 ⊗ QiRQ∗

i ,
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which inserted into (6.18) leads to the re-parameterized criterion function

Wq(QiC̄|i) =
∑

k<l

etr((IN⊗Āklη+D−1⊗IM )−1(D̃D−2⊗R))

det(IN ⊗ Āklη + D−1 ⊗ IM )
(6.48)

and power constraint ‖C̄‖2
F = PK log2(K), where C̄ , Q∗

i C, C̄k ,

Q∗
i Ck, Ākl , (C̄k − C̄l)(C̄k − C̄l)

∗.
Clearly, (6.48) is independent of i and the original code design problem

may therefore be solved by first minimizing (6.48) with respect to {C̄k},
subject to the power constraint, and then extracting the ith code through
the linear mapping C

(i) = QiC̄, where C̄ now represents the optimal
solution in the re-parameterized problem. Hence, the inherent symmetry
of the feedback carries over to a corresponding symmetry of the codes.
Because all codes are easily derived by means of a linear transformation
from the single code in C̄, this result can be utilized to substantially
expedite the design process and reduce the memory required to store the
code.

Symmetric Feedback in the Simplified Fading Scenario

As an illustrative example of a symmetric feedback situation, consider the
feedback scheme in this work operating in the simplified fading scenario
with N = 1 receive antenna. Since the relative phases are uniformly
quantized, the codebook vectors in (6.5) that the encoder uses can be
expressed in terms of the first codebook vector as ˆ́γ(i) = Qi

ˆ́γ(0), i =
0, · · · , 2b − 1, where

Qi , diag(1, ejφi0(i) , ejφi1(i) , · · · , ejφiMN−2(i))

rotates ˆ́γ(0) to the desired position. To see that also the encoder regions
are rotations of each other, let γ belong to encoder region S0 and note
that

ε(Qkγ) = arg min
i

‖Qkγ/γ1 − Qi
ˆ́γ(0)‖2

= arg min
i

‖γ/γ1 − Q∗
kQi

ˆ́γ(0)‖2 = k ,

since Q∗
kQi ∈ {Qi} and Q∗

kQk = IM = Q0. This means that for
each point γ in S0 there is a corresponding rotated point Qkγ in Sk

(the converse can also be established in a similar manner, compare
with Appendix 2.D.3) and we conclude that {Si} are rotated versions
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of S0. Together with the zero-mean IID complex Gaussian distribu-
tion’s invariance to a unitary linear mapping, i.e., the PDF of γ has
the property pγ(γ) = pγ(Qiγ), it follows from similar derivations as in
Appendix 2.D.1 that the conditional PDF of γ|i satisfies the following
relation pγ|i(γ|0) = pγ|i(Qiγ|i). Using this relation it is readily shown
that

E[mh|γm∗
h|γ |i] = |ρ̃|2 E[γγ∗|i] = ρ2Qi E[γγ∗|0]Q∗

i

= QiRQ∗
i ,

with R = ρ2 E[γγ∗|0] and, consequently, the first symmetric feedback
condition in (6.46) is satisfied. The second symmetric feedback condition
(6.47) is also satisfied since for the simplified fading scenario it follows
from (6.7) that Rhh|γ = σ2

h(1 − |ρ̃|2)IMN = σ2
h(1 − ρ2)IN ⊗ IM . Thus,

we have shown that the partial phase combining type of feedback scheme
used in the simplified fading scenario indeed constitutes a symmetric
feedback situation and hence all the 2b different codes can be derived
from a single code {C̄k} by means of known linear transformations. This
will be utilized later, both in Section 6.6 to describe constructed codes
in a compact manner as well as for simulation purposes in Section 6.7.

6.5 Numerical Optimization

The design procedures for unstructured and linear dispersive codes de-
scribed in Section 6.3.2 represent non-convex optimization problems,
which are in general difficult to solve. The present section describes
how numerical gradient search [BS93] type of techniques can be utilized
for “solving” these optimization problems. With such an approach, the
solution can only be expected to be locally optimal. To remedy this,
the chance of finding the global optimum is improved by repeating the
gradient search several times, each time initiated differently, and picking
the best of the resulting solutions. Although the technique is tailored to
the application under consideration, it is similar in structure to the opti-
mization procedure utilized in [FGW74] for the design of efficient signal
constellations.

