
Information Theory
Lecture 2

• Sources and entropy rate: CT4

• Typical sequences: CT3

• Introduction to lossless source coding: CT5.1–5
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Information Sources

source Xn

• Source data: a speech signal, an image, a computer file,. . .

• In practice source data is time-varying and unpredictable.

• Bandlimited continuous-time signals (e.g. speech) can be
sampled into discrete time and reproduced without loss.

A source S is defined by a discrete-time stochastic process {Xn}.
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• If Xn ∈ X , ∀n, the set X is the source alphabet.

• The source is
• stationary if {Xn} is stationary.
• ergodic if {Xn} is ergodic.
• memoryless if Xn and Xm are independent for n ̸= m.
• iid if {Xn} is iid (independent and identically distributed).

• stationary and memoryless =⇒ iid

• continuous if X is a continuous set (e.g. the real numbers).
• discrete if X is a discrete set (e.g. the integers {0, 1, 2, . . . , 9}).
• binary if X = {0, 1}.
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• Consider a source S, described by {Xn}. Define

XN
1 ≜ (X1, X2, . . . , XN ).

• The entropy rate of S is defined as

H(S) ≜ lim
N→∞

1

N
H(XN

1 )

(when the limit exists).

• H(X) is the entropy of a single random variable X, while
entropy rate defines the “entropy per unit time” of the
stochastic process S = {Xn}.
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• A stationary source S always has a well-defined entropy rate,
and it furthermore holds that

H(S) = lim
N→∞

1

N
H(XN

1 ) = lim
N→∞

H(XN |XN−1, XN−2, . . . , X1).

That is, H(S) is a measure of the information gained when
observing a source symbol, given knowledge of the infinite
past.

• We note that for iid sources

H(S) = lim
N→∞

1

N
H(XN

1 ) = lim
N→∞

1

N

N∑

m=1

H(Xm) = H(X1)

• Examples (from CT4): Markov chain, Markov process,
Random walk on a weighted graph, hidden Markov models,. . .
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Typical Sequences

• A binary iid source {bn} with p = Pr(bn = 1)

• Let R be the number of 1:s in a sequence, b1, . . . , bN , of
length N =⇒ p(bN1 ) = pR(1− p)N−R

• P (r) ≜ Pr(RN ≤ r) for N = 10, 50, 100, 500, with p = 0.3,
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• As N grows, the probability that a sequence will satisfy
R ≈ p ·N is high =⇒ given a bN1 that the source produced,
it is likely that

p(bN1 ) ≈ p pN (1− p)(1−p)N

In the sense that the above holds with high probability, the
source will only produce sequences for which

1

N
log p(bN1 ) ≈ p log p+ (1− p) log(1− p) = −H

That is, for large N it holds with high probability that

p(bN1 ) ≈ 2−N ·H

where H is the entropy (entropy rate) of the source.
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• A general discrete source that produces iid symbols Xn, with
Xn ∈ X and Pr(Xn = x) = p(x). For all xN1 ∈ XN we have

log p(xN1 ) = log p(x1, . . . , xN ) =
N∑

m=1

log p(xm).

For an arbitrary random sequence XN
1 we hence get

lim
N→∞

1

N
log p(XN

1 ) = lim
N→∞

1

N

N∑

m=1

log p(Xm) = E log p(X1) a.s.

by the (strong) law of large numbers. That is, for large N

p(XN
1 ) ≈ 2−N ·H(X1)

holds with high probability.
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• The result (the Shannon–McMillan–Breiman Theorem) can be
extended to (discrete) stationary and ergodic sources
(CT16.8). For a stationary and ergodic source, S, it holds that

− lim
N→∞

1

N
log p(XN

1 ) = H(S) a.s.

where H(S) is the entropy rate of the source.

• We note that p(XN
1 ) is a random variable. However, the

right-hand side of

p(XN
1 ) ≈ 2−N ·H(S)

is a constant

=⇒ a constraint on the sequences the source “typically” produces!
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The Typical Set

• For a given stationary and ergodic source S, the typical set

A
(N)
ε is the set of sequences xN1 ∈ XN for which

2−N(H(S)+ε) ≤ p(xN1 ) ≤ 2−N(H(S)−ε)

1 xN
1 ∈ A

(N)
ε ⇒ −N−1 log p(xN

1 ) ∈ [H(S)− ε,H(S) + ε]

2 Pr(XN
1 ∈ A

(N)
ε ) > 1− ε, for N sufficiently large

3 |A(N)
ε | ≤ 2N(H(S)+ε)

4 |A(N)
ε | ≥ (1− ε)2N(H(S)−ε), for N sufficiently large

That is, a large N and a small ε gives

Pr(XN
1 ∈ A(N)

ε ) ≈ 1, |A(N)
ε | ≈ 2N H(S)

p(xN1 ) ≈ |A(N)
ε |−1 ≈ 2−N H(S) for xN1 ∈ A(N)

ε
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The Typical Set and Source Coding

1 Fix ε (small) and N (large). Partition XN into two subsets:

A = A
(N)
ε and B = XN \A.

