
Information Theory
Lecture 10

• Network Information Theory (CT15); a focus on channel
capacity results
• The (two-user) multiple access channel (15.3)
• The (two-user) broadcast channel (15.6)
• The relay channel (15.7)
• Some remarks on general multiterminal channels (15.10)
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Joint Typicality

• Extension of previous results to an arbitrary number of
variables (most basic defs here, many additional results in CT)

• Notation

• For any k-tuple xk1 = (x1, x2, . . . , xk) ∈ X1 ×X2 × · · · × Xk

and subset of indices S ⊆ {1, 2, . . . , k} let xS = (xi)i∈S
• Assume xi ∈ Xn

i , any i, and let xS be a matrix with xi as rows
for i ∈ S. Let the |S|-tuple xS,j be the jth column of xS .

• As in CT, an
.
= 2n(c±ε) means

∣∣∣∣
1

n
log an − c

∣∣∣∣ < ε,

for all sufficiently large n
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• For random variables Xk
1 with joint distribution p(xk1):

Generate XS via n independent copies of xS,j , j = 1, . . . , n.
Then,

Pr(XS = xS) =
n∏

j=1

p(xS,j) , p(xS)

• For S ⊆ {1, 2, . . . , k}, define the set of ε-typical n-sequences

A(n)
ε (S) =

{
xS : Pr(XS′ = xS′)

.
= 2−n[H(XS′ )±ε], ∀S ′⊆ S

}

• Then, for any ε > 0, sufficiently large n, and S ⊆ {1, . . . , k},

P (A(n)
ε (S)) ≥ 1− ε
p(xS)

.
= 2−n[H(XS)±ε] if xS ∈ A(n)

ε (S)

|A(n)
ε (S)| .= 2n[H(XS)±2ε]
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The Multiple Access Channel

W1

encoder 1

α1(·)

W2

encoder 2

α2(·)

X1

X2

channel

p(y|x1, x2)
Y

decoder

β(·)
Ŵ1

Ŵ2

• Two “users” communicating over a common channel.
(The generalization to more than two is straightforward.)
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Coding:

• Memoryless pmf (or pdf):

p(y|x1, x2), x1 ∈ X1, x2 ∈ X2, y ∈ Y

• Data: W1 ∈ I1 = {1, . . . ,M1} and W2 ∈ I2 = {1, . . . ,M2}
• Assume W1 and W2 uniformly distributed and independent

• Encoders: α1 : I1 → X n
1 and α2 : I2 → X n

2

• Rates: R1 = 1
n logM1 and R2 = 1

n logM2

• Decoder: β : Yn → I1 × I2, β(Y n) = (Ŵ1, Ŵ2)

• Error probability: P
(n)
e = Pr

(
(Ŵ1, Ŵ2) 6= (W1,W2)

)
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Capacity:

We have two (or more) rates, R1 and R2

=⇒ cannot consider one maximum achievable rate
=⇒ study sets of achievable rate-pairs (R1, R2)
=⇒ trade-off between R1 and R2

• Achievable rate-pair: (R1, R2) is achievable if (α1, α2, β)

exists such that P
(n)
e → 0 as n→∞

• Capacity region:

The closure of the set of all achievable rate-pairs (R1, R2)
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Capacity Region for the Multiple Access Channel

• Fix π(x1, x2) = p1(x1)p2(x2) on X1 and X2.

Draw
{
Xn

1 (i) : i ∈ I1
}

and
{
Xn

2 (j) : j ∈ I2
}

in an
i.i.d. manner according to p1 and p2.

• Symmetry of codebook generation =⇒

P (n)
e = Pr

(
(Ŵ1, Ŵ2) 6= (W1,W2)

)

= Pr
{

(Ŵ1, Ŵ2) 6= (1, 1)
∣∣(W1,W2) = (1, 1)

}

where the second “Pr” is with respect to the channel and the
random codebook design.
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• Also

Pr
(
(Ŵ1, Ŵ2) 6= (1, 1)

)
= Pr(Ŵ1 6= 1, Ŵ2 6= 1)

+ Pr(Ŵ1 6= 1, Ŵ2 = 1) + Pr(Ŵ1 = 1, Ŵ2 6= 1)

= P
(n)
12 + P

(n)
1 + P

(n)
2

conditioned that (W1,W2) = (1, 1) everywhere.

