Information Theory

Lecture 7

® Finite fields continued: MWS4.1-MWS4.5 (MWS4.6-8)
o the field GF(p™),. ..

¢ Cyclic Codes
® Intro. to cyclic codes: MWS7 (not MWS7.7)
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The Field GF(p™)

® 1(x) irreducible degree-m over GF(p), p a prime,

GF(p™) = all polynomials over GF(p) of degree < m — 1,
with calculations modulo p and 7 (x)

® modulo 7m(z) <> use w(x) = 0 to reduce ™ to degree < m
® without loss of generality, 7(x) can be assumed monic

® The prime number p is called the characteristic of GF(p™);
smallest p such that 32 1 =0

e GF(p™) is a linear vector space of dimension m over GF(p)
® For s <r, GF(p®) C GF(p") < s|r
® For 3 € GF(p"), B € GF(p®) < pP" =7
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The Cyclic Group G = GF(p™) \ {0}

® For any 8 € GF(p™), the smallest > 0 such that 8" =1 is
called the order of £5.
® The elements in G = GF(p™) \ {0} form a cyclic group;

® There exists an element o € GF(p™) of order r = p™ — 1 that
generates all the non-zero elements of GF(p™), that is

G={l,a,a?...,a 1)

® Any such « is called a primitive element

— Fermat’s theorem: Any 8 € GF(q) satisfies 87 = 3, that is

29 —x = H (x—-p)== ﬁ(m—ai)

BEGF(q)
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Polynomial Factorizations

® For 5 € GF(p™) the minimal polynomial of (3 is the lowest
degree monic polynomial m(x) over GF(p) with 5 as a root

® m(x) is irreducible, has degree s < m such that s|m, and
roots

B8P, g% ... pl—Lp
called conjugates
o If f(B)=0 for f(x) # m(x) over GF(p), then m(x)|f(x);

f(B)=0 = [f(B") =0

® The minimal polynomial of a primitive element in GF(p™) has
degree m, and is called a primitive polynomial
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A field has at least one primitive element.
® When generating GF(p™) using 7(x) with roots
a,aP, ..., o™ VP the element « is primitive in GF(p™); this
is our “standard” primitive element, henceforth denoted «

Let m(®(x) be the minimal polynomial of o € GF(q), then

gt 1= Hm(t) (x)
t

overall t € {1,2,...,q — 1} that give different m® (z)’s

An independent statement is: 2P — z = product of all monic
irreducible polynomials over GF(p) with degrees that divide m
— help to identify the m®(z)’s

m® (x) of degree s = m(=(z) = 25 m® (z~1)
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Cyclic Codes

e C over GF(q) is cyclic <= C is linear and
(co,...,cn-1) €C = (cp—1,€0,...,cn—2) €C

® For a cyclic code C, let ¢ = (cg,...,cn—1) € C correspond to
a codeword polynomial ¢(x) over GF(q), such that
c(r) =co+ crx + cox? 4+ eyt

® A cyclic shift <> multiplication with  modulo z™ — 1
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® Let R, = “the set of all polynomials over GF(q) that are
equal modulo " — 1" (a ring of dimension n)

® Given g(x) € Ry, let
(g(x)) = {c(x) : c(x) = u(z)g(x), over all u(x) € Ry}

® A cyclic code of length n with generator polynomial
g(x) € R, is then formally defined as

C = (g(x))
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The Generator Polynomial g(z)

® For C = (g(x)),

® g(x) is the unique monic polynomial in C of minimal degree r
the dimension of Cis k=n —r
g(@)]z" —1
any u(x) over GF(q) of degree < m — r corresponds uniquely
to a ¢(z) € C via ¢(x) = u(x)g(x) over GF(q)

® i message symbols (uq,...,ur_1), u; € GF(q), give a
codeword c(x) as

C(:U) = u(x>g(x)7 u(x) =ug+uixr + -+ Uk—ll'k_l

® Cf.,,ceC «<— c=uG
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The Parity Check Polynomial A(x)

® The polynomial

" —1
h(x) =
) 9()
is the parity check polynomial of the cyclic code (g(x)) of
length n
® g(x)h(x) =0, and c¢(x) € (g(z)) < c(z)h(z) =0in Ry,;
c.f.,

GH? =0and,ceC < cHI' =0
® h(x) has degree k = dimension of (g(x))
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G and H matrices

® For a cyclic code with

9(x) = grz" + g1+ + go
h(z) = hpa® + hy_12® 1+ + hyg

we get G and H in cyclic form as

(90 g1 - g 0 0 - 0
a_|9 9 o -~ g 0 - 0
I 0 0 g0 g1 Ir

0 0 hy hi—1 ho

H = 0 0 hk hk—l s ho 0

hy Bt oo ho 0 0 e 0
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Why Polynomials?

® Encoding and decoding circuitry based on simple logical
operations straightforward to derive. ..

e Construct and analyze (cyclic) codes based on finite field
theory and polynomial factorizations
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Factors of 2" — 1

® Cyclic code over GF(q): g(z)h(x) = 2™ — 1 = [ [{ irreducible
factors} = code can be constructed based on the factors

® Assume (always) n and q relatively prime (no common
factors) = exists a smallest m such that n|¢"™ — 1

® The n zeros of 2" — 1 € GF(¢™) and no smaller field,

x”—le(:U—ozi)
i=1
for some {aq,...,a,} C GF(¢™) with the «;'s distinct

® The nth roots of unity;, GF(q™) is the splitting field of " — 1
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® The roots {a1,...,a,} form a cyclic group C GF(¢™), that
is, there is an o € GF(q™), the primitive nth root of unity,
such that

n—1

x”—le(m—ai)

1=0

® n=¢qm—1 <= «is a primitive element in GF(¢™)

® Assume « a primitive nth root of unity € GF(¢™) where m is
the smallest integer such that n|¢™ — 1,
p¥(z) = minimal polynomial of o’ € GF(¢™) =

' —1= Hp(j)(a:)
J

over all j € {0,...,n — 1} that give different p{)(z)'s
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® Given a factorization

" —1= Hp(j)(x)
J

some of the p{)(z)’s can form g(z) and the others h(z);

® The zeros of a code,

® let C = (g(z)) of length n, and let K = {k : p®) (2)|g(z)},
then {a” : k € K} are called the zeros of the code;

® i.e., all roots of g(x)
® o' fori¢ K (i <n—1) are the nonzeros (all roots of h(zx))

® the nonzeros of C are the zeros of C and vice versa
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