6.5.1 Unstructured Codes

The numerical optimization procedure for unstructured codes implements
a gradient search which updates the code C by taking a step along the
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direction of the negative gradient of Wq(C|i). The result is thereafter
normalized so as to satisfy the output power constraint of the codeword
constellation. Starting with an initial guess C0 of the solution, the code-
word constellation is hence updated, for n = 0, 1, · · · , according to

Cn+1 =

√

PK log2(K)
(

Cn − µn

(
∂Wq

∂C
(Cn)

)c)

‖Cn − µn

(
∂Wq

∂C
(Cn)

)c

‖F

, (6.49)

where µn is the so-called step size and, based on (6.36), the derivatives
with respect to all the codewords have been collected in a matrix repre-
senting the gradient as

∂Wq

∂C
(C) =

[
∂Wq

∂C1
(C)

∂Wq

∂C2
(C) · · · ∂Wq

∂CK
(C)
]

.

The complex conjugate in (6.49) is due to the negative sign of the imag-
inary part in the definition of the complex derivative in (6.35).

An appropriate step size is obtained by using successively smaller val-
ues of µn until the design criterion is found to have decreased. Several al-
ternative methods for choosing the step size exist in the literature [BS93].
A candidate solution is found by iterating (6.49) until convergence.

The gradient search is repeated several times using different C0 set at
random. Finally, the best of the resulting candidate solutions is chosen
and designated as the constructed code C

(i). The random initialization
strategy can be complemented in various ways. For example, a C0 corre-
sponding to an OSTB code or beamforming could also be used. In this
way, the constructed code is guaranteed to perform equal or better (as
measured by the criterion function) than either of these two well-known
transmission methods.

6.5.2 Linear Dispersive Codes

It should be clear that a similar numerical optimization technique can be
used to “solve” the design problem for linear dispersive codes in (6.21).
The major difference compared with the previous gradient search in (6.49)
is that the gradient is now instead evaluated with respect to the transmit
weights in B.

To explicitly describe the gradient search in the present case, let
∂Wq

∂Bm
(B) denote the derivative of Wq(C(B)|i) with respect to the mth
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weighting matrix Bm, evaluated at B. Since Ck =
∑Ld

m=1 Bms
(k)
m , the

derivative is easily inferred from (6.37). Hence, it is realized that

∂Wq

∂Bm
(B) =

∑

k<l

(s(k)
m − s(l)

m )V ′
q

(
Ld∑

m′=1

Bm′(s
(k)
m′ − s

(l)
m′)

)

.

Collect now all the Ld derivatives and form the gradient as

∂Wq

∂B
(B) =

[
∂Wq

∂B1
(B)

∂Wq

∂B2
(B) · · · ∂Wq

∂BLd
(B)
]

.

Similarly to as in the case of unstructured codes, the gradient search
starts with an initial guess B0 of the solution and updates the weighting
matrices according to

Bn+1 =

√

P log2(K)
(

Bn − µn

(
∂Wq

∂B
(Bn)

)c)

‖Bn − µn

(
∂Wq

∂B
(Bn)

)c

‖F

, (6.50)

until convergence.

6.5.3 Computational Complexity Issues

It is clear that the numerical optimization may be performed off-line.
Thus, although the computing power needed for the codeword search is
substantial, the resulting transmission scheme can be efficiently imple-
mented via the use of lookup tables.

Consider first the case of unstructured codes. The time it takes to
complete the code design increases with the size of the problem. For
modest values of M , L and K, a solution is obtained within a reasonable
short time period. The main bottleneck is typically the computation of
the design criterion and gradient when the number of codewords K is
large. Since the number of terms in the design criterion and gradient
grows quadratically with K (c.f. (6.28)), the time it takes to perform
the update in (6.49) quickly becomes prohibitive, resulting in an essen-
tially unsolvable code design problem. Nevertheless, we have managed
to construct M = 8, L = 8 unstructured codes with up to K = 4096
codewords using the techniques presented in this chapter. Of course, the
design of codes with codewords of smaller dimension and at least this
many codewords is also feasible.
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Both high and low rate codes are possible, depending on the length
L of the codewords. For an M = 2, L = 2 code and assuming a max-
imum of 4096 codewords, the rate may be as high as log2(4096)/2 = 6
bits per channel use while for the M = 8, L = 8 case a more moder-
ate rate of log2(4096)/8 = 1.5 bits per channel use is possible. To ob-
tain much higher rates it may be necessary to use other design methods
that do not rely on pairwise error probabilities and possibly also reduce
the number of parameters in the problem by introducing additional con-
straints/structure. The use of linear dispersive codes is one example of
how structure may be introduced to drastically reduce the number of pa-
rameters that need to be optimized. However, the benefits of structure
typically come at the price of lower performance since structure generally
limits the degrees of freedom in the design.

