Information Theory
Spring semester, 2025

Assignment 9
Assigned: Thursday, June 5, 2025
Due: Thursday, June 12, 2025 M. Skoglund

Problem 9.1: (Gallager)
(a) Compute
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for the binary symmetric channel, the Z-channel, and the binary erasure channel (use € as a
parameter), and minimize the result over s € (0,1). Use this to provide an upper bound to
the probability of maximum likelihood decoding error P, ,, (m = 1,2) attained using a code
with two codewords x1 = 0" (a sequence of n zeros) and z3 = 1" (a sequence of n ones).

(b) Find ezact expressions for the above error probabilities. Evaluate the expressions to 3
significant digits for n = 32 and € = 0.1 and compare with the bound in (a).

(c) For the BSC, show that
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e for large odd n,
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(d) Repeat parts (a) and (b) for the Z-channel for a code whose codewords are z; = 0™/217/2
and xy = 1"/20"/2. Observe that this change of code will make no difference for the other
channels.

Problem 9.2:
Prove the inequality:
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That is, the right side is minimized over s > 0 by choosing s = 1/(1 + p). Use standard
inequalities, do not take derivatives!