• Joint typicality decoding, declare (Ŵ1, Ŵ2) = (1, 1) if

(
Xn

1 (i), Xn
2 (j), Y n

)
∈ A(n)

ε

only for i = j = 1⇒

P
(n)
12 ≤ 2n[R1+R2−I(X1,X2;Y )+4ε]

P
(n)
1 ≤ 2n[R1−I(X1;Y |X2)+3ε]

P
(n)
2 ≤ 2n[R2−I(X2;Y |X1)+3ε]
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R1

R2

A

B

I(X2;Y |X1)

I(X1;Y |X2)I(X1;Y )

I(X2;Y )

• Hence, for a fixed π(x1, x2) = p1(x1)p2(x2) the capacity
region contains at least all pairs (R1, R2) in the set Π defined
by

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 +R2 < I(X1, X2;Y )
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• The corner points

• Consider the point ‘A’

R1 = I(X1;Y )

R2 = I(X2;Y |X1)

}
R1 +R2 = I(X1, X2;Y )

• User 1 ignores the presence of user 2 ⇒ R1 = I(X1;Y )

• Decode user 1’s codeword ⇒ User 2 sees an equivalent
channel with input Xn

2 and output (Y n, Xn
1 ) ⇒

R2 = I(X2;Y,X1)

= I(X2;Y |X1) + I(X1;X2)

= I(X2;Y |X1)

• The above can be repeated with 1↔ 2 and A↔ B

• Points on the line A–B can be achieved by time sharing
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• Each particular choice of distribution π gives an achievable
region Π; for two different π’s,

R1

R2

π2

π1

• Fixed π =⇒ Π is convex.
Varying π =⇒ Π can be non-convex.
However all rates on a line connecting two achievable
rate-pairs are achievable by time-sharing.
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• The capacity region for the multiple access channel is the
closure of the convex hull of the set of points defined by the
three inequalities

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 +R2 < I(X1, X2;Y )

over all possible product distributions p1(x1)p2(x2) for
(X1, X2).

• Proof: Achievability proof based on jointly typical sequences (as
shown before) and a “time-sharing variable”.

Converse proof based on Fano’s inequality and the independence of
Xn

1 and Xn
2 (since they are functions of independent messages).
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Example: A Gaussian Channel

• Bandlimited AWGN channel with two additive users

Y (t) = X1(t) +X2(t) + Z(t).

The noise Z(t) is zero-mean Gaussian with power spectral
density N0/2, and X1(t) and X2(t) are subject to the power
constraints P1 and P2, respectively. The available bandwidth
is W .

• The capacity of the corresponding single-user channel (with
power constraint P ) is

W · C
(

P

WN0

)
[bits/second]

where
C(x) = log(1 + x).

Mikael Skoglund, Information Theory 13/25

• Time-Division Multiple-Access (TDMA):
Let user 1 use all of the bandwidth with power P1/α a
fraction α ∈ [0, 1] of time, and let user 2 use all the
bandwidth with power P2/(1− α) the remaining fraction
1− α of time. The achievable rates then are

R1 < W · αC

(
P1/α

WN0

)
R2 < W · (1− α) C

(
P2/(1− α)

WN0

)

• Frequency-Division Multiple-Access (FDMA):
Let user 1 transmit with power P1 using a fraction α of the
available bandwidth W , and let user two transmit with power
P2 the remaining fraction (1− α)W . The achievable rates are

R1 < αW · C
(

P1

αWN0

)
R2 < (1− α)W · C

(
P1

(1− α)WN0

)

• TDMA and FDMA are equivalent from a capacity perspective!
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• Code-Division Multiple-Access (CDMA):
Defined, in our context, as all schemes that can be
implemented to achieve the rates in the true capacity region

R1 ≤ W · C
(

P1

WN0

)
= W log

(
1 +

P1

WN0

)

R2 ≤ W · C
(

P2

WN0

)
= W log

(
1 +

P2

WN0

)

R1 +R2 ≤ W · C
(
P1 + P2

WN0

)
= W log

(
1 +

P1 + P2

WN0

)
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R1

R2 T/FDMA

CDMA

I

I

Capacity region for P1 = P2

R1

R2

T/FDMA

CDMA

I

2I

Capacity region for P1 = 2P2

Note that T/FDMA is only optimal when
α

1− α =
P1

P2
.
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The Broadcast Channel

(W0,W1,W2)
encoder

α(·) X

channel

p(y1, y2|x)

Y1

Y2

decoder 1

β1(·)
(Ŵ0, Ŵ1)

decoder 2

β2(·)
(Ŵ0, Ŵ2)

• One transmitter, several receivers

• Message W0 is a public message for both receivers, whereas
W1 and W2 are private messages
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The Degraded Broadcast Channel

X
p(y1, y2|x)

Y1

Y2

⇐⇒ X
p(y1|x)

Y1
p(y2|y1)

Y2

• A broadcast channel is degraded if it can be split as in the
figure. That is, Y2 is a “noisier” version of X than Y1,

p(y1, y2|x) = p(y2|y1)p(y1|x).