The problems associated with the rapid growth of the computational
complexity with respect to K may also be circumvented by employing
linear dispersive codes. A viable strategy is then to design the weight-
ing matrices so as to maximize the information theoretic capacity of a
suitable channel. Similarly as was done in [HH02b] for the no channel
knowledge case, the well-known MIMO capacity formula [Tel95], or the
related expression in (2.7), can be used with channel information incor-
porated into the design through the statistics of the channel and feedback
(c.f. mean and covariance feedback [VM01]).

It should be noted that such criteria are only appropriate for long
block lengths with the transmitted codeword experiencing many different
channel realizations, the latter because the relevant capacity formulas
rely on the assumption of ergodic fading. In other words, code design
methods based on these criteria are geared toward applications which
can tolerate a rather high processing delay. Our design procedures, on
the other hand, are intended for significantly shorter block lengths, thus
targeting delay sensitive applications, and do not assume coding over
different channel realizations. Furthermore, a fundamental assumption
behind capacity maximizing code construction methods as in [HH02b] is
that the designed code is concatenated with an outer code to obtain low
error probability. In contrast, the code design methods proposed herein
strive for minimizing the error probability directly.

Another important issue is decoding complexity. As evident from
(6.2), the unstructured codes designed in this work require an exhaustive
search over all codewords. The resulting computational complexity may
be tolerable for codes with a moderate number of codewords, but for
high rate applications the high decoding complexity essentially excludes
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the use of unstructured codes. Linear dispersive codes may then be a
more appealing choice since they permit, as pointed out in Section 3.2.2
the use of decoding algorithms [VH02, JMO03] with significantly lower
complexity than an exhaustive search.

Obviously, weighted OSTBC is an even better choice if low computa-
tional complexity is the only issue under consideration. This applies both
to the transmit weight design procedure as well as to the ML detection
algorithm.

6.6 Code Design Results

The design method described by (6.20) and implemented as (6.49) has
been used for constructing numerous channel side information dependent
unstructured codes. This section presents a few illustrative examples of
such constructed codes and their properties. In addition, properties of a
couple of linear dispersive codes, designed using (6.21), are also presented.
All codes presented in this section were designed under the assumption
of the simplified fading scenario with N = 1 receive antenna, a power
budget P = 1 and fading variance σ2

h = 1.

A Channel Side Information Dependent Unstructured Code

In Table 6.1, three unstructured M = 2, L = 2, K = 4 codes are pre-
sented. The codes have been designed for a noise variance σ2 = 0.1, cor-
responding to an SNR of 10 dB in the graph depicted in Figure 6.2, and
using an initial channel information quality ρ set to 0, 0.95 and 0.9999,
respectively. In the two latter cases, b = 2 bits were used to quantize
the initial channel information using the phase quantization scheme de-
scribed in Section 6.2.1. Only the codewords of the first code, C(0), are
explicitly displayed. This constitutes all needed codes in the no chan-
nel knowledge ρ = 0 case. For the ρ = 0.95 and ρ = 0.9999 cases, the
feedback is symmetric, as explained in Section 6.4.6, and the remaining
codes C(i), i = 1, 2, 3 are hence obtained through the linear transforma-

tions C
(i)
k = QiC

(0)
k , where Qi , diag(1, ejπi/2). All the codes in the

table together with their linearly transformed counterparts can be said
to form one channel side information dependent code.

The condition number κ(C
(i)
k ) (with respect to the spectral norm) of

each codeword C
(i)
k has been computed and the results are summarized

and displayed above the corresponding code. Since the condition number
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ρ = 0 ⇒ κ(C
(0)
k ) ≈ 1

