
Information Theory
Lecture 7

• Finite fields continued: MWS4.1–MWS4.5 (MWS4.6–8)
• the field GF(pm),. . .

• Cyclic Codes
• Intro. to cyclic codes: MWS7 (not MWS7.7)
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The Field GF(pm)

• π(x) irreducible degree-m over GF(p), p a prime,

GF(pm) = all polynomials over GF(p) of degree ≤ m− 1,
with calculations modulo p and π(x)

• modulo π(x)↔ use π(x) = 0 to reduce xm to degree < m
• without loss of generality, π(x) can be assumed monic

• The prime number p is called the characteristic of GF(pm);
smallest p such that

∑p
i=1 1 = 0

• GF(pm) is a linear vector space of dimension m over GF(p)

• For s < r, GF(ps) ⊂ GF(pr) ⇐⇒ s|r
• For β ∈ GF(pr), β ∈ GF(ps) ⇐⇒ βp

s
= β
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The Cyclic Group G = GF(pm) \ {0}

• For any β ∈ GF(pm), the smallest r > 0 such that βr = 1 is
called the order of β.
• The elements in G = GF(pm) \ {0} form a cyclic group;

• There exists an element α ∈ GF(pm) of order r = pm − 1 that
generates all the non-zero elements of GF(pm), that is

G = {1, α, α2, . . . , αr−1}

• Any such α is called a primitive element

=⇒ Fermat’s theorem: Any β ∈ GF(q) satisfies βq = β, that is

xq − x =
∏

β∈GF(q)

(x− β) = x
r−1∏

i=1

(x− αi)
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Polynomial Factorizations

• For β ∈ GF(pm) the minimal polynomial of β is the lowest
degree monic polynomial m(x) over GF(p) with β as a root

• m(x) is irreducible, has degree s ≤ m such that s|m, and
roots

β, βp, β2p, . . . , β(s−1)p

called conjugates

• If f(β) = 0 for f(x) 6= m(x) over GF(p), then m(x)|f(x);

f(β) = 0 =⇒ f(βp) = 0

• The minimal polynomial of a primitive element in GF(pm) has
degree m, and is called a primitive polynomial
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• A field has at least one primitive element.
• When generating GF(pm) using π(x) with roots
α, αp, . . . , α(m−1)p, the element α is primitive in GF(pm); this
is our “standard” primitive element, henceforth denoted α

• Let m(i)(x) be the minimal polynomial of αi ∈ GF(q), then

xq−1 − 1 =
∏

t

m(t)(x)

over all t ∈ {1, 2, . . . , q − 1} that give different m(t)(x)’s

• An independent statement is: xp
m − x = product of all monic

irreducible polynomials over GF(p) with degrees that divide m
=⇒ help to identify the m(i)(x)’s

• m(i)(x) of degree s =⇒ m(−i)(x) = xsm(i)(x−1)
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Cyclic Codes

• C over GF(q) is cyclic ⇐⇒ C is linear and

(c0, . . . , cn−1) ∈ C =⇒ (cn−1, c0, . . . , cn−2) ∈ C

• For a cyclic code C, let c = (c0, . . . , cn−1) ∈ C correspond to
a codeword polynomial c(x) over GF(q), such that

c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1xn−1

• A cyclic shift ↔ multiplication with x modulo xn − 1
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• Let Rn = “the set of all polynomials over GF(q) that are
equal modulo xn − 1” (a ring of dimension n)

• Given g(x) ∈ Rn, let

〈g(x)〉 = {c(x) : c(x) = u(x)g(x), over all u(x) ∈ Rn}

• A cyclic code of length n with generator polynomial
g(x) ∈ Rn is then formally defined as

C = 〈g(x)〉
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The Generator Polynomial g(x)

• For C = 〈g(x)〉,
• g(x) is the unique monic polynomial in C of minimal degree r
• the dimension of C is k = n− r
• g(x)|xn − 1
• any u(x) over GF(q) of degree < n− r corresponds uniquely

to a c(x) ∈ C via c(x) = u(x)g(x) over GF(q)

• k message symbols (u0, . . . , uk−1), ul ∈ GF(q), give a
codeword c(x) as

c(x) = u(x)g(x), u(x) = u0 + u1x+ · · ·+ uk−1x
k−1

• C.f., c ∈ C ⇐⇒ c = uG
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The Parity Check Polynomial h(x)

• The polynomial

h(x) =
xn − 1

g(x)

is the parity check polynomial of the cyclic code 〈g(x)〉 of
length n
• g(x)h(x) = 0, and c(x) ∈ 〈g(x)〉 ⇐⇒ c(x)h(x) = 0 in Rn;

c.f.,

GHT = 0 and, c ∈ C ⇐⇒ cHT = 0
• h(x) has degree k = dimension of 〈g(x)〉
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G and H matrices

• For a cyclic code with

g(x) = grx
r + gr−1xr−1 + · · ·+ g0

h(x) = hkx
k + hk−1x

k−1 + · · ·+ h0

we get G and H in cyclic form as

G =




g0 g1 · · · gr 0 0 · · · 0
0 g0 g1 · · · gr 0 · · · 0

· · ·
0 0 · · · 0 g0 g1 · · · gr




H =




0 0 · · · 0 hk hk−1 · · · h0
0 · · · 0 hk hk−1 · · · h0 0

· · ·
hk hk−1 · · · h0 0 0 · · · 0



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Why Polynomials?

• Encoding and decoding circuitry based on simple logical
operations straightforward to derive. . .

• Construct and analyze (cyclic) codes based on finite field
theory and polynomial factorizations
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Factors of xn − 1

• Cyclic code over GF(q): g(x)h(x) = xn − 1 =
∏{ irreducible

factors } =⇒ code can be constructed based on the factors

• Assume (always) n and q relatively prime (no common
factors) =⇒ exists a smallest m such that n|qm − 1

• The n zeros of xn − 1 ∈ GF(qm) and no smaller field,

xn − 1 =
n∏

i=1

(x− αi)

for some {α1, . . . , αn} ⊂ GF(qm) with the αi’s distinct
• The nth roots of unity; GF(qm) is the splitting field of xn − 1
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• The roots {α1, . . . , αn} form a cyclic group ⊂ GF(qm), that
is, there is an α ∈ GF(qm), the primitive nth root of unity,
such that

xn − 1 =
n−1∏

i=0

(x− αi)

• n = qm − 1 ⇐⇒ α is a primitive element in GF(qm)

• Assume α a primitive nth root of unity ∈ GF(qm) where m is
the smallest integer such that n|qm − 1,
p(i)(x) = minimal polynomial of αi ∈ GF(qm) =⇒

xn − 1 =
∏

j

p(j)(x)

over all j ∈ {0, . . . , n− 1} that give different p(j)(x)’s
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• Given a factorization

xn − 1 =
∏

j

p(j)(x)

some of the p(j)(x)’s can form g(x) and the others h(x);

• The zeros of a code,
• let C = 〈g(x)〉 of length n, and let K = {k : p(k)(x)|g(x)},

then {αk : k ∈ K} are called the zeros of the code;
• i.e., all roots of g(x)

• αi for i /∈ K (i ≤ n− 1) are the nonzeros (all roots of h(x))
• the nonzeros of C are the zeros of C⊥ and vice versa
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