Information Theory

Lecture 2

® Sources and entropy rate: CT4
® Typical sequences: CT3

® |ntroduction to lossless source coding: CT5.1-5
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Information Sources

source — X,

® Source data: a speech signal, an image, a computer file,. ..
® |n practice source data is time-varying and unpredictable.

® Bandlimited continuous-time signals (e.g. speech) can be
sampled into discrete time and reproduced without loss.

A source S is defined by a discrete-time stochastic process { X, }.
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e |If X,, € X, Vn, the set X is the source alphabet.
® The source is
® stationary if {X,,} is stationary.
® ergodic if {X,} is ergodic.
® memoryless if X,, and X, are independent for n # m.
® jid if {X,} is iid (independent and identically distributed).

® stationary and memoryless — iid

continuous if X' is a continuous set (e.g. the real numbers).
® discrete if X is a discrete set (e.g. the integers {0,1,2,...,9}).
® binary if X ={0,1}.
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® Consider a source S, described by {X,,}. Define
XN & (X1, Xs,..., XnN).

® The entropy rate of § is defined as

H(S) 2 lim %H(X{V )

N—o0

(when the limit exists).

® H(X) is the entropy of a single random variable X, while
entropy rate defines the “entropy per unit time” of the
stochastic process S = { X, }.
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® A stationary source S always has a well-defined entropy rate,
and it furthermore holds that

.1 :
H(S) = lim NH(X{V) = lim H(Xy|Xy-1, XN, X1).

That is, H(S) is a measure of the information gained when
observing a source symbol, given knowledge of the infinite
past.

® \\e note that for iid sources

H(S) = lim %H(Xl = lim —ZH H(X))

N—oo N—oo IN

® Examples (from CT4): Markov chain, Markov process,
Random walk on a weighted graph, hidden Markov models,. ..
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Typical Sequences

® A binary iid source {b,} with p = Pr(b, = 1)

® Let R be the number of 1:s in a sequence, b1,...,by, of
length N = p(by') = p"(1 —p)V "

e P(r) 2 Pr(£ <) for N = 10,50,100, 500, with p = 0.3,

P(r)

1
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Mikael Skoglund, Information Theory 6/21



® As N grows, the probability that a sequence will satisfy
R=~p- N is high = given a b}’ that the source produced,
it is likely that

p(bY) = pPN (1 — p)-PIN

In the sense that the above holds with high probability, the
source will only produce sequences for which

1

7 logp(b’) ~ plogp + (1 —p)log(l — p) = —H

That is, for large NN it holds with high probability that
p(by’) =271

where H is the entropy (entropy rate) of the source.
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® A general discrete source that produces iid symbols X,,, with
X, € X and Pr(X,, = z) = p(z). For all z)¥ € XN we have

N
logp(z]) =logp(a1,...,an) = Y _ logp(zm).
m=1

For an arbitrary random sequence Xi' we hence get

1
lim — logp(XY) = lim — Z log p(X,,) = Flogp(X1) a.s.

N—oo N—oo

by the (strong) law of large numbers. That is, for large N
XD = 27V D

holds with high probability.
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® The result (the Shannon—-McMillan—Breiman Theorem) can be
extended to (discrete) stationary and ergodic sources
(CT16.8). For a stationary and ergodic source, S, it holds that

1
— lim Nlogp(XfV):H(S) a.s.

N—oo

where H(S) is the entropy rate of the source.

e \We note that p(XiN) is a random variable. However, the
right-hand side of

p(X{) m 27 N HES)

IS a constant

—> a constraint on the sequences the source “typically” produces!
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The Typical Set

® For a given stationary and ergodic source S, the typical set
AgN) is the set of sequences 2 € XV for which

2—N(H(S)—|—€) < p(x{\f) < 2—N(H(8)—€)

0 ' c AN = N1 logp(zd) € [H(S) — ¢, H(S) + €]
® Pr(XV ¢ AgN)) > 1 —¢, for N sufficiently large
© \AéN)\ < oN(H(S)+e)

(4] \AgN)\ > (1 —¢)2NWH(S)=9) for N sufficiently large
That is, a large N and a small € gives

PrXY € AMY ~ 1, |AN)| 2N H(S)

p(aN) ~ AN 2 NHE) gor 2N ¢ ADV)
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The Typical Set and Source Coding

©® Fix ¢ (small) and N (large). Partition XY into two subsets:
A=A and B=xN\ A,

® Observed sequences will “typically” belong to the set A.
There are M = |A| < 2N(H(S)+€) glements in A.