C
(0)
1

−0.71126 + j0.36087 +0.40735 − j0.44435
−0.58663 + j0.14285 −0.65934 + j0.44859

C
(0)
2

+0.01832 + j0.21581 +0.08399 + j0.97295
+0.81098 + j0.54269 −0.18061 − j0.12080

C
(0)
3

+0.15579 + j0.09515 −0.94038 − j0.28723
+0.20541 − j0.96129 −0.00773 − j0.18309

C
(0)
4

+0.53715 − j0.67183 +0.44904 − j0.24136
−0.42976 + j0.27575 +0.84767 − j0.14470

ρ = 0.95 ⇒ κ(C
(i)
k ) ≈ 6

C
(0)
1

−0.92111 + j0.37685 −0.04889 − j0.10390
−0.88850 + j0.32513 −0.30045 + j0.10687

C
(0)
2

+0.48440 + j0.49155 −0.03616 + j0.72504
+0.67026 + j0.56673 −0.09747 + j0.46532

C
(0)
3

+0.24692 − j0.47884 −0.77306 − j0.34031
+0.25685 − j0.72680 −0.55128 − j0.31430

C
(0)
4

+0.18980 − j0.38956 +0.85812 − j0.28083
−0.03860 − j0.16506 +0.94920 − j0.25788

ρ = 0.9999 ⇒ κ(C
(i)
k ) > 104

C
(0)
1

−0.41928 + j0.80405 +0.24074 − j0.35123
−0.41680 + j0.80166 +0.23961 − j0.35014

C
(0)
2

+0.40759 − j0.35120 −0.50008 − j0.68115
+0.40569 − j0.35052 −0.49916 − j0.67815

C
(0)
3

−0.33466 − j0.68957 +0.61490 + j0.19504
−0.33429 − j0.68668 +0.61289 + j0.19353

C
(0)
4

+0.34635 + j0.23672 −0.35556 + j0.83734
+0.34539 + j0.23554 −0.35334 + j0.83476

Table 6.1: Constructed C(0) codes for different ρ. Design parameters:
M = 2, L = 2, N = 1, K = 4, b = 2, P = 1, σ2 = 0.1.

is the ratio between the maximum and minimum singular value [HJ96,
p. 442], it serves as a measure of how close the codewords are to unitary
and rank one matrices (the latter because there are only two singular
values), respectively.

The condition number is seen to increase with ρ. In particular, since

κ(C
(0)
k ) ≈ 1 the codewords in the ρ = 0 code are all essentially scaled

unitary matrices, in line with the K = 2 no channel knowledge result de-
rived in Section 6.4.3. Correspondingly, the almost perfect initial channel
knowledge ρ = 0.9999 code has codewords with very high condition num-
bers, meaning that the codewords are close to rank one. This is explained
by studying the eigenvalues of Ri = E[M̄H|γM̄H|γ |i] in (6.25). It can
be verified that the difference between the two eigenvalues is large and
hence almost all power is allocated along the strongest eigen-direction,
in good agreement with the discussion related to perfect initial channel
information in Section 6.4.1.
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Properties in the No Channel Knowledge Case

No channel knowledge constitutes an important special case that war-
rants further investigation. Table 6.2 presents some interesting proper-
ties of a few constructed codes and, as benchmarks, corresponding rate
one OSTB codes as found in [TJC99]. This time, both unstructured and
linear dispersive codes were designed. Because of the no channel knowl-

edge assumption, only the determinant term of `(C
(i)
k ,C

(i)
l |γ) in (6.15)

remains, implying that PLBUB({C(i)}) = PUB({C(i)}) in (6.16). Hence,
both design procedures now strive for minimizing an upper bound on the
union bound of the codeword error probability.

A BPSK signal constellation was used for the constituent information
symbols in each OSTB and linear dispersive code. Every row represents
a code with the first column displaying dimensions and the type of code,
“U”, “L” and “O” stand for unstructured, linear dispersive and OSTB
code, respectively. In the second column, the spread of energy over the
codewords is measured using the ratio

εmax
C /εmin

C , max
k

‖Ck‖2
F/min

k
‖Ck‖2

F .

To measure how close the codewords are to unitary matrices, the third
column shows the maximum codeword condition number

κC , max
k

κ(Ck)

of each code. Similarly, in the fourth and fifth column,

εmax
A /εmin

A , max
k 6=l

‖Akl‖2
F/min

k 6=l
‖Akl‖2

F, κA , max
k 6=l

κ(Akl) ,

where we recall that Akl = (Ck − Cl)(Ck − Cl)
∗. Together these two

measures show whether the code is parameter insensitive as defined by
the orthogonality property in (6.44). Finally, to facilitate a comparison of
the performance at high SNR values, the last column displays the coding
gain

CG ,

(
∑

k<l

1

detN ((Ck − Cl)(Ck − Cl)∗)

)−1/(MN)

for each code. The definition of the coding gain stems from the fact that
at high SNR values the upper bound on the codeword error probability
in (6.32) can, for the no channel knowledge case and assuming full di-
versity codes that satisfy the rank criterion [TSC98], be approximated



6.6 Code Design Results 227

(M,L,K) εmax
C /εmin

C κC εmax
A /εmin

A κA CG[dB]
U: (2, 2, 4) 1.000 1.001 1.000 1.004 0.369

U: (4, 4, 16) 1.084 1.002 3.297 4.036 −2.47

U: (8, 8, 256) 1.130 1.136 11.41 502.2 −4.58

L: (2, 2, 4) 1.000 1.000 4.000 1.004 −0.256

L: (4, 4, 16) 1.000 1.006 16.00 1.013 −3.87

L: (8, 8, 256) 1.000 1.006 64.00 1.018 −6.78

O: (2, 2, 4) 1.000 1.000 4.000 1.000 −0.256

O: (4, 4, 16) 1.000 1.000 16.00 1.000 −3.87

O: (8, 8, 256) 1.000 1.000 64.00 1.000 −6.78

Table 6.2: Code properties for the no channel knowledge case.

by α/(CG · SNR)MN for some constant α (c.f. [TSC98]). To roughly
optimize the coding gain, all unstructured codes were designed with a
high SNR scenario in mind using a small noise variance σ2 = 0.001.

