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Quantum algorithms

Quantum search

The quantum Fourier transform

Quantum simulation
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Quantum algorithms

0<gn> = {fn :0< fn < ¢gn for n > nO}
for some ¢ > 0 and integer ng > 0

“Complexity O(gn)" <= true complexity ¢, € O(gn)
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Quantum Search

Generic search problem

Forx € [0 : N — 1] assume that f(x) =1fore e M C[0: N —1],
IM|=M < N (M < N), and f(z) =0 o.w,

M is the set of solutions to f(x)

The problem is to find one solution, i.e. one x € M

Assume that we have an oracle that can check the value f(x) for
one given = at low cost

In general (i.e. not only for search)

[P = {can be solved with complexity O(a polynomial)}
NP = {has an oracle of complexity O(a polynomial)}
Not known if NP = P
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For a basis {|z)}2=' the quantum oracle O is the operator

Ola) = (—=1)/®|a)

The Grover operator

Glz) = 2[Y) (Y[ = D)Olz)

Assume N = 2™ and let

where each |z) corresponds to n qubits (|0) = |00 --0) etc.)
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Let NV =1[0: N —1]\ M and

1 1
o) = ——=> " |z), IB)=—"= ) |z)
N_M:ceN Ma:e/\/l
If we define
0 |N-M g 0 M
cos2 = N sm2 =\~
then
) —cosg|a>+sing|5>
2 2
and

G*|y)) = cos (Zk; 19) |a) + sin <2k2+ 19) 18)
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A|3)

Each time G is applied, the initial state |¢) is taken closer to |3)

Quantum search (for M < N/2): Prepare the state |v)

Iterate the Grover operator K times

Measure = a state |z)’ € {|x) : z € M} with high probability
For M < N choosing K = [/NN/M | gives a probability of

success of at least 1 — M /N
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The Quantum Fourier Transform

Assume H is N-dimensional, and let {|k>}g:_01 be a basis. For an
arbitrary state [¢) = ), xi|k), let F be the operator defined by

Floy = ulk)
P

where
1 N—-1
- __2mijk/N
k — Iie
Yy N j:ZO J

is the discrete Fourier transform of {z;}
Fl|1) is the quantum Fourier transform of [i)

F is a unitary transformation
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Assume that N = 2" for some integer n, and for j € [0 : N — 1] let

n
j= 2"
(=1

be the binary expansion of j in terms of {j,}, jo € {0,1}

Define the notation
n
J=gida e = Ji2" " €0: N —1]
/=1
and, for 1 <k </ <n,

i
O.kjesr - Je= > 42"t e0,1)
i=k
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|dentify {|j)} with an n-fold qubit basis via [j) <> [j1 - jn)

Then we can write Flji - jn) =

2—% (|O> + €2ﬂi0.jn‘1>)(‘0> + 627ri0.jn—1jn’1>) . (’0> i 627Ti0.j1...jn_1jn‘1>)
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Phase estimation
Assume we wish to estimate the eigenvalue \ = 2™
corresponding to the eigenvector |u) of a unitary operator U

Assume ¢ has an exact t-bits expansion, ¢ = 0.f; - - f;

If we, without knowing ¢, can compute the state
275 (10) + 0 1) (10) + 705 ) - ([0) + 2mOR TSy

then an inverse Fourier transform will result in |fi fo- - fi)

A measurement in the qubit basis then gives ¢

If ¢ is not on the form 0.f; --- f; for some ¢, then using

o)

qubits will give n bits accuracy and error probability < ¢

Mikael Skoglund, Quantum Info 10/18



0) < H ... 10) e2mi(2 1) 1)

B

First register
t qubits

10) 0)  e2mi2%9)|1)

0) — H 0) (,27ri(21<p)|1>

] =] [

0) —{H A 0) €,27ri(204,9)|1>

U2 E U2

Phase estimation: Need to prepare the state |u); Need to implement the

Second register { | U>

[11
[T
L]

U2t E |u)

U2

U7 mappings; Complexity O(t?)
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Order finding

Greatest common divisor of a set A of integers = biggest integer
that divides all numbers in the set, notation gcd(A)

Two integers q; and g2 are relatively prime (coprime) if
gcd(qr,q2) =1

The order r of an integer x modulo a prime number p is the
smallest integer r such that £ =1 mod p

Finding 7 is believed to be hard on a classical computer, in the
sense that the complexity is at least linear in p,
Fermat’s little theorem: zP~' =1 mod p = r < p

Order of 2 modulo a non-prime M: z¢™) =1 mod M where
(M) =|{y:1<y <M, ged(y, M) = 1}|

l.e., the complexity is still linear in M

Mikael Skoglund, Quantum Info 12/18



Defining the unitary operation U as Uly) = |xry mod M), we have

with
1

6—277@'5!{:/7‘ ‘xk mod M>
0

ﬁ
|

|us) =

Sk
i

=

[l

for0 < s<r-—1, that
U|u5> _ e27ris/r|us>
Phase estimation = {e2™*/7} = r with complexity O((log M)?)

We need 7 to prepare |ug): Can use |1) instead of |us), since

1 r—1
W Z |us) = [1)
s=0
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Factoring
Prime factoring: Given a (large) positive integer ¢, find a prime

number p that divides ¢

Believed to be hard on a classical computer, with complexity
O(4/q) — The factoring problem being “hard” is a crucial
assumption in public key encryption
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Assume ¢ is odd (otherwise 2 is a trivial factor)

For z € [2: q — 2] suppose 22 = 1 mod ¢. Then at least one of
gced(x — 1,q) and ged(x + 1, q) is a factor in ¢

Suppose g has m different prime factors and let = be an integer
chosen uniformly in [1: ¢ — 1] N {s : s and g relatively prime}, then

r 1
Pr (r is even and 2 # —1 mod q) >1— om

where r is the order of x mod ¢
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Algorithm: Given an odd number ¢ > 1

Check if ¢ = a® for some prime a and integer b

Choose x at random in [1: ¢ — 1]; if gcd(x,q) > 1 return ged(x, q)
Use quantum order finding to find the order r of x mod ¢

If 7 is even and 2"/2 # —1 mod ¢ then compute gcd(x"”/2 —1,q)
and gcd(27/2 4 1, ¢) and check if one of these is a factor

Otherwise terminate with an error

The steps performed using classical computing have complexity
O((log q)?), so the overall complexity relies on the order finding
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Quantum Simulation

Classical system with state in R%: In general, complexity of
simulation grows as O(d)

N quantum particles with states in H of dimension d, complexity
of simulating the combined system is in general O(d")

Assume N interacting sub-systems such that the evolution of the
joint system is described by

) = HIg) = [9(0)) = e 0))

with H of the form

(=1

where L = O(N) and each Hy acts only on few subsystems
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Assume the action of each Hy, exp(—iHyt), can be simulated
efficiently on a quantum computer

We get |
[9(1)) = e[y (0))

where we can use the Trotter formula

At i Bt .
n—oo

(for A and B self-adjoint/Hermitian)

Quantum simulation:

For subsystems of dimension O(d), the total dimension is O(d™V)
Approximate each H; at resolution O(N*) (some k > 1) qubits
Simulate each subsystem on a quantum computer

Combine using Trotter's formula, or similar
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