• The Gaussian and the binary symmetric broadcast channels
are degraded (see the examples in CT).
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Superposition Coding for the Degraded Broadcast Channel

W2

W1

Codebook Y1-receiver Y2-receiver

• Assume there is no common information (for simplicity). Let
W2 chose a cloud of possible W1-codewords.

• The Y1-receiver sees all codewords, whereas the Y2-receiver is
only able to distinguish between clouds.
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• The capacity region of the degraded broadcast channel
(with no common information), is the closure of the convex
hull of all rates satisfying

R2 < I(U ;Y2)

R1 < I(X;Y1|U)

for some distribution p1(u)p2(x|u).

• Proof: Choose W2-codewords i.i.d. according to p1(u), and for
each one, choose W1-codewords i.i.d. according to p2(x|u).

The overall channel from W2 to Y2 (the clouds) can be made
error-free as long as R2 < I(U ;Y2), and conditioned on W2 the
channel from W1 to Y1 can be made error-free as long as
R1 < I(X;Y1|U).

Converse proved in Problem 15.11 (based on Fano, as usual).
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• The capacity region of the degraded broadcast channel
(with common information): If the pair (R1 = a,R2 = b) is
achievable for independent messages, as before, the triple
(R0, R1 = a,R2 = b−R0) is achievable with common
information at rate R0 (as long as R0 < b).

• Since the better receiver can decode both W1 and W2, part of
the W2-message can be made to include common information!
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The Relay Channel

W

encoder

α(·) X
p(y, y1|x, x1)

Y

Y1

relay encoder
{
fi(Y

i−1
1,1 )

}n

i=1

X1
decoder

β(·) Ŵ

• One sender, one receiver, and one intermediate node

• The problem does not define the set of relay functions
{fi(·)}ni=1. The relay’s strategy might be to decode the
message, or compress its channel observation, or amplify it
and retransmit it, or . . .
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• Capacity is not known in general. Some known bounds:

• Cut-set upper bound: The relay is assumed to be co-located
with the transmitter or with the receiver.

R ≤ max
p(x,x1)

min { I(X,X1;Y ), I(X;Y, Y1|X1) }

• Decode-and-forward lower bound:

R ≤ max
p(x,x1)

min { I(X,X1;Y ), I(X;Y1|X1) }

Proof: Split transmission in b blocks.

Choose 2nR̃ codewords i.i.d. ∼ p(x1), and for each one, choose 2nR

codewords i.i.d. ∼ p(x|x1) and distribute them in 2nR̃ bins.

The relay can decode the message if R < I(X;Y1|X1) and then it
sends the bin index in the next block. The receiver can decode the
bin index if R̃ < I(X1;Y ) and, knowing this index, it can decode
the message from the previous block if R− R̃ < I(X;Y |X1).

• These bounds coincide if the relay channel is degraded:

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1)
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General Multiterminal Systems

• M different nodes, each transmitting Xm and receiving Ym.
The message from node i to node j is Wi,j with rate Ri,j .
The channel between nodes is p(y1, . . . , yM |x1, . . . , xM ).

• Although significant progress in recent years, still only a few
general results are known.

• One of them is El Gamal’s cut-set bound: If the rates {Ri,j}
are achievable there exists a p(x1, . . . , xm) such that

∑

i∈S,j∈Sc
Ri,j < I(X(S);Y (Sc)|X(Sc))

for all S ⊂ {1, . . . ,M}.
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• The source–channel separation principle:

For general multiterminal networks the source and channel
codes cannot be designed separately without loss. Essentially
the source code needs to know the channel to provide optimal
dependencies between channel input variables.

• Feedback:

Feedback can increase the capacity of a multi-terminal
channel, since it can help transmitters to “cooperate” to
reduce interference.
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