Observe first that the linear dispersive and OSTB codes are essentially
equal in terms of the measured properties. In particular they have the
same coding gain. This is no coincidence. A closer study of the weight-
ing matrices in the constructed linear dispersive codes shows that the
matrices satisfy (with great accuracy) the conditions in (3.11) and (3.12)
that define the notion of an OSTB code. Experimental investigations in-
dicate that the conditions are satisfied also for other codeword sizes and
code rates than the ones presented in the table, as long as there exists
an OSTB code for the given rate. In other words, our design procedure
seems to automatically produce OSTB codes. This is quite a remark-
able result since such codes have so far been handcrafted. The fact that
OSTB codes are obtained indicates that they are optimal in the sense
of minimizing, within the class of linear dispersive codes, the previously
mentioned upper bound on the codeword error probability. Theoretical
analyses regarding the optimality of OSTB codes within more restrictive
classes of linear dispersive codes than considered herein point in the same
direction [SHP00, SP01].

The unstructured and OSTB codes also have a lot in common. For
example, from the ratio εmax

C /εmin
C we see that for both code types the

energy is distributed more or less equally among the codewords and,
since κC is close to one, the codewords are essentially scaled unitary
matrices. Hence, the no channel knowledge orthogonality property that
was derived for a K = 2 codeword code seems to hold for other K as
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well. For the unstructured (2, 2, 4) code, κA ≈ 1, which means that
there are constructed codes that even share the pairwise orthogonality
property (6.44) with the OSTB codes. Moreover, since εmax

A /εmin
A ≈ 1,

the scaling factor λ̃kl is almost constant. The code therefore satisfies all
the requirements for the parameter insensitivity result to apply, which
provides an indication that the code will perform well even if σ2, σ2

h, P
and N are changed. Tests conducted for various parameter values show
that this is indeed the case since the unstructured (2, 2, 4) code gives
approximately the same values of the criterion function as the solutions
obtained by performing the numerical optimization procedure. From the
parameter insensitivity it follows that the codewords can be considered
to be the same as for the ρ = 0 code in Table 6.1.

Performance wise, however, the unstructured and OSTB codes differ
significantly, even in the present case of no channel knowledge. The
former are seen to have consistently higher coding gains than the latter.
For example, the unstructured (2, 2, 4) code is 0.6 dB better than the
corresponding OSTB code while the difference is 1.4 dB for the (4, 4, 16)
codes. These numbers are also approximately confirmed by simulation
results in Section 6.7. Of course, the performance advantage exhibited by
the designed unstructured codes is to be expected considering the design
freedom offered by the absence of structural constraints.

6.7 Numerical Examples

To illustrate the performance of some constructed codes, simulations of
the communication system in Section 6.2 were conducted for the sim-
plified fading scenario using an M = 2 and M = 4 transmit antenna
system, respectively. To focus on a common situation in practice, N = 1
receive antenna was assumed throughout the simulations. By consider-
ing three different cases, ρ = 0 (no channel knowledge), ρ = 0.95 and
ρ = 0.9999 with b = 2 or b = 6 feedback bits, depending on the number
of transmit antennas, the impact of the channel information quality on
the performance was studied. Note that the ρ = 0 case also corresponds
to an open-loop system for which conventional space-time codes are ap-
propriate. Therefore, an OSTBC system was used as a benchmark. A
comparison with beamforming was also performed. Using beamforming,
the transmitted signal can be written on the form c(n) = vs(n), where
s(n) represents the nth information bearing data symbol and v is a trans-
mit weighting vector. For ideal beamforming the true channel h is used
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as a weighting vector while for conventional beamforming v = ˆ́γ(i), with
the feedback encoder2 now defined as i = ε(γ) , arg maxk ‖γ∗ ˆ́γ(k)‖2

F.
This choice of encoder serves to maximize the received signal power in
the case of perfect initial channel knowledge [HP98].

The remaining assumptions in the simulations were as follows. For
all the examined cases, equally probable bits were mapped into code-
words/blocks of length L samples and conveyed over the spatially uncor-
related flat Rayleigh fading channel. An energy of P = 1 per information
bit was used. The variance of the channel coefficients was set at σ2

h = 1.
In the case of the systems employing OSTBC or beamforming, a BPSK
signal constellation was employed. To make fair comparisons, the effec-
tive data rates of the constructed codes were fixed at 1 information bit
per channel use. The SNR was measured for the conventional OSTBC
system and defined as

SNR ,
E[‖H∗C‖2

F]

LNσ2
,

where C =
√

Po/MC̄ with C̄ denoting the codeword output from the
OSTB encoder. The expression for the SNR is equal to the total received
average signal energy, divided by the total average noise energy.