© Let the different i € {0,..., M — 1} enumerate the elements
of A. An index ¢ can be stored or transmitted spending no
more than [N - (H(S) + ¢)] bits.
O Encoding. For each observed sequence zi¥
© if 21V € A produce the corresponding index i.
® ifz)y € Bleti=0.
@ Decoding. Map each index i back into A C XM,
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® An error appears with probability Pr(X{¥ € B) < ¢ for large
N = the probability of error can be made to vanish as
N — o0

® An “almost noiseless” source code that maps x1¥ into an index

i, where i can be represented using at most [N - (H(S) + ¢)]
bits. However, since also M > (1 — )2V H(S)=¢) for a large
enough N, we need at least |log(1 —¢) + N(H(S) —¢)] bits.

® Thus, for large NN it is possible to design a source code with
rate

H(S)—s—!—%(log(l—s)—l) <R§H(5)—|—€—|—%

bits per source symbol.

—> “Operational” meaning of entropy rate: the smallest rate at
which a source can be coded with arbitrarily low error
probability.
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Data Compression

® For large N it is possible to design a source code with rate

H(S)—é“—i—%(log(l—s)—l) <R§H(8)—|—€+%

bits per symbol, having a vanishing probability of error.

® For a fixed finite NV, the typical-sequence codes discussed are
“almost noiseless” fixed-length to fixed-length codes.

® We will now start looking at concrete “zero-error” codes, their
performance and how to design them.

® Price to pay to get zero errors: fixed-length to variable-length
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Various Classifications

® Source alphabet
® Discrete sources
® Continuous sources
® Recovery requirement
® [ ossless source coding
® | ossy source coding
® Coding method

® Fixed-length to fixed-length
Fixed-length to variable-length
Variable-length to fixed-length
Variable-length to variable-length
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A Symbol-by-symbol Code

® D-ary symbol code C for a random variable X

C:x—{0,1,...,D—1}*

® A* = set of finite-length strings of symbols from a finite set A
® (C(x) codeword for z € X
® [(x) length of C(z) (i.e. number of D-ary symbols)

® Data compression —> minimize expected length

L(CX) = 3 pla)i(a)

xeX
® Extension of C'is C*: X* — {0,1,...,D — 1}*

C*(27) = C(x1)C(x2) -+ - C(xy), n=1,2,...
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Example: Encoding Coin Flips

Problem
010
10---0
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Uniquely Decodable Codes

e (' is uniquely decodable if
Vx,y € X", x££y = C*(x) # C*(y)

® Any uniquely decodable code must satisfy the Kraft inequality

Z D@ <1

reX

(McMillan's result, Karush's proof in C&T)
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Instantaneous Codes

e (' is instantaneous (or prefix) if prefix-free
® no codeword is a prefix of any other codeword
® |nstantaneous codes are uniquely decodable
— prefix codes satisfy the Kraft inequality

® Given a set of codeword lengths that satisfy the Kraft
inequality there exists a prefix code with those codeword
lengths.

— there is a prefix code for every set of codeword lengths that
allow a uniquely decodable code
—> no loss of generality in studying only prefix codes
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Most Compression Possible?

For any uniquely decodable D-ary symbol code ('
(defining Hp(X)= — > p(z) logp p(x)),

L(C,X) = Y px)logp D'
reX
= ) + Z )lo p(z)
- p gD D- l(x)
TeX
log-sum (x) 1
> Hp(X)+1-logp —
erX D @)
Kraft
>  Hp(X)
with equality iff p(x) (=) ie. I(z) = —logp p(x)
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How Close Can We Get?

® The optimal length I(x) = logp zﬁ need not be an integer

o Use I(z) = [1ogD M
® These codeword lengths satisfy the Kraft inequality

> p~ e 35| <y pTier o = > plx) =

reX reX reX

— There exists a (uniquely decodable) prefix code with these
codeword lengths

® For such a code C,

l(z) < —logpp(z)+1 = L(C,X) < Hp(X)+1
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Source Coding Theorem
Uniquely Decodable Zero-Error Codes

® The best uniquely decodable D-ary symbol code can compress
to within 1 symbol of the entropy

CrglrgliXL(C,X) € [Hp(X),Hp(X)+1)

® Coding blocks of source symbols gives

prefix

® The minimum expected codeword length per symbol satisfies

L(C, XT) — Hp(S),

min
C'prefix
where Hp(S) is the entropy rate (base D) of the source.
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