2 Observed sequences will “typically” belong to the set A.
There are M = |A| ≤ 2N(H(S)+ε) elements in A.

3 Let the different i ∈ {0, . . . ,M − 1} enumerate the elements
of A. An index i can be stored or transmitted spending no
more than ⌈N · (H(S) + ε)⌉ bits.

4 Encoding. For each observed sequence xN1
1 if xN

1 ∈ A produce the corresponding index i.
2 if xN

1 ∈ B let i = 0.

5 Decoding. Map each index i back into A ⊂ XM .
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• An error appears with probability Pr(XN
1 ∈ B) ≤ ε for large

N =⇒ the probability of error can be made to vanish as
N → ∞

• An “almost noiseless” source code that maps xN1 into an index
i, where i can be represented using at most ⌈N · (H(S) + ε)⌉
bits. However, since also M ≥ (1− ε)2N(H(S)−ε), for a large
enough N , we need at least ⌊log(1− ε) +N(H(S)− ε)⌋ bits.

• Thus, for large N it is possible to design a source code with
rate

H(S)− ε+
1

N

(
log(1− ε)− 1

)
< R ≤ H(S) + ε+

1

N

bits per source symbol.

=⇒ “Operational” meaning of entropy rate: the smallest rate at
which a source can be coded with arbitrarily low error
probability.
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Data Compression

• For large N it is possible to design a source code with rate

H(S)− ε+
1

N

(
log(1− ε)− 1

)
< R ≤ H(S) + ε+

1

N

bits per symbol, having a vanishing probability of error.

• For a fixed finite N , the typical-sequence codes discussed are
“almost noiseless” fixed-length to fixed-length codes.

• We will now start looking at concrete “zero-error” codes, their
performance and how to design them.

• Price to pay to get zero errors: fixed-length to variable-length
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Various Classifications

• Source alphabet
• Discrete sources
• Continuous sources

• Recovery requirement
• Lossless source coding
• Lossy source coding

• Coding method
• Fixed-length to fixed-length
• Fixed-length to variable-length
• Variable-length to fixed-length
• Variable-length to variable-length
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A Symbol-by-symbol Code

• D-ary symbol code C for a random variable X

C : X → {0, 1, . . . , D − 1}∗

• A∗ = set of finite-length strings of symbols from a finite set A
• C(x) codeword for x ∈ X
• l(x) length of C(x) (i.e. number of D-ary symbols)

• Data compression =⇒ minimize expected length

L(C,X) =
∑

x∈X
p(x)l(x)

• Extension of C is C∗ : X ∗ → {0, 1, . . . , D − 1}∗

C∗(xn1 ) = C(x1)C(x2) · · ·C(xn), n = 1, 2, . . .
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Example: Encoding Coin Flips

X Problem

C0 0 1 10 010
Cu 00 1 10 10 · · · 0
Ci 00 1 01 –
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Uniquely Decodable Codes

• C is uniquely decodable if

∀x,y ∈ X ∗, x ̸= y =⇒ C∗(x) ̸= C∗(y)

• Any uniquely decodable code must satisfy the Kraft inequality

∑

x∈X
D−l(x) ≤ 1

(McMillan’s result, Karush’s proof in C&T)
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Instantaneous Codes

• C is instantaneous (or prefix) if prefix-free
• no codeword is a prefix of any other codeword

• Instantaneous codes are uniquely decodable

=⇒ prefix codes satisfy the Kraft inequality

• Given a set of codeword lengths that satisfy the Kraft
inequality there exists a prefix code with those codeword
lengths.

=⇒ there is a prefix code for every set of codeword lengths that
allow a uniquely decodable code

=⇒ no loss of generality in studying only prefix codes
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Most Compression Possible?

For any uniquely decodable D-ary symbol code C
(defining HD(X)≜−∑

x p(x) logD p(x)),

L(C,X) =
∑

x∈X
p(x) logD Dl(x)

= HD(X) +
∑

x∈X
p(x) logD

p(x)

D−l(x)

log-sum
≥ HD(X) + 1 · logD

1∑
x∈X D−l(x)

Kraft
≥ HD(X)

with equality iff p(x) = D−l(x), i.e. l(x) = − logD p(x).
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How Close Can We Get?

• The optimal length l(x) = logD
1

p(x) need not be an integer

• Use l(x) =
⌈
logD

1
p(x)

⌉

• These codeword lengths satisfy the Kraft inequality

∑

x∈X
D

−
⌈
logD

1
p(x)

⌉
≤

∑

x∈X
D

− logD
1

p(x) =
∑

x∈X
p(x) = 1

=⇒ There exists a (uniquely decodable) prefix code with these
codeword lengths

• For such a code C,

l(x) < − logD p(x) + 1 =⇒ L(C,X) < HD(X) + 1
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Source Coding Theorem
Uniquely Decodable Zero-Error Codes

• The best uniquely decodable D-ary symbol code can compress
to within 1 symbol of the entropy

min
Cprefix

L(C,X) ∈ [HD(X), HD(X) + 1)

• Coding blocks of source symbols gives

min
Cprefix

L(C,Xn
1 ) ∈ [HD(X

n
1 ), HD(X

n
1 ) + 1)

• The minimum expected codeword length per symbol satisfies

min
Cprefix

L(C,XN
1 )

N
→ HD(S),

where HD(S) is the entropy rate (base D) of the source.
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