We start with investigating the performance of unstructured codes.
Unstructured codes will then be compared with linear dispersive codes
and weighted OSTBC by means of one representative simulation example.

Unstructured Codes versus Conventional Schemes

In Figure 6.2, the codeword/block error probability (BLER) as a func-
tion of the SNR is depicted for some unstructured codes, OSTBC and
beamforming. An M = 2, L = 2 system is considered. The channel infor-
mation was coarsely quantized using b̄ = b = 2 bits per complex-valued
dimension. The ρ = 0 code was taken from Table 6.1 while all other
unstructured codes were designed based on the same parameter values as
used in the simulations.

Clearly, the performance of the constructed codes, regardless of chan-
nel information quality ρ, is significantly better than the performance of
conventional OSTBC and beamforming. In particular, it should be noted
that the OSTB code is outperformed by the unstructured codes even if
there is no channel knowledge. As predicted by Table 6.2, a gain on the

2For an M = 2, N = 1 system, this encoder is equivalent to the one in (6.4).
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Figure 6.2: Performance comparisons for an M = 2, L = 2, N = 1, b = 2
system.

order of 0.6 - 0.8 dB compared with OSTBC is observed for high SNR
values using the ρ = 0 code. A similar gain for the constructed channel
side information dependent ρ = 0.9999 code compared with the corre-
sponding conventional beamforming method is also seen. With higher
SNR, the curve for the ρ = 0.95 code (eventually also the ρ = 0.9999
code) approaches the one for the no channel knowledge ρ = 0 code. This
agrees well with the asymptotic high SNR result in Section 6.4.4 stating
that channel knowledge is used less and less as the SNR is increased. In
fact, the two channel side information dependent codes tend to the ρ = 0
code, since the latter can be viewed as parameter insensitive, and hence
designed at an arbitrary SNR.

Figure 6.3 shows how the performance is affected if the number of
transmit antennas and the code length are increased to M = 4 and L = 4,
respectively. By using b̄ = b/3 = 2 bits, the quantization is roughly as
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Figure 6.3: Performance comparisons for an M = 4, L = 4, N = 1, b = 6
system.

coarse as in the previous figure. As expected, the gains due to channel
knowledge increase substantially with more transmit antennas. Again,
the 1.4 dB coding gain in Table 6.2 agrees well with simulated results.
It is also interesting to note that even though the unstructured ρ =
0.9999 code is based on coarsely quantized channel side information, it is
significantly better than ideal beamforming, which has access to perfect
(i.e., non-quantized) channel state information. Thus, the proposed code
design procedure succeeds in exploiting the unstructured nature of the
code for compensating for the imperfections of the channel feedback.
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Comparing the Three Code Structures

Design procedures for both linear dispersive codes as well as weighted
OSTBC have also been implemented. Linear dispersive codes were de-
signed using the gradient search based optimization algorithm in (6.50).
For weighted OSTBC, the transmit weight design procedure in (6.22) was
implemented by means of an interior point algorithm (c.f. (2.54)) that
finds the global optimal solution.
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10−4

10−3

10−2

10−1

100

Conv. OSTBC
Weighted OSTBC: ρ=0.9999
Linear dispersive code: ρ=0.9999
Unstructured code: ρ=0.9999
Ideal beamforming

PSfrag replacements

B
L
E

R

SNR [dB]

Figure 6.4: Illustrating how the choice of code structure affects the perfor-
mance for an M = 2, L = 2, N = 1, b = 2 system.

To give an idea of how the choice of code structure influences the
performance, constructed codes of the three code types are compared in
Figure 6.4 for a system using M = 2 transmit antennas, N = 1 receive
antennas, L = 2 and b = 2 feedback bits, under similar conditions as
for the previous graphs. The quality of the initial channel information is
here arbitrarily set to ρ = 0.9999, i.e., it is essentially perfect.

As expected, the unstructured code is better than the two other code
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types. What may be more surprising is that the linear dispersive code
and weighted OSTBC basically have the same performance. Numerical
results not presented here show that this is also the case also for other
values of ρ. Indeed, for the extreme case of no channel knowledge, it is
known from Section 6.6 that the linear dispersive code is equivalent with
OSTBC.

Preliminary experimental investigations indicate that linear dispersive
codes and weighted OSTBC exhibit similar performance in many different
scenarios. Thus, it may seem like linear dispersive codes offer little, if
any, performance advantage over weighted OSTBC. However, keep in
mind that the former code type exists for all possible combinations of
antenna array sizes and data rates whereas weighted OSTBC is to a
large degree limited by the fact that an OSTB code with the maximum
data rate of two real-valued information symbols per channel use only
exists for the case of two transmit antennas, as previously discussed in
Section 3.2.3. A thin transmit weighting matrix, i.e., M ′ < M , may
to some extent offset this limitation. Nevertheless, it is reasonable to
expect that linear dispersive codes have clear performance advantages
over weighted OSTBC for systems with more than two transmit antennas
when the required symbol rate is higher than the low rate of one generally
considered in the present section.

6.8 Conclusions

This work considered the design and analysis of space-time block codes
utilizing non-perfect quantized channel side information. A new design
criterion was derived that directly takes the quantized nature of the chan-
nel side information into account, thus avoiding heuristic modifications
as in the previous chapter. While the focus was on unstructured block
codes, design procedures for linear dispersive codes and weighted OSTBC
were also proposed and implemented.

The constructed unstructured codes showed better performance than
both conventional OSTBC as well as beamforming, even if there was no
channel knowledge at the transmitter. In the case of no channel knowl-
edge, the design procedure for linear dispersive codes was seen to auto-
matically produce OSTB codes, which is interesting since OSTB codes
previously have been handcrafted. Further investigations, experimental
as well as theoretical, are however needed to more fully understand the
mechanisms behind this result.
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Appendix 6.A The Gradient of Vq(C|i)
The gradient of Vq(C|i) with respect to the parameters in C will

now be derived. In order to simplify the notation, let R̃ ,

R−1
hh|γ E[mh|γm∗

h|γ |i]R
−1
hh|γ , Ψ , Ψ(C) and drop the subscript of

Rhh|γ . For later reference, note the easily verifiable complex derivative
relations

∂x

∂x
= 1,

∂xc

∂x
= 0 , (6.51)

where x is a complex-valued scalar. Observe that the second relation of
(6.51) means that any function of xc can be treated as a constant.

By evaluating the complex derivative with respect to element [C]kl of
C and making use of the identities [Kay93, p. 73]

∂X(θ)−1

∂θ
= −X(θ)−1 ∂X(θ)

∂θ
X(θ)−1 (6.52)

∂ log det(X(θ))

∂θ
= tr

(

X(θ)−1 ∂X(θ)

∂θ

)

, (6.53)

as well as (6.51) and the fact that tr(AB) = tr(BA) we have

∂ log
(
Vq(C|i)

)

∂[C]kl
= −η tr

(
Ψ−1(IN ⊗ e

(M)
k (e

(L)
l )∗C∗)

)

−η tr
(

Ψ−1
(
IN ⊗ e

(M)
k (e

(L)
l )∗C∗

)
Ψ−1R̃

)

= −η tr
(
Ψ−1(IN ⊗ e

(M)
k (e

(L)
l )∗C∗)

)

−η tr
(
Ψ−1R̃Ψ−1(IN ⊗ e

(M)
k (e

(L)
l )∗C∗)

)

= −η

N∑

n=1

tr
(
Ωn(e

(M)
k (e

(L)
l )∗C∗)

)

= −η(e
(L)
l )∗C∗

(
N∑

n=1

Ωn

)

e
(M)
k , (6.54)

where Ωn represents the nth block of size M × M on the diagonal of
Ψ−1+Ψ−1R̃Ψ−1. The first equality is due to the fact that differentiating
each element of C with respect to [C]kl yields

∂C

∂[C]kl
= e

(M)
k (e

(L)
l )∗ ,



6.A The Gradient of Vq(C|i) 235

where e
(K)
k denotes the kth column of IK . After collecting the derivatives

(6.54) in a matrix it is straightforward to show that

∂ log
(
Vq(C)

)

∂C
= −η(ΩC)c ,

where Ω =
∑N

n=1 Ωn. The gradient of Vq(C|i) is finally obtained as

∂Vq(C|i)
∂C

= −ηVq(C|i)(ΩC)c .
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Acronyms

BER Bit Error Rate
BLER BLock Error Rate
BPSK Binary Phase Shift Keying
COVQ Channel Optimized Vector Quantization
DOA Direction Of Arrival
EVD EigenValue Decomposition
FDD Frequency Division Duplex
GSM Global System for Mobile communication or

Groupe Spécial Mobile
IID Independent and Identically Distributed
KKT Karush-Kuhn-Tucker
ML Maximum Likelihood
MIMO Multi-Input-Multi-Output
MISO Multi-Input-Single-Output
MMSE Minimum Mean-Square Error
OSTB Orthogonal Space-Time Block
OSTBC Orthogonal Space-Time Block Coding
OFDM Orthogonal Frequency Division Multiplexing
PAM Pulse Amplitude Modulation
PDF Probability Density Function
PMF Probability Mass Function
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QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
SIMO Single-Input-Multi-Output
SISO Single-Input-Single-Output
SINR Signal-to-Interference-plus-Noise-Ratio
SNR Signal-to-Noise-Ratio
SVD Singular Value Decomposition
TDD Time Division Duplex
VQ Vector Quantization
WCDMA Wideband Code Division Multiple-Access



Appendix B

Notation

In this thesis, vectors and matrices are usually denoted by boldface
lowercase and uppercase letters, respectively. For example, x denotes a
vector while X represents a matrix. Vectors are generally represented
by one-column matrices. A non-boldface calligraphic typeface is used to
denote sets, e.g. A, B, C and so on. The list below and on the following
pages defines additional notation.

M × N The dimension of a matrix with M rows and N
columns.

XM×N An M × N matrix X.
IM The identity matrix of dimension M × M .
[X]kl The element on the kth row and lth column,

also referred to as element (k, l), of the matrix
X.

XT The transpose of the matrix X.
X∗ The complex conjugate transpose of the matrix

X.
Xc The matrix obtained by taking the complex

conjugate on each element of the matrix X, i.e.,
Xc = (X∗)T.

‖x‖ The Euclidean norm of a vector x, i.e., ‖x‖ =√
x∗x.
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‖x‖K The norm of the vector x defined through
‖x‖2

K = x∗Kx, where K is a positive definite
weight matrix.

‖X‖ The spectral norm of the matrix X, i.e., ‖X‖ =
σmax, where σmax is the maximum singular
value of X. Reduces to the usual Euclidian
norm if X is a vector.

‖X‖F The Frobenius norm of the matrix X, i.e.,

‖X‖F =
√∑

k,l |[X]kl|2.
rank(X) The rank of the matrix X.
tr(X) The trace of the matrix X.
det(X) The determinant of the matrix X.
vec(X) The vectorized counterpart of the matrix X,

i.e., vec(X) is a vector containing the columns
of X stacked on top of each other. The columns
are ordered from the leftmost at the top to the
rightmost at the bottom.

diag(x1, x2, · · · , xM ) A diagonal matrix with elements x1, x2, · · · , xM

on the main diagonal.
A � B A − B is a positive semi definite matrix.
A ⊗ B The Kronecker product of the matrices A and

B.
δn The Kronecker delta function, i.e., δ0 = 1 and

zero otherwise. The argument n is here as-
sumed to be an integer.

E[·] The expectation operator. Alternatively,
Ex1,x2,···[·] may be used to emphasize that the
expectation is with respect to the random vari-
ables x1, x2, · · · .

x|y Should be read as “x conditioned on y” except
when it appears within a function name such
as for example f(x|y). In the latter case, x|y is
used for emphasizing that f is a function of x
parameterized by y.

E[x|y] Expected value of x conditioned on y, i.e., the
expectation is with respect to the PDF/PMF
of x|y.
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Pr[E ] Probability of the event E . For example, Pr[i =
k] represents the probability that the random
variable i is equal to the deterministic value k.

x , a Denotes that x is equal to a per definition (and
vice versa).

O(·) The big ordo operator.
re(x) and im(x) Real and imaginary part of x, respectively.
arg(x) The phase in radians, in the range −π to π, of

the complex-valued scalar x.
arg minx f(x) The value of x that minimizes the criterion

function f(x).
arg maxx f(x) The value of x that maximizes the criterion

function f(x).
supx∈X f(x) The supremum of f(x) over the set of x such

that x ∈ X .
exp(x) or ex The exponential function.
log(x) The natural logarithm of x.
log2(x) The base 2 logarithm of x.
C The complex number field.
R The real number field.
{Ak} Denotes the set of all Ak.
{Ak}K

k=1 The set {A1, A2, · · · , AK}.
|A| The cardinality of the set A, i.e., the number of

elements in the set.





Appendix C

Matrix Relations

Some useful formulas for manipulating expressions with matrices are
given below. Proofs of all matrix relations are found in e.g. [SS89, Ap-
pendix A] combined with [Gra81]. Let A, B and C denote matrices with
dimensions so that the operations make sense. It then holds that

tr(AB) =
(
vec(A∗)

)∗
vec(B) (C.1)

vec(ABC) = (CT ⊗ A) vec(B) (C.2)

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) (C.3)

(A ⊗ B)−1 = A−1 ⊗ B−1 (C.4)

det(I + AB) = det(I + BA) . (C